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Accurate Prediction of Gene Expression by Integration of DNA Sequence
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ABSTRACT Gene regulation involves a hierarchy of events that extend from specific protein-DNA interactions to the combi-
natorial assembly of nucleoprotein complexes. The effects of DNA sequence on these processes have typically been studied
based either on its quantitative connection with single-domain binding free energies or on empirical rules that combine different
DNA motifs to predict gene expression trends on a genomic scale. The middle-point approach that quantitatively bridges these
two extremes, however, remains largely unexplored. Here, we provide an integrated approach to accurately predict gene
expression from statistical sequence information in combination with detailed biophysical modeling of transcription regulation
by multidomain binding on multiple DNA sites. For the regulation of the prototypical lac operon, this approach predicts within
0.3-fold accuracy transcriptional activity over a 10,000-fold range from DNA sequence statistics for different intracellular
conditions.
INTRODUCTION
In a now classic article proposing the lac operon model,
Jacob and Monod put forward the very basic principles of
gene regulation (1). They reasoned that there are molecules
that bind to specific sites in nucleic acids to control whether
or not genes are expressed. Since then, a major challenge in
biology has been to understand how site-specific regulatory
factors function and the effects that they have on gene regu-
lation. Thus, over the last decades, there has been a large
effort to produce reliable and efficient computer algorithms
for the analysis and prediction of DNA binding sites (2).

These algorithms now have an extraordinary ability to
predict with high accuracy how proteins bind single sites
(3,4). At the same time, use of these highly accurate models
to predict where additional binding sites might occur typi-
cally finds a wealth of sites that are not physiologically
relevant (2). A rule of thumb to predict actual binding is
that relevant sites often are positioned close to each other
to act cooperatively (5). Clever refinement of this idea has
led to heuristic approaches that have proved very successful
at predicting the main gene expression trends on a genomic
scale (6–12). The middle ground between detailed single-
site and broad genomic predictions, however, still remains
largely unexplored.

Here, we develop a quantitative framework that accu-
rately integrates sequence statistics with a biophysical
model for multidomain binding on nonadjacent DNA sites
using as a prototype system the lac operon. This choice is
motivated by two key features of the lac operon.

First, the very simple, yet extremely powerful, original
idea of the lac repressor preventing transcription upon
binding to the operator DNA in the promoter region has
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continued to evolve over the years to uncover a highly
sophisticated mechanism that goes beyond simple binding
events (13). It now incorporates an activator and two addi-
tional binding sites for the repressor outside the promoter
region. These two additional sites are orders of magnitude
weaker than the main site and by themselves do not affect
transcription substantially. In combination with the main
site, however, they can increase repression of transcription
by a factor of ~100 (14,15).

Second, there is extremely detailed information about
the lac operon that offers the possibility of considering the
actual mode of binding. This point is important, because
the precise sequence has been shaped by evolution through
the actual biophysical mechanism. The available informa-
tion includes detailed quantitative models of how the lac
repressor binds to two sites simultaneously (16,17) and to
the three sites for the repressor together with the effects of
the catabolite activator protein (CAP) (18,19). The molec-
ular and cellular parameter values needed by the models
are also available, including the in vivo free energy of bind-
ing, the energetic costs of bending and twisting DNA upon
two-site binding, and the effective transcription rate as
a function of the binding state of the repressor (13,20).

Therefore, the lac operon provides an efficient platform
to accurately test multisite models. In this classical example,
without considering the two additional sites, no matter how
good the single site model is, it would be off by a factor
of ~100.

The focus here is to provide an avenue to extend tradi-
tional biophysical single-domain-binding models (21–23)
to incorporate the details of multidomain binding, which
are inherently different from those of single-domain binding
of multiple transcription factors. The traditional approach
considers the interaction of a transcription factor (TF)
with a DNA site (S1) as a binding reaction of the type
doi: 10.1016/j.bpj.2010.08.006
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FIGURE 1 Integration of sequence statistics into predictive biophysi-

cal multidomain models. The approach is implemented by first con-

sidering the three operators as DNA signals. They are used to

construct a probabilistic model that provides binding scores for these and

similar mutated sequences. The scores are subsequently linked parametri-

cally to binding free energies and incorporated directly into a detailed

biophysical model of transcription regulation. The link between scores

and free energies is calibrated by fitting the model to a subset of experi-

mental data. The calibrated model is then tested with different sets of

data.

