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Abstract: The assembly of macromolecular structures consisting of proteins and DNA lies at the core of many
fundamental cellular processes, such as transcription, recombination and replication. A common theme to all
these processes is DNA looping, which provides the backbone for the required long-range interactions on DNA
and results in further complexity that is exceptionally difficult to tackle with traditional quantitative
approaches. Here, recent advances in mathematical and computational methods to study the assembly of
protein – protein/DNA complexes with loops and their effects in the cellular behaviour through gene
regulation are reviewed. The interplay between multisite DNA looping and DNA bending regulatory proteins,
such as the catabolite activator protein (CAP), and on its physiological consequences is focused on. It has
become clear in the last few years that the complexity that looping brings about can actively control
transcriptional noise and cell-to-cell variability. Here, it is shown that the DNA looping, through the effects of
CAP, can also control the balance between robustness and sensitivity of the induction of gene expression.
1 Introduction
Networks of protein–protein and protein–DNA
interactions mediated by the presence of DNA looping are
deeply involved in many cellular processes, such as
transcription, recombination and replication [1–4]. They
are especially prominent in the regulation of gene
expression, where proteins bound far away from the genes
they control can be brought to the initiation of
transcription region by looping the intervening DNA.
The interplay between DNA looping and gene regulation
was suspected early on to be present in eukaryotic
enhancers [5] and was first identified in the Escherichia coli
ara operon [6]. Since then, it has been experimentally
studied in detail in many other systems, including gal, lac
and deo operons in E. Coli [2, 4], the lysogenic to lytic
switch in phage l [7], the human b-globin locus [8], the
nuclear hormone receptor RXR [9] and the tumour
suppressor protein p53 [10].
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Understanding of macromolecular assembly on looped
DNA, especially when multiple binding sites and loops are
involved [11, 12], is challenging at both biochemical and
mathematical levels. From a biochemical point of view,
looping introduces flexibility into the macromolecular
assembly of protein-DNA complexes, which are no longer
restricted to have a fixed rigid structure [13–15]. From a
mathematical point of view, looping leads to the possibility
of establishing simultaneous interactions between many
components, which results in a large number of potential
states of the protein-DNA complex [16]. Typically, the
number of potential states scales exponentially with the
number of components. This type of scaling, usually referred
to as ‘combinatorial complexity’ [17] makes traditional state-
based approaches impracticable for systems with more than
just a few proteins. A notable example in which these issues
are present is the prototypical lac operon in E. coli, which is
still not completely understood despite being one of the two
systems that led to the discovery of gene regulation [18].
247

& The Institution of Engineering and Technology 2008

0 at 09:37 from IEEE Xplore.  Restrictions apply. 



24

&

www.ietdl.org
In this review, we use the lac operon to illustrate how
both of these biochemical and mathematical challenges
have been addressed in recent years to provide an effective
framework to faithfully study protein–protein/DNA
interaction networks in realistic gene regulation setups.
The general picture emerging from these quantitative
analyses reveals that the presence of multiple binding sites
and looped structures provides avenues to control cellular
variability and to combine robust repression with sensitive
induction, two seemingly mutually exclusive properties
that are required for optimal functioning of metabolic
switches.

2 The lac operon
The E. coli lac operon is the genetic system that regulates and
produces the enzymes needed to metabolise lactose [18]. The
response to lactose is controlled by the lac repressor [19],
which can bind to O1, the main operator, and prevent the
RNA polymerase from binding to the promoter and
transcribing the genes. There are also two auxiliary
operators, O2 and O3, to which the repressor can also bind
but not prevent transcription (Fig. 1a). Elimination of
either one auxiliary operator has only minor effects; yet
simultaneous elimination of both of them reduces the
repression level by a factor 100 [20]. The reason behind
this effect is that the lac repressor molecule has two DNA
binding sites and thus can bind simultaneously to two
operators and loop the intervening DNA.

3 Traditional quantitative
approach to transcription regulation
The most widely used quantitative approaches to study
DNA-protein assembly are based on thermodynamics [21].
Thermodynamics allows for a straightforward connection of
the molecular properties of the system with the effects that
propagate up to the cellular physiology.

The use of thermodynamic concepts applied to gene
regulation was pioneered by Shea and Ackers [22, 23] and
applied subsequently to a wide variety of gene regulation
systems with simple binding events [24, 25] and with
binding involving DNA looping [1, 26].

In the traditional framework, the probability for the
macromolecular complex to be in a state k is given by

Pk ¼ n jk e�DGo
k =RT =Z, where RT is the gas constant times

the absolute temperature, DGo
k the standard (molar) free

energy of the state k, jk the number of molecules present
in the complex in the state k and n the concentration
of the molecular species. The partition function

Z ¼
P

k n jk e�DGo
k =RT , where the summation is taken over

all the states, is the normalisation factor.

Thus, to describe the system with the traditional approach,
one has to provide the standard free energy for each state
8
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Figure 1 The lac operon and its quantitative descriptions

a The wild-type lac operon has three binding sites for the
repressor: the main (O1) and the two auxiliary (O2 and O3)
operators, shown as grey rectangles on the thick black segment
representing DNA. Binding of the lac repressor to O1 prevents
transcription of the three lacZYA genes
b The state-based description [26] of the lac repressor (in black)
binding to two operators has five representative states. The
thick black line represents DNA with the two lac operators
shown as boxes and the start of transcription indicated by an
arrow
c The interaction-based description [16] accounts for the binding
of the lac repressor (black) to DNA (grey) using binary variables.
The circles and the polyhedron correspond to the binary
variables for the repressor-operator DNA binding sites and the
DNA loop, respectively. The dots in the network diagram link
the variables of a factor in the expression of the free energy (2)
and their labels indicate the corresponding contribution to the
free energy when all the linked variables are equal to one
IET Syst. Biol., 2008, Vol. