
Journal of Mathematical Sciences, Vol. 113, No. 5, 2003

FOLIATIONS, GROUPOIDS, AND THE BAUM–CONNES CONJECTURE

M. Macho-Stadler UDC 512.7

The Baum–Connes conjecture establishes, for foliated manifolds, an analog of the well-known isomorphism between
the topological K-theory of a locally compact space M and the analytic K-theory of the C ∗-algebra of continuous
functions on M vanishing at infinity. In this work, we describe the principal notions involved in the statement of
the conjecture and indicate its contemporary status. Bibliography: 11 titles.

1. Approach to the Baum–Connes conjecture

In the “commutative world,” the most immediate and powerful tools are homology and fundamental groups.
But these tools have no obvious “noncommutative” generalizations. Nevertheless, the topological K-theory [1]
is the mostly successful tool since it passes easily to the noncommutative world.

It is well known that, for any locally compact space M , the C∗-algebra C0(M ) of continuous functions
vanishing at infinity allows us to “reconstruct” M and that there is an isomorphism between the topological
K-theory of M and the analytic K-theory of C0(M ).

The Baum–Connes conjecture, independently of its meaning in the context of index theory, looks to establish
an analog of this isomorphism for some “singular” spaces, i.e., for the leaf spaces of foliated manifolds. Precisely,
if F is a C∞-foliation on a manifold M , then M/F is a bad quotient in many cases. Thus, to obtain information
concerning the transverse structure of the foliation, it is necessary to use other types of objects. Let us mention
some of these objects.

(1) The dynamics of F is described by its holonomy groupoid G, which is a Lie groupoid. The groupoid G can
be considered as a desingularization of the leaf space M/F . As to any Lie groupoid, we can associate to
G a C*-algebra C∗

red(G) of functions, which is interpreted as the “space of continuous functions vanishing
at infinity” on M/F . The analytic K-theory of the leaf space, Kan(M/F), is defined as the K-theory
K∗(C∗

red(G)) of this C*-algebra.
(2) Moreover, we can construct a classifying space BG for G. The groupoid G acts freely and properly on

BG, which is not, in general, a manifold (and it does not even have the homotopy type of a manifold!)
The space BG can be considered as the leaf space modulo homotopy. In [2], Baum and Connes introduce
a generalized G-equivariant K-theory K∗,τ (BG) associated with this object, which is defined as the
topological K-theory Ktop(M/F) of the leaf space.

Intuitively, G, C∗
red(G), and BG are “items” completely determined by F and carrying the same information.

Elliptic operators give us a map between the K-theory groups previously described,

µ : Ktop(M/F) → Kan(M/F),

and the Baum–Connes conjecture asserts that µ is a group isomorphism if the holonomy groups are torsion-free.
The proof of the conjecture would furnish us with a relation between the information given by the transverse

structure of the foliation (through G) and the geometry granted by the space BG. In other words, such a proof
would “present” a geometric interpretation of the analytic object K∗(C∗

red(G)). In this talk, we describe the
principal notions involved in the statement of the conjecture and indicate its contemporary status.

2. Lie groupoids

2.1. Algebraic groupoids.

Definition 1. An algebraic groupoid is defined by the following objects:
(1) a pair of sets (M, G), where M ⊂ G is the unit space and G is the total space;
(2) two surjective maps α, β : G → M , called the projections of the source and range, respectively, such that

α(x) = β(x) = x for x ∈ M ;
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(3) a bijection i : G → G called the inversion and such that i = i−1 (we note that i(γ) = γ−1);
(4) a partial composition law, . : G2 → G called the multiplication, where the set of composable pairs is

G2 = {(γ2, γ1) ∈ G×G : α(γ2) = β(γ1)}. The multiplication has the following properties.
• Associativity: if γ1, γ2, γ3 ∈ G and either ((γ2, γ1) ∈ G2 and (γ3, γ2.γ1) ∈ G2) or ((γ3, γ2) ∈ G2 and

(γ3.γ2, γ1) ∈ G2), then γ3.(γ2.γ1) = (γ3.γ2).γ1.
• Units: for any γ ∈ G, (γ, α(γ)) ∈ G2 and (β(γ), γ) ∈ G2, hence γ.α(γ) = γ = β(γ).γ.
• Inversion: for any γ ∈ G, we have the inclusions (γ, γ−1) ∈ G2 and (γ−1, γ) ∈ G2 and

the identities γ.γ−1 = β(γ) and γ−1.γ = α(γ).

Examples 1. The first examples of algebraic groupoids are as follows:
(1) if M is a point, then the groupoid is reduced to a group;
(2) if M = G, α(γ) = β(γ) = γ, and γ−1 = γ, then G2 is the diagonal of G× G, and we obtain the trivial

groupoid;
(3) given a set X, we consider G = X × X, let M be the diagonal of G (identified with X), and define

α(y, x) = x, β(y, x) = y, and (x, y)−1 = (y, x). The set of composable pairs is G2 = {((y, x), (x, z)) :
x, y, z ∈ X}, and the multiplication is given by the formula (y, x).(x, z) = (y, z). This is the coarse
groupoid;

(4) the graph of an equivalence relation R on a set X is a groupoid, where the unit space is the diagonal,
α(x, y) = x, β(x, y) = y, and (x, y)−1 = (y, x). Then G2 = {((x, y)(y, z)) ∈ G × G : x, y, z ∈ X} is the
set of composable pairs, and (x, y).(y, z) = (x, z).

Definition 2. Given a groupoid G and x, y ∈ M , we define the α-fiber over x, Gx = {γ ∈ G : α(γ) = x}, the
β-fiber over y, Gy = {γ ∈ G : β(γ) = y}, and the set Gy

x = Gx ∩ Gy. The set Gy
x can be empty. However, if

x ∈ M , then Gx
x is a group (where the point x is the unit element), the isotropy group of G at x. The isotropy

groupoid of G is Is(G) =
⋃

x∈M

Gx
x (with M as the unit space and with obvious operations).

Definition 3. A homomorphism of groupoids from G1 to G2 is a function f : G1 → G2 such that if (γ2, γ1) ∈ G2
1,

then (f(γ2), f(γ1)) ∈ G2
2 and f(γ2.γ1) = f(γ2).f(γ1).

2.2. Lie groupoids.

Definition 4. We say that G is a Lie groupoid (below, “differentiable” means C∞) if the following conditions
hold:

(1) G and M are differentiable manifolds, and M is Hausdorff;
(2) the maps α, β, i, and . are differentiable, α and β are submersions, and i is a diffeomorphism.

Examples 2. The first examples of Lie groupoids are as follows:
(1) the action of a Lie group on a manifold. We consider the action of a connected Lie group H on a manifold

M : Φ : H ×M → M . We define in this way a Lie groupoid with the total space G = H ×M , with the
unit space M , and with the operations α(g, x) = x, β(g, x) = Φ(g, x), and (g, x)−1 = (g−1, Φ(g, x)) such
that if x2 = Φ(g1, x1), then the multiplication is (g2, x2).(g1, x1) = (g2g1, x1);

(2) the homotopy groupoid of a manifold. Given a differentiable manifold M , we consider P(M ), the set
of paths on M provided with the compact-open topology. We consider the following open equivalence
relation on P(M ):

γ ∼ γ′ if γ is homotopic to γ′ with fixed extremities.

The quotient space, Π1(M ) = P(M )/ ∼ , is a locally compact groupoid such that its unit space is
the manifold M (identified with the class of constant paths), where the structure of a groupoid is
defined through the relations α(γ) = γ(0) and β(γ) = γ(1), and the multiplication and inversion of
the groupoid are defined following the usual composition and inversion of paths, respectively. The
continuous function (α, β) : Π1(M ) → M ×M is a covering map, and thus we can lift the structure of
a differentiable manifold to Π1(M ). This structure is compatible with the quotient topology, hence
Π1(M ) is a Lie groupoid. If x ∈ M , then we have two universal coverings of M , α : Π1(M )x → M
and β : Π1(M )x → M . The isotropy group at x ∈ M is Π1(M )xx = π1(M, x). The Lie groupoid
Π1(M ) is called the fundamental groupoid or homotopy groupoid of M .

Definition 5. Given two Lie groupoids G1 and G2, a homomorphism (of Lie groupoids) f : G1 → G2 is a
differentiable map which, in addition, is a groupoid homomorphism.
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3. G-fiber bundles

3.1. G-actions. Let G be a Lie groupoid. Let Z be a non-Hausdorff, locally compact, and differentiable
manifold. Given a differentiable map ρ : Z → M , we consider the set Z ∗M G = {(z, γ) ∈ Z ×G : ρ(z) = β(γ)}.
Definition 6. A right differentiable action of G on Z is a differentiable map Φ : Z ∗M G → Z denoted by
Φ(z, γ) = z.γ and having the following properties:

(1) ρ(z.γ) = α(γ) for any (z, γ) ∈ Z ∗M G;
(2) if one of the expressions (z.γ).γ′ or z.(γ.γ′) is defined, then the other one is also defined, and they

coincide;
(3) z.ρ(z) = z for any z ∈ Z.

We say that Z is a right G-differentiable space if Z is a non-Hausdorff differentiable manifold provided with a
differentiable right G-action.

Definition 7. The action of G on Z is called

(1) proper if the map Ψ : Z ∗M G → Z × Z defined by Ψ(z, γ) = (z, z.γ) is proper,
and

(2) free if, given (z, γ) ∈ Z ∗M G, the equality γ.z = z holds if and only if γ ∈ M .

Definition 8. A G-space Z is called principal if the action is proper and free. In this case, the canonical
projection π : Z → Z/G is a submersion, and the quotient space Z/G is locally compact and Hausdorff.

Example 1. If G is a Lie groupoid, Z = G, and ρ = α, then Z ∗M G = G2. The multiplication of the groupoid
is a natural right G-action of G on itself. This is a free action, and G is a principal G-space. If x ∈ M , then the
orbit of this point at the action is G(x) = Gx.

Definition 9. Given two right G-differentiable spaces Z1 and Z2, we define a G-map, f : Z1 → Z2, to be a
differentiable and G-equivariant map, i.e., a map such that if (z1, γ) ∈ Z1 ∗M G, then (f(z1), γ) ∈ Z2 ∗M G and
f(z1.γ) = f(z1).γ.

3.2. Morita-equivalence of groupoids.

Definition 10. If Z is a G-space, then a G-bundle over Z is defined by a G-space E and a G-map p : E → Z
called the projection so that the following statements hold:

(1) p : E → Z is a complex bundle;
(2) for any (z, γ) ∈ Z ∗M G, the map φ : Ez → Ez.γ given by φ(u) = u.γ is linear.

For our purposes, a good notion of equivalence of groupoids is the following one.

Definition 11. A Morita-equivalence between two Lie groupoids G1 and G2 is defined by

(1) a non-Hausdorff locally compact manifold Zf provided with two submersions r : Zf → M1 and s : Zf →
M2 having the following properties:

(2) Zf is a left principal G1-space and a right principal G2-space, and the actions commute;
(3) r induces a diffeomorphism between Zf/G2 and M1, and s induces a diffeomorphism from G1\Zf onto

M2.

4. From groupoids to foliations

4.1. Groupoids defining foliations.

Definition 12. Let G be a Lie groupoid. For any γ ∈ G, the differentiable map Lγ : Gα(γ) → Gβ(γ) defined
by the equality Lγ(λ) = γ.λ is a G-bundle homomorphism of β-fibers with the inverse map Li(γ). The map
Lγ is called the left translation by γ. We also define the right translation Rγ : Gβ(γ) → Gα(γ) by the equality
Rγ(λ) = λ.γ. This map is a diffeomorphism of α-fibers. Obviously, the left and right translations commute.

Thus, the projection of β-fibers by α (similarly, the projection of α-fibers by β) is a partition of M , and these
partitions are equal; for any x ∈ M , Φ(x) = β(Gx) = α(Gx) is the element of the partition containing the point
x. In fact, connected components of elements of the partition defined in this way are leaves of a singular foliation
S on M . This is a regular foliation if we impose some restrictions on the groupoid action. If intersections of
α-fibers and β-fibers are of constant dimension (i.e., if the isotropy groupoid Is(G) is a manifold), the dimension
of leaves is also constant, and thus S is a regular foliation.
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Definition 13. A Lie groupoid G is called regular if

(1) α-fibers are connected;
(2) the isotropy groups are discrete (thus, dim(Gx

x) = 0 for any x ∈ M ).

The groupoid G is called oriented if the induced foliation is orientable.

The inversion i changes α-fibers and β-fibers. Thus, under the conditions of Definition 13, β-fibers are also
connected and, following the previous discussion, M is provided with a regular foliation S. We say that this
foliation is defined by the action of G on M . For example, the homotopy groupoid of a manifold (inducing a
foliation by a unique leaf) is regular.

Definition 14. A regular groupoid G defines a foliation F on M if orbits of the groupoid action are leaves of
F .

Reciprocally, every foliation can be defined via the action of a regular Lie groupoid. The most important
are the homotopy and holonomy groupoids of the foliation. The remaining groupoids are “in the middle” (the
holonomy groupoid is the largest one, the homotopy groupoid is the smallest one, and the remaining groupoids
are constructed as quotients of the holonomy groupoid).

4.2. Homotopy groupoid of a foliation. Let (M,F) be a foliation of dimension p and codimension q on a
manifold M of dimension n = p + q. We consider the set P(F) of tangent paths of F (i.e., of paths such that
their images are contained in leafs) provided with the compact-open topology. We define the following open
equivalence relation:

γ ∼ γ′ if γ is homotopic (with fixed extremities) to γ′ in the leaf.

On the quotient Π1(F) = P(F)/ ∼ by this action, we define a structure of an algebraic groupoid as follows: the
unit space is M (identified with the class of constant paths), the projections are α(γ) = γ(0) and β(γ) = γ(1),
and the groupoid multiplication and inversion are induced by the usual composition and inversion of paths,
respectively. The topology of P(F) induces on Π1(F) a quotient topology. With respect to this topology, α, β,
i, and . are continuous maps, α and β are open, and i is a homeomorphism. If x ∈ M , then β : Π1(F)x → Lx

and α : Π1(F)x → Lx are universal coverings of Lx, the leaf containing x, and the isotropy group at x is just
Π1(F)x

x = π1(Lx, x).
The differentiable structure is developed in detail in [11]. Concisely, we can describe it in the following manner:

if γ is a tangent path in F , then we consider two distinguished cubes Ui = Pi×Ti, where Ui is a neighborhood of
γ(i) (i ∈ {0, 1}), Pi is a plaque, and Ti is a transversal of F . Modulo possible restrictions on T0 and T1, the local
triviality of the foliation allows us to define a holonomy diffeomorphism hγ : T0 → T1 represented by a “tube
of tangent paths of F ,” ĥγ : T0 × [0, 1] → M . This tube is parametrized by T0, and the map hγ is determined
by passing from the origin to the ends of these paths. The tube ĥγ extends to a differentiable family of tangent
paths F parametrized by P0 × T0 × P1 and inducing a diffeomorphism from U0 to U1. Passing to homotopy
classes, we obtain a local chart on Π1(F). The atlas constructed in this way defines on Π1(F) a structure of
differentiable manifold of dimension 2p + q. Since all the objects defining the groupoid structure on Π1(F) are
differentiable, we obtain a Lie groupoid called the homotopy or fundamental groupoid of the foliation. This is a
“foliated version” of the homotopy groupoid of a manifold.

4.3. Holonomy groupoid of a foliation. If we define on P(F) a finer equivalence relation “∼h” as follows:

γ∼hγ′ if the holonomy germ of the path (γ′)−1.γ is trivial,

then we obtain a Lie groupoid Hol(F) = P(F)/∼h (of dimension 2p+q), called the holonomy groupoid or graph of
the foliation. The isotropy group of x ∈ M is Hol(F)xx = h(π1(Lx, x)), where the map h : π1(Lx, x) → Diff(T0, x)
(defined by h(γ) = hγ) is the holonomy representation of the leaf Lx through x. Fibers of this groupoid are
the holonomy coverings of leaves of F . Note that the quotient Hol(F)x/ Hol(F)x

x is diffeomorphic to Lx, hence
Hol(F) is the natural desingularization of M/F , and in fact it “unwraps” all leaves simultaneously!

The lifting property of paths allows us to construct a Lie groupoid surjective homomorphism φ : Π1(F) →
Hol(F). Unlike Π1(F), Hol(F) “forgets” the leaf structure and carries only information about the transverse
structure of F . In general, Π1(F) and Hol(F) are not Hausdorff.

640



If we consider the foliation FU restricted to a distinguished cube U = P × T , where P is a plaque and T is a
transversal, then the two groupoids previously defined coincide,

Π1(FU ) = Hol(FU) = P × P × T.

In fact, we have a parametrized (by T ) family of coarse groupoids (see item (3) of Example 1); this is the local
triviality property of the homotopy and holonomy groupoids of a foliation.

Investigation of the leaf space is the study of transverse properties. It is useful to introduce the following
notion.

Definition 15. Let G be a regular groupoid defining a foliation F on M and let T be a transverse submanifold
intersecting every leaf (a total transversal, eventually not connected). Set GT

T = {γ ∈ G : α(γ), β(γ) ∈ T}.
Considering αT and βT , the restrictions of α and β to GT

T (these restrictions are local diffeomorphisms), we get
a Lie groupoid GT

T , called the transverse groupoid associated with the transversal T .

The transverse groupoid is simpler than the original one, and the following statement holds.

Proposition 1. The natural immersion iT : T → M of a transversal on the manifold induces a Morita-
equivalence between the groupoids G and GT

T .

5. C*-algebras and foliations

5.1. What is a C*-algebra?

Definition 16. A C*-algebra A is a complex Banach algebra provided with an involution ∗ : A → A satisfying
the relation ‖a∗a‖ = ‖a‖2 with respect to the Banach norm.

Examples 3. The first examples of C*-algebras are as follows:
(1) if M is a locally compact Hausdorff space, then the algebra C0(M ) of continuous complex-valued functions

on M vanishing at infinity with the involution f∗(x) = f(x) (for x ∈ M ) is a commutative C*-algebra;
(2) ifH is a Hilbert space and B(H) is the algebra of bounded linear operators acting onH with the involution

defined by the usual adjunction (T∗ is the adjoint of T ∈ B(H) if 〈Th, h〉 = 〈h, T∗h〉 for h ∈ H), then
B(H) is a C*-algebra. Every norm-closed auto-adjoint subalgebra of B(H) is also a C*-algebra. For
example, the subalgebra of compact operators K(H) is a C*-algebra.

We have a category whose objects are C*-algebras and whose morphisms are linear maps f : A → B with
the following properties: they are multiplicative (f(a1a2) = f(a1)f(a2)) and preserve involution (f(a∗) = f(a)∗)
(i.e., these linear maps are ∗-homomorphisms). In fact, every C*-algebra can be considered as an auto-adjoint
and norm-closed subalgebra of B(H), where H is a Hilbert space.