Transcription from DNA Statistics 2409
TFþ S15TF$S1. The strength of the binding is typically
assessed through position weight matrix (PWM) scores,
which are directly related to the binding energy of the
DNA-protein interaction (3,24). The extension to multido-
main transcription factors in the presence of additional
binding sites, denoted S2 and S3, has to consider also
reactions of the type TF$S1þ S25S2$TF$S1 and
S2$TF$S1þ S35S3$TF$S1þ S2. These more complex
reactions account for binding of one domain of the TF
while its other domain is still bound to DNA, and they
usually involve looping the DNA between each pair of
simultaneously bound sites.

The multisite approach is explicitly implemented by first
considering the three lac operators as DNA signals. They are
used to construct a probabilistic model that provides PWM
scores for binding of a lac repressor domain to these and
similar mutated sequences. The scores are subsequently
linked parametrically to binding free energies and incorpo-
rated directly into a detailed biophysical model of transcrip-
tion regulation that takes into account multidomain binding
to multiple binding sites. The model considers a decomposi-
tion of the free energy of the protein-DNA complex into
different modular contributions. The link between scores
and free energies is calibrated by fitting the model to a subset
of experimental transcription data. The calibrated model is
then tested with different sets of data (Fig. 1).
METHODS

From sequence to score

The PWM method is used to describe repressor-operator binding (3,24).

It assigns a score, S, to the sequence X ¼ x1x2.xw according to

S ¼
Xw

i¼ 1

ln
pxi
qx
; (1)

where pxi is the estimated probability of having the nucleotide x at position i

of the binding site and qx is the background frequency of that nucleotide.

Taking into account small sample size, pxi is estimated from the observed

positional frequency as

pxi ¼ nxi þ 1

N þ 4
; (2)

where nxi is the number of sites having a nucleotide x at position i and N is

the total number of sites in the training set. In our case, we have only three

sequences in the training set corresponding to the three operators.
From score to free energy

We assume a linear relationship to transform the score, S, of each sequence

into the interaction free energies, e, between the lac repressor domain and

the DNA site:

e ¼ aS þ b; (3)

where a and b are constants to be inferred from experiments.With this linear

assumption, a selects the energy units and b the reference zero of energy.
Multidomain binding

The lac repressor is a tetramer consisting of two dimeric DNA binding

domains. Multidomain binding is taken into account by decomposing the

free energy of the protein-DNA complex into different modular contribu-

tions, including positional, interaction, and conformational free energies

(19,25).

The positional free energy, p, accounts for the cost of bringing the lac

repressor to its DNA binding site. Its dependence on the repressor concen-

tration, n, is given by p¼ p� � RTlnn, where p� is the positional free energy
at 1M. Interaction free energies, e, arise from the physical contact between

a binding domain and DNA site. Thus, when only a single domain is

involved, the free energy of binding is given by DG ¼ e þ p. For two

domains, denoted by subscripts 1 and 2, the free energy of binding is given

by DG ¼ e1 þ e2 þ c þ p. Conformational free energies, c, account for

changes in DNA and repressor conformation, which are needed to accom-

modate multiple simultaneous interactions (Fig. 2).

All these contributions to the free energy, taking into account the three

operators for specific binding of the lac repressor, can be expressed in math-

ematical terms as

DGðsÞ ¼ ðp þ e1Þs1 þ ðp þ e2Þs2 þ ðp þ e3Þs3
þ ðcL12 � ps1s2ÞsL12 þ ðcL13 � ps1s3ÞsL13
þ ðcL23 � ps2s3ÞsL23 þ NðsL12sL13
þ sL12sL23 þ sL13sL23Þ;

(4)

where s1, s2, and s3 are state variables that can take the values 0 and 1 to

indicate whether (¼ 1) or not (¼ 0) the repressor is bound to the operators

O1, O2, and O3, respectively; and sL12, sL13, and sL23 are variables that indi-

cate whether (¼ 1) or not (¼ 0) DNA forms the loops O1-O2, O1-O3, and

O2-O3, respectively. The subscripts of the different contributions to the free

energy have the same meaning as those of the corresponding binary vari-

ables. The infinity in the last term of the free energy implements that two
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FIGURE 2 Operator locations on DNA and binding of the lac repressor.

(A) The main (O1) and two auxiliary (O2 and O3) operators are shown as

black rectangles on the black line representing DNA. Binding of the lac

repressor to O1 prevents transcription of the three lacZYA genes. (B) A

repressor is shown bound to O2. The free energy of binding is DG ¼
e2 þ p. (C) A repressor is shown looping DNA by binding simultaneously

to O1 and O3. The free energy of this binding configuration is

DG ¼ e1 þ e3 þ cL13 þ p.
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FIGURE 3 Factor graph for the free-energy components of the multisite

lac repressor-operator binding. The free energy of the system, DG(s), as

a function of the state variables, s ¼ (s1, s2, s3, sL12, sL13, sL23), has a graph-

ical representation in the form of a factor graph. The round nodes represent

state variables and the rectangular nodes represent contributions to the

free energy. The quantity in the rectangular node is present in the free

energy when all its connecting state variables are equal to 1. The experi-

mental values for wild-type parameters are e1 ¼ �27.8 kcal/mol, e2 ¼
�26.3 kcal/mol, e3 ¼ �24.1 kcal/mol, cL12 ¼ 23.35 kcal/mol, cL13 ¼
22.05 kcal/mol, and cL23 ¼ 23.50 kcal/mol. The dependence on the lac

repressor concentration, n, is given by the positional free energy, p ¼
p� � RTlnn, with p� ¼ 15 kcal/mol.
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loops that share one operator cannot be present simultaneously by assigning

an infinite free energy to those states (18).

The set of six state variables, denoted by s ¼ (s1, s2, s3, sL12, sL13, sL23),

describes the specific binding configuration of the repressor-DNA complex.

For instance, a repressor bound to O2 is specified by s ¼ (0, 1, 0, 0, 0, 0);

a repressor bound to O1 and O3 looping the intervening DNA, by s ¼ (1, 0,

1, 0, 1, 0); and three repressors bound, one to each operator, by s ¼ (1, 1, 1,

0, 0, 0). The specific value of the free energy is obtained by substituting the

values of the state variables in the expression of the free energy. This

description in terms of state variables can be visualized as a factor graph

(Fig. 3).

The probability of any of these states depends exponentially on its free

energy and is obtained from statistical thermodynamics as

Ps ¼ e�DGðsÞ=RT

Z
; (5)

where RT is the gas constant times the absolute temperature. The partition

function, Z ¼ P
s e

�DGðsÞ=RT , is used as a normalization factor.
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Transcriptional control

Gene expression in the lac operon is completely abolished when the

repressor is bound to O1; otherwise, transcription takes place either at an

activated maximum rate, Gmax, when O3 is free or at a basal reduced rate,

cGmax, when O3 is occupied. This reduction by a factor c arises because

binding of the repressor to O3 prevents CAP from activating transcription

(13,18).

The transcription rate G(s) can be expressed in terms of state variables as

GðsÞ ¼ Gmaxð1� s1Þðcs3 þ ð1� s3ÞÞ: (6)

With this approach, the effective transcription rate,

G ¼
X

s

GðsÞPS ¼ 1

Z

X

s

GðsÞe�DGðsÞ=RT ; (7)

is obtained by computing the thermodynamic average over all the represen-

tative states, namely, by performing the sum above over all possible combi-

nations of values of s.
Model calibration

The overall model has only two free parameters: the constants a and b that

relate scores to free energies of binding. Their values are inferred by

minimizing the square logarithmic error between measured and model
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normalized transcription (G=Gmax). The values of the other four parame-

ters, three conformational free energies and CAP activation, are taken

from the experimental data. Explicitly, the value c ¼ 0.03 was reported

by Oehler et al. (26); the value cL12 ¼ 23.35 kcal/mol was obtained by

Saiz and Vilar (20) from experimental data in the Oehler et al. study

(26); the values cL13 ¼ 22.05 kcal/mol and cL23 ¼ 23.50 kcal/mol were

obtained from the value of cL12 by taking into account the dependence of

the conformational free energy on the distance between operators

(20,27,28) and the stabilization of the O1-O3 loop by CAP (29,30).
RESULTS AND DISCUSSION

We applied the multisite approach to classic experiments
on the lac operon that considered gene expression for dif-
ferent repressor concentrations in E. coli strains covering
all eight possible combinations of operator deletions (14).
The sequences of the three wild-type (WT) operators O1,
O2, and O3 were used to compute the PWM from which
we obtained the scores for these three operators and their
respective deletions, O1M, O2M, and O3M (see Table 1).
The scores correctly ranked the three WT operators accord-
ing to their measured strength and consistently ranked all
the deletions below all the WT operators.

