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ABSTRACT
Summary: Macromolecular assembly coordinates essential cellular
processes, such as gene regulation and signal transduction. A major
challenge for conventional computational methods to study these
processes is tackling the exponential increase of the number of
configurational states with the number of components. CplexA
is a Mathematica package that uses functional programming to
efficiently compute probabilities and average properties over such
exponentially large number of states from the energetics of the
interactions. The package is particularly suited to study gene
expression at complex promoters controlled by multiple, local and
distal, DNA binding sites for transcription factors.
Availability: CplexA is freely available together with documentation
at http://sourceforge.net/projects/cplexa/
Contact: j.vilar@ikerbasque.org; lsaiz@ucdavis.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
The study of the cellular behavior from the molecular components
often requires approximations in terms of chemical reactions.
However, there are many instances, such as combinatorial
macromolecular assembly, that cannot be efficiently described in
terms of chemical reactions (Saiz and Vilar, 2006). Macromolecular
complexes are typically made of smaller building blocks with a
modular organization that can be combined in a number of different
ways. The result of each combination is a specific molecular species.
Therefore, there are potentially as many reactants as the number
of possible ways of arranging the different elements, which grows
exponentially with the number of the constituent elements.

Several approaches have been developed to tackle this
exponentially large multiplicity in the number of states. They involve
a diversity of methodologies that range from stochastic configuration
sampling (Le Novere and Shimizu, 2001; Saiz and Vilar, 2006)
to automatic generation of all the underlying equations (Hlavacek
et al., 2006). The complexity of the general problem makes each
of these approaches work efficiently only on a particular type of
problems, be it conformational changes, multi-site phosphorylation
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or oligomerization (Borisov et al., 2006; Bray and Lay, 1997; Saiz
and Vilar, 2006).

The package CplexA focuses on macromolecular assembly on a
template. The prototypical example is a complex promoter, where
DNA provides a flexible template for the assembly of transcription
factors. CplexA provides mathematical tools to infer the probability
of having a given set of configurations. In the case of a promoter, it
would be the probability of having a pattern of transcription factors
bound, which can be used to infer the resulting transcription rate in a
way that can be integrated with other software to study the dynamics
of cellular networks (Shapiro et al., 2003).

This type of systems has traditionally been studied by writing
a table with entries for each state and the corresponding free
energies and associated probabilities, which are used to compute
average quantities such as effective transcription rates (Ackers
et al., 1982). As the number of states increases exponentially, the
approach becomes impracticable. In this type of systems, however,
it is possible to take advantage of the unambiguous structures that
macromolecular complexes typically have on a template and use
‘table-centric’ equivalent mathematical approaches that are able to
capture this complexity in simple terms (Saiz and Vilar, 2006).

2 METHODS
The mathematical approach underlying CplexA is discussed in detail in
Saiz and Vilar (2006). It specifies the system by a set of N state variables,
S ={s1,...si,...sN }, that can be either 1 to indicate that a property is present
(e.g. binding or conformation) or 0 to indicate that it is not. The free energy,
!G(S), and a configuration pattern, "(S), can generally be expressed as a
function of these state variables. The probability of the configuration pattern
is obtained from

"̄=

∑
S

"(S)e−!G(S)/RT

∑
S

e−!G(S)/RT (1)

by computing the thermodynamic average over all 2N possible values of S.

3 APPLICATION
The package CplexA provides the function AvConf[",!G, S] that
computes the thermodynamic average "̄. Figure 1 illustrates the use
of CplexAwith Mathematica 7 to compute the effective transcription
rate at the PRM promoter of Phage λ (Saiz and Vilar, 2006). This
system consists of two sets of three contiguous binding sites for the
CI dimer. The two sets, known as left and right operators, are 2 kb
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Fig. 1. Use of CplexA with Mathematica 7 to compute the effective
transcription rate at the PRM promoter of Phage λ. The graph in line ‘Out[12]’
shows the computed average transcription (solid red line) as a function of the
normalized CI monomer concentration. The filled circles correspond to the
experimentally measured activity of the PRM promoter (Dodd et al., 2004;
for details, see Supplementary Material).

apart from each other. CI dimers bound at different operators can
interact with each other by looping the intervening DNA. In this
case, just a few lines of code, from lines ‘In[8]’ to ‘In[11]’ in Figure
1, can achieve the same results as a table with entries for each of the
128 states. The state of the system, S, is described by six binding and
one looping state variables in line ‘In[8]’. The free energy,!G(S),
in line ‘In[9]’ includes, in a very compact manner, binding to each
of the six sites as a function of the dimer concentration, interactions
between neighboring dimers, DNA looping and the formation of
octamers and tetramers between dimers bound at different sets of
binding sites. The transcription rate, "(S), as a function of the
binding and looping state is given in line ‘In[10]’. Its average value,
"̄=AvConf[",!G, S], closely matches the experimental data on the
transcriptional activity of the promoter (Dodd et al., 2004).

CplexA also provides the function DGTable[!G, S], which
constructs a table with the free energy and statistical weight
(Boltzmann factor) of each state that has a non-zero probability.

4 IMPLEMENTATION
The critical issue in the implementation of the function
AvConf[",!G, S] is dealing with the combinatorial explosion in the

number of states. Using state variables overcomes the combinatorial
explosion in the specification of the problem but not in the sum over
all the states, which still grows as 2N . A fundamental advantage
of using a computer algebra system, such as Mathematica, over
imperative programming languages, such as Fortran, C or Java, is
that it allows for the direct manipulation of functions. In CplexA,
the implementation of the sum over all possible values of S in the
numerator and denominator of Equation (1) is performed in N steps,
rather than in 2N , by using the backwards recursion

fN−1(s1,...sN−1)= fN (s1,...sN−1,0)+fN (s1,...sN−1,1).

Starting this recursion with the functions

fN (s1,...sN )≡"(S)e−!G(S)/RT and fN (s1,...sN )≡e−!G(S)/RT

leads to the sought values of the sums as
∑

S

"(S)e−!G(S)/RT = f0 and
∑

S

e−!G(S)/RT = f0,

respectively, after the N steps of the recursion have been performed.
With this method, the actual computational complexity depends on
the specific form of fN (s1,...sN ) and does not necessarily increase
proportionally to the number of states. For instance, for a linear
array of binding sites with next-neighbor interactions, the CPU time
needed to compute the average occupancy for the case of 40 sites
is only a factor ∼8 higher than that needed for 20 sites, whereas
the number of states increases by a factor ∼106 (Supplementary
Material).
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