The central theorem of this theory shows that the category of commutative C*-algebras and ∗-homomorphisms
is dual to the category of locally compact spaces and proper continuous maps.

Theorem 1 (Gelfand–Naimark). Every commutative C*-algebra is isomorphic to C0(M ) for some Hausdorff
locally compact space M .

We intend to transpose these properties to “singular spaces.”

Examples 4. We have more examples of C*-algebras:
(1) the universal C*-algebra generated by a unitary u with the relations u∗u = uu∗ = 1 is C∗(u) ' C(S1);
(2) the universal C*-algebra generated by {u1, . . . , un} with the relations u∗i ui = uiu

∗
i = 1 and uiuj = ujui

is C∗(u1, . . . , un) ' C(Tn);

(3) the universal C*-algebra generated by {h0, . . . , hn}with the relations hi = h∗i , hihj = hjhi, and
n∑

i=0

h2
i = 1

is C∗(h0, . . . , hn) ' C(Sn);
(4) the C*-algebra of a locally compact group is defined as follows: we complete the involutive algebra Cc(G)

of complex-valued continuous functions with compact support on G with respect to the following norms:
• the maximal norm of the C*-algebra (involving the unitary representations of Cc(G)) (this norm gives us

C∗
max(G))

and
• the norm induced by the left regular representation of the group (this norm gives us

C∗
red(G));
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(5) the C*-algebra of a group action is defined as follows: it is a generalization of item (4)
giving us the C*-algebra crossed product A oα G (a “twisted” group C*-algebra with
coefficients in A) and the C*-algebra reduced crossed product, A oα,red G.

Some simple examples of the latter construction are as follows:
• if G acts by a homeomorphism on a locally compact space M (i.e., by ∗-automorphisms on C0(M )), then

C0(M ) o G is the transformation group C*-algebra. If the action is free and proper, then C0(M ) o G is
isomorphic to C0(M/G)⊗ K(L2(G));

• if A = C and α is trivial, then the crossed product is C∗(G), and the reduced crossed product is C∗red(G);
• if A and G are arbitrary and α is trivial, the crossed product is the tensor maximal

product A⊗max C∗(G).

5.2. Groupoid C*-algebras. The following construction is valid for many groupoids. To simplify our presen-
tation, we assume that G is the holonomy groupoid of a regular and orientable foliated space (M,F).

Since G is not, in general, Hausdorff, it is necessary to adapt to this situation the definition of the algebra of
continuous functions with compact support on G.

Definition 17 [3]. The algebra Cc(G) is the vector space generated by finite sums of the form f = ϕ◦χ, where

• χ : U → Rk is a local chart for the manifold structure on G,
• ϕ is a continuous function with compact support on χ(U ), i.e., f = ϕ◦χ on U , and f vanishes on G−U .

If G is Hausdorff, this definition coincides with the usual definition of Cc(G).

The choice of a Riemannian metric on M defines an orthogonal decomposition of the tangent bundle: T (M ) =
ν(F) ⊕ T (F). We consider a pure form ω of type (0, p) on M (p is the dimension of the foliation). By the
restriction to leaves, this form defines a volume associated with the induced metric (the volume element ω
changes differentiably on M ). If x ∈ M and if Lx is the leaf through x, then the restriction ω|Lx = ωx is a
volume form on Lx. In addition, α : Gx → Lx is a covering map (corresponding to the kernel of the holonomy
representation). Thus, it is possible to lift ωx in λx on Gx. Globally, we lift ω by α in a volume form λ = α∗(ω)
on G. This defines a volume by the restriction to β-fibers.

Definition 18. We say that {λx}x∈M is a left Haar system on G. Intuitively, a Haar system is an object of
metric nature playing the role of the Haar measure for groups.

This volume is invariant with respect to left translations.

Lemma 1. If f ∈ Cc(Gx) and γ0 ∈ Gx, then∫
Gx

f(γ)dλx(γ) =
∫

Gβ(γ0)
f(Lγ0 (γ))dλβ(γ0)(γ).

We also have the continuity condition.

Lemma 2. For f ∈ Cc(G), the map λ(f) : M → C defined by λ(f)(x) =
∫

Gx

f(γ)dλx(γ) is continuous.

The previous lemmas imply the following statement.

Proposition 2. The algebra Cc(G) is a ∗-algebra for the following operations for f, g ∈ Cc(G):

(1) involution, f∗(γ) = f(γ−1) for γ ∈ G.

(2) convolution, f ∗ g(γ) =
∫

Gβ(γ)
f(γ1)g(γ−1

1 .γ)dλβ(γ)(γ1) for γ ∈ G.

We consider the nondegenerate representation Rx : Cc(G) → L(L2(Gx)) of Cc(G) defined by the formula

Rx(f)(ξ)(γ) =
∫

Gx

f(γ−1.γ1)ξ(γ1)dλx(γ1)

for x ∈ M , f ∈ Cc(G), ξ ∈ L2(Gx), and γ ∈ Gx.
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Definition 19. The reduced C*-algebra C∗
red(G) of G is the completion of Cc(G) with respect to the C*-algebra

norm ‖ f ‖= sup
x∈M

‖ Rx(f) ‖.

The previous construction depends on the choice of a Riemannian metric on M . If λ and λ1 are volumes
on G obtained as above from different Riemannian metrics, these volumes are related by the identity λ1 = f.λ,
where the map f : G → R is continuous, positive, and constant on fibers of the map h : G → M ×M defined by
h(γ) = (β(γ), α(γ)). The C*-algebras C∗λ,red(G) and C∗

λ1,red(G) coincide in the set-theoretic sense, i.e., the same
functions are bounded for the two norms. In addition, for any x ∈ M , the measure λx is absolutely continuous
with respect to λx

1 , i.e., there is a unique λ-measurable function f ≥ 0 (the Radon–Nikodym derivative) such that

λ1(E) =
∫

E

fdλ. Thus, the C*-algebra C∗
red(G) does not depend on the choice of λ or λ1. Thus, the previous

construction is intrinsic.

5.3. Morita-equivalence of C*-algebras.

Definition 20. Let A be a C*-algebra and let E be a right A-module. The module E is called a Hilbert A-module
if it is provided with an A-valued inner product 〈 , 〉A : E × E → A, linear with respect to the second variable
(λ〈ξ, η〉A = 〈ξ, λη〉A), antilinear with respect to the first variable (λ〈ξ, η〉A = 〈λξ, η〉A), and such that for ξ, η ∈ E
and a ∈ A, the following statements hold:

(1) 〈ξ, η〉A = 〈η, ξ〉∗A;
(2) 〈ξ, ηa〉A = 〈ξ, η〉Aa and 〈ξa, η〉A = a∗〈ξ, η〉A;
(3) 〈ξ, ξ〉A ≥ 0 (i.e., 〈ξ, ξ〉A is positive as an element of A) and 〈ξ, ξ〉A = 0 if and only if ξ = 0;
(4) the map n : E → R defined by n(ξ) = ‖〈ξ, ξ〉A‖1/2 is a complete space norm on E .

Definition 21. A Hilbert A-module E is full if the A-valued inner product 〈 , 〉A on E generates A as a closed
bilateral ideal.

Definition 22. Two C*-algebras A and B are Morita-equivalent if there is a full Hilbert B-module E such that
A is isomorphic to KB(E).

The following statement holds.

Proposition 3. If G1 and G2 are Morita-equivalent groupoids, then C∗red(G1) and C∗
red(G2) are Morita-

equivalent C*-algebras.

5.4. C*-algebra of a foliation.

Definition 23. The C*-algebra C∗(M/F) of a foliated space (M,F) is defined as the reduced C*-algebra
C∗

red(G) of its holonomy groupoid.

The construction of C∗(M/F) is local in the following sense.

Proposition 4. If U ⊂ M is open and FU is the restriction of F to U , then GU (the graph of (U,FU )) is an open
subgroupoid of G, and the inclusion Cc(GU) ⊂ Cc(G) extends to a ∗-isometric isomorphism from C∗(U/FU ) to
C∗(M/F).

Note that C∗(M/F) is stable in the sense of the following statement.

Proposition 5. C∗(M/F) ⊗K ∼= C∗(M/F).

Propositions 1 and 3 imply that the C*-algebra of a foliation depends only on its transverse structure.

Theorem 2. If (M,F) is a foliated manifold and T is a total transversal, then the C*-algebras C∗(M/F) and
C∗

red(GT
T ) are Morita-equivalent.

We easily prove the following result.

Theorem 3. If (M1,F1) and (M2,F2) are topologically equivalent foliations, then

C∗(M1/F1) ⊗K ∼= C∗(M2/F2)⊗ K.

Some properties of a foliated manifold are reflected in the structure of the associated C*-algebra. For example,
note the following result.

643



Proposition 6. If the graph is Hausdorff, then

(1) C∗(M/F) is simple if and only if each leaf of F is dense;
(2) C∗(M/F) has an injective irreducible representation if and only if there is a dense leaf;
(3) the foliation F is closed (i.e., its leaves are closed) if and only if C∗(M/F) has compact operators as the

quotient.

In the non-Hausdorff case (for example, if the foliation is minimal), the C*-algebra is not necessarily simple.

Examples 5. Some examples of C*-algebras of foliations are constructed as follows:
(1) if M is locally compact and is foliated by points, then G = M and C∗(M/F) = C0(M );
(2) if M is locally compact and is foliated by a unique leaf, then G = M ×M . In this case, the Haar system

is simply a measure λ on M supported by M . Obviously, elements of the dense subalgebra from the
definition can be chosen as integral operators such that their kernels have compact support on L2(M, λ).
Its completion is obviously the family of compact operators K on L2(M, λ);

(3) if the foliation is defined by a fibration F p → M → Bq , where F is connected, then M is foliated by
the inverse images of points of B. Any leaf is closed and diffeomorphic to F . In this case, the holonomy
groupoid is the graph of the equivalence relation corresponding to the partition of M by leaves and the
C*-algebra C∗(M/F) is isomorphic to C0(B,K(L2(F ));

(4) if the foliation comes from the action of a Lie group Γ so that the graph is M × Γ (in general, this is not
true), then C∗(M/F) is the reduced crossed product C0(M ) ored Γ.

6. K-theory of a C*-algebra

6.1. K-theory of topological spaces. Let M be a compact space. Denote by V (M ) the set of all isomorphism
classes of locally trivial complex bundles over M . It is well known that V is a contravariant functor from the
category of compact spaces to the category of Abelian semigroups and is homotopy invariant. K0(M ) is defined
as the Grothendieck group of V (M ) and is also a contravariant functor from the category of compact spaces to
the category of Abelian groups. This definition is generalized to the case of a locally compact M .

The reduced suspension Sn(M ) of order n of M is defined as the noncompact space Sn(M ) = M × Rn. The
K-group of order n of M is defined by the equality Kn(M ) = K0(Sn(M )).

Let M be a locally compact space and let E be a complex vector bundle over M . Then the following statement
holds.

Proposition 7. If Γ(M, E) is the set of continuous sections on E, then

(1) Γ(M, E) is a module on the ring C(M ) of C-valued continuous functions over M ;
(2) an isomorphism of complex vector bundles induces an isomorphism on the corresponding section modules;
(3) if E is a trivial bundle of dimension n, then Γ(M, E) ' C(M )n;
(4) if M is compact, then Γ(M, E) is a projective module of finite type.

Thus, Γ is a covariant functor from the category of complex vector bundles over a compact Hausdorff space M
to the category of projective modules of finite type on C(M ), and we can prove that Γ is bijective (this is Swan’s
theorem).

According to the previous arguments, if M is compact, then K0(M ) can also be described as the group of
formal differences [P ]− [Q] of isomorphism classes of projective modules of finite type on C(M ). This result has
enormous importance since it has a natural generalization to the noncommutative case.

6.2. K-theory of C*-algebras. If A is a C*-algebra, then we define K0 as a contravariant functor from the
category of C*-algebras to the category of Abelian groups so that elements of K0(A) can be considered as the
formal differences [p]− [q], where p and q are projections on Mk(Ã) (Ã is the unitary algebra associated with
the C*-algebra A in the usual manner) for a certain k ∈ N and p− q ∈ Mk(A).

If A is unitary, then it is also possible (and very useful) to consider K0(A) as the formal differences [E ]− [F ]
of equivalence classes of A-projective modules of finite type.

In addition, we can define the K-theory groups of higher dimension (introducing the notion of suspension of
a C*-algebra), and Swan’s theorem shows that if A = C0(M ) (where M is a locally compact space), then its
K-analytic group Kj(A) is naturally isomorphic to the K-topological group Kj(M ).

The functor Kj is homotopy invariant, preserves inductive limits, and is stable (i.e., Kj(A) ' Kj(A ⊗ K),
where K is the algebra of compact operators), and semi-exact (if J is an ideal in A and we have the short exact
sequence 0 → J

i→ A
π→ A/J→0, then we have the short exact sequence of groups Kj(J) i∗→ Kj(A) π∗→ Kj(A/J)).
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Let us state the main result for our purposes.

Proposition 8. If A and B are Morita-equivalent C*-algebras, then the corresponding K-theory groups K∗(A)
and K∗(B) are isomorphic.

6.3. K-orientation. Consider a foliated manifold (M,F). A theorem due to Buffet–Lor shows that there is
a topological space BG and a continuous map i : BG → M/F with the following universal property: for any
space X and map f : X → M/F , there is a map g : X → BG (defined modulo homotopy) such that f = i ◦ g.
The space BG is a CW-complex, and there is a principal (contractible) G-bundle EG over BG such that for any
space X and a principal G-bundle E over X, there is a map f : X → BG such that E = f∗(EG). The space
BG is unique up to a homotopy.

We can regard BG (which is a transverse object) as a foliated space (W,FW ) such that leaves of the foliation
FW are contractible and the holonomy transverse groupoids are locally isomorphic to the initial groupoid.

K-theory is a complex theory with compact support. We work with real bundles (tangent bundles, tangent
bundles of foliated spaces, etc.), hence we need an additional structure for “complexifying” them. K-orientation
defined through spinc-structures is the natural orientation which guarantees the existence of index, duality,
Thom isomorphism theorems, etc., for this cohomology theory.