The values of parameters a and b were obtained by fitting
the model to the experimental transcription data using

DGðsÞ ¼ ðp þ aS1 þ bÞs1 þ ðp þ aS2 þ bÞs2
þ ðp þ aS3 þ bÞs3 þ ðcL12 � ps1s2ÞsL12
þ ðcL13 � ps1s3ÞsL13 þ ðcL23 � ps2s3ÞsL23
þ NðsL12sL13 þ sL12sL23 þ sL13sL23Þ (8)

as the free energy of the system. This expression is obtained
after substitution of the relation e ¼ aS þ b in Eq. 4. In this
way, the binding is described by the PWM scores, S1, S2, and
S3, for each site together with the conformational contribu-
tions to the free energy from DNA looping (28).

The model, with just a and b as free parameters, is able to
fit the experimental data (14) within 0.29-fold accuracy over
a 10,000-fold range of transcriptional activity (Fig. 4 A).
In total, there are 22 experimental points, accounting for
eight operator configurations, three different repressor con-
centrations, and different functional forms of the transcrip-
tion curves. The value FA that quantifies the ability of the
TABLE 1 Operator sequences and their statistical and binding pro

Name Sequence S aS

O1 AATTGTGAGCGGATAACAATT �13.38

O2 AAATGTGAGCGAGTAACAACC �12.17

O3 GGCAGTGAGCGCAACGCAATT �10.95

O1M AATTGTTAGCGGAGAAGAATT �9.51

O2M GAAGGTTAATGAATAGCACCC �5.12

O3M TCGATCGAGCTCAACGCAATT �4.71

The PWM score, S, for a given operator sequence is used to estimate its interactio

b ¼ �9.064 kcal/mol. The experimental values of these free energies, e,

Ksc
D ¼ eðaSþbþp

� Þ=RT for the predictions from PWM scores and as Kex
D ¼ eðeþp

� Þ=
model to capture the experimental data within FA-fold accu-
racy is explicitly defined for a set of N experimental, Gex,
and computed, Gcp, transcription rates through the expres-
sion Nlogð1þ FAÞ2 ¼ PN

i¼1logðGexi=GcpiÞ2, and it indi-
cates that typically measured and computed values differ
from each other by a factor of 1 þ FA.
The interaction free energies obtained from the model for

the best-fit a and b parameters and the corresponding exper-
imental in vivo values (18) are shown in Table 1. The results
of the model exhibit good agreement with the available
experimental data. In terms of dissociation constants, the
differences between the predicted and observed values are
within the twofold range (Table 1). An advantage of the
approach we have followed is that the in vivo free energies,
and the corresponding dissociation constants, take into
account implicitly the effects of nonspecific binding. The
reason is that their values are measured with respect to the
reference state with no repressor bound to the operators,
which includes the repressors in solution in the cytosol as
well as the repressors bound nonspecifically to DNA (for
a detailed quantitative discussion, see Appendix II of Vilar
and Leibler (16)).

To test the predictive potential of the multisite model, we
used experimental data sets for two operator configurations
to infer the values of parameters a and b and then used the
calibrated model to predict the transcriptional activity for
the other six configurations (Fig. 4 B). The accuracy of
the model at predicting new data decreases only slightly
with respect to the all-fit accuracy. In principle, only two
experimental data points would be needed to calibrate the
model, because there are only two free parameters. Indeed,
just two experimental points can be used to calibrate the
model with just a slight additional decease in global accu-
racy (Fig. 4 C). Therefore, without using any free energy
of binding, the multisite model is able to accurately predict
gene expression curves over a 10,000-fold range for eight
different E. coli strains covering all possible combinations
of operator deletions from just two experimental calibration
data points and the sequences of the six DNA sites involved.