Definition 24. Let Mlcn be the group Mln(R) ×Z/2Z U(1), where Mln(R) is the metalinear group, i.e., the

nontrivial twofold covering of the set of real matrices with positive determinant group Gl+n (R). The maximal
compact of Mlcn is spinc(n).

Definition 25. The holonomy groupoid of F is called K-oriented if the structural groupoid of the tangent
bundle to the foliation T (F) is reduced to spinc.

Definition 26. If X is a G-manifold and ν(F) is the normal bundle of the foliation, then a map f : X → BG is
called K-orientable if the bundle T (X)⊕f∗(ν(F)) has a spinc-structure. When we choose one of these structures,
we say that f is K-oriented.

7. Statement of the Baum–Connes conjecture

Let (M,F) be a foliated manifold and let G be its holonomy groupoid. A purely geometric manner of defining
K-theory is the following.

Definition 27. A K-cycle is a triple (X, E, f), where

(1) X is a closed manifold and E is a complex G-bundle over X;
(2) f : X → BG is a K-oriented map (i.e., a spinc-structure over T (X) ⊕ f∗(ν(F)) is fixed).

We do not assume that X is connected, and E can have different dimensions on different connected components
of X.

We define an equivalence relation “∼” on the set of K-cycles via disjoint sum, bordism, and vector bundle
modification conditions (relations connected with the multiplicativity of the index of elliptic operators on vector
bundles).

Definition 28. K∗,τ (BG) is the quotient of K-cycles by the equivalence relation “∼,” where the subindex τ
means the “twist” by the transverse bundle of the foliation. This object is the topological K-theory Ktop(M/F)
of the leaf space.

Examples 6. In the simplest cases, we have the following properties:

(1) if F is the foliation by a unique leaf, then ν(F) = 0 and K∗,τ (BG) ' K∗(BG);
(2) if M is foliated by points, then ν(F) ' T (M ), BG is homotopy equivalent to M , and K∗,τ (BG) ' K∗(M ).

Definition 29. The analytic K-theory Kan(M/F) of the leaf space is defined as the K-theory K∗(C∗(M/F)).

The longitudinal index theorem [5] defines the K-index map:

µ : Ktop(M/F) → Kan(M/F).

Conjecture 1 (Baum–Connes). The K-index map is an isomorphism if the holonomy groups are torsion-free.
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8. Our work in this field

A particularly “favorable” situation is the case of a foliation (M,F) for which the holonomy groupoid G has
contractible fibers (α- or β-fibers), i.e., the case of a classifying foliation. In this case, the space BG is identified
with the manifold M and the topological K-theory of the leaf space is reduced to the K-theory of M (or of
C0(M )). In this simple case, we cannot give an immediate formulation of the Baum–Connes conjecture since
the “foreseen” isomorphism is defined in terms of a K-oriented map between leaf spaces (or groupoids) which
can be interpreted as a projection from M to M/F .

Our study is centered on classifying foliations, or, more generally, foliations which can be transformed into
classifying ones through simple topological manipulations (topological equivalences, Morita-equivalences, etc.).
In these cases, we prove the following “reduced formulation” of the Baum–Connes conjecture.

Conjecture 2 (reduced form of the Baum–Connes conjecture). If the holonomy groupoid of the foliation is
classifying and K-oriented, then the K-index map µ : K∗(M ) → Kan(M/F) is an isomorphism.

The Baum–Connes conjecture has already been verified for some cases of foliations. Let us list the following
cases:

(1) fibrations F → M → B; in this case, C∗(M/F) ' C0(B) ⊗ K and Kan(M/F) ' K∗(B), where the leaf
space is identified with the base space of the fibration B;

(2) foliations induced by free actions of Rn; following the Thom isomorphism of Connes [3], we have
C∗(M/F) ' C0(M )oRn, and the K-theory is K∗(M ) if n is odd and K∗+1(M ) otherwise. For foliations
induced by free actions of solvable simply connected Lie groups Γ, we have Kan(M/F) ' K∗+dim(Γ)(M );

(3) the Reeb foliations on T2 and S3 [10];
(4) foliations without holonomy ([9] in the C∞-case and [7] in the topological case). In this case, BG is a

torus Tn (n is the order of the holonomy group of the foliation) provided with a linear foliation, and we
apply (2);

(5) foliations almost without holonomy [6]. Applying graphs of groups, we reduce this case to (4). The
reasoning used in this case is also valid for another type of foliated spaces, where a certain “scheme” in
closed and open sets works;

(6) some nontrivial examples: the Sacksteder foliation, the Hirsch foliation, Z-periodic foliations, and so on.
In all these cases, the space BG has the homotopy type of a manifold, and we use “strong” arguments involving

Morita-equivalences of groupoids and C*-algebras (see Propositions 1, 3, and 8).
At present, we are studying (in collaboration with O’uchi [8]) properties of groupoid correspondences to prove

the conjecture in other situations.
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