There is an important prediction that goes beyond the
experimentally observed free energies of binding. The dele-
tion O1M of the main operator O1 involved the mutation of
just three DNA basepairs. As a consequence, the model
perties

þ b (kcal/mol) e (kcal/mol) Ksc
D (nM) Kex

D (nM)

�27.62 �27.8 0.728 0.54

�25.94 �26.3 12.1 6.62

�24.25 �24.1 201 259

�22.26 N/A 5600 N/A

�16.16 N/A 1.44 � 108 N/A

�15.60 N/A 3.37 � 108 N/A

n free energy with the lac repressor as aSþ b, with a¼ 1.387 kcal/mol and

are from Saiz and Vilar (18). Dissociation constants are computed as
RT for the experimental data. N/A stands for data not available.

Biophysical Journal 99(8) 2408–2413
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FIGURE 4 Model calibration and prediction of

the transcriptional activity as a function of the

repressor concentration. The normalized transcrip-

tion (G=Gmax) was obtained for WT and seven

mutants accounting for all the combinations of

deletions of the three operators. For each of the

eight cases, the results of the model (solid lines)

as a function of the repressor concentration are

compared with the experimental data from Oehler

et al. (14) (squares). The particular set of WT or

deleted operators is indicated for each curve; for

instance, O1-O2-O3 corresponds to the WT lac

operon and O1M-O2M-O3M to the mutant with all

three operators deleted. The values of the experi-

mental parameters used are cL12 ¼ 23.35 kcal/mol,

cL13 ¼ 22.05 kcal/mol, cL23 ¼ 23.50 kcal/mol,

and c ¼ 0.03. The PWM scores, S, for each site

are as shown in Table 1. (A) Parameter values

a ¼ 1.387 kcal/mol and b ¼ �9.064 kcal/mol,

which connect interaction free energies with

scores, e ¼ aS þ b, were obtained by fitting the

model to all the experimental transcription data.

(B) Parameter values a ¼ 1.348 kcal/mol and

b ¼ �9.531 kcal/mol were obtained by fitting the

model to the experimental data for operator config-

urations O1-O2-O3 and O1M-O2-O3. The model

accurately predicts the normalized transcription

for the other six operator configurations. (C)

Only two experimental points (large gray circles)

are used to obtain the parameter values a ¼
1.462 kcal/mol and b ¼ �8.208 kcal/mol. The

model is still able to accurately predict the normal-

ized transcription for the remaining 20 experi-

mental points.
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predicts for O1M an increase in free energy of 5.4 kcal/mol
with respect to O1, or, equivalently, an ~8000-fold increase
of the dissociation constant, which is substantial but
still remains relatively close to the free energy of binding
to O3, the weakest WT operator (Table 1). We found that
such a decrease has transcriptional consequences that
make it distinguishable from a complete deletion (Fig. 5).
Thus, the multisite approach is able not only to both
accurately predict gene expression and recover known free
energies but also to obtain precise affinity estimates for
very weak sites that were assumed not to bind the lac
repressor.

Typically, the effects of a given sequence depend on the
context. This dependence has been noted explicitly as one
of the main limiting factors for identifying physiologically
Biophysical Journal 99(8) 2408–2413
relevant sites and for linking statistical sequence informa-
tion, such as PWM scores, to transcriptional activity (31).
This fundamental problem in gene regulation is believed
to result from the interplay among multiple DNA sites in
orchestrating the binding patterns of transcription factors
that control gene expression (2). The approach presented
here overcomes this limitation by using detailed biophysical
modeling of multidomain binding to directly connect statis-
tical sequence information with transcriptional activity. We
have shown that for the prototypical lac operon, which relies
on a cluster of three nonadjacent sites over a 0.5-kb DNA
region to control transcription, this multisite approach accu-
rately recapitulates the observed transcriptional activity
over a 10,000-fold range for all the possible combinations
of operator deletions.



FIGURE 5 Complete deletions versus weak binding. The normalized

transcription (G=Gmax) for the four configurations with O1M is shown

for the model as in Fig. 4 A (solid line); for the model assuming that the

free energy of binding to O1M is infinite, as in a complete deletion (dashed

line); and for the experimental data from Oehler et al. (14) (squares).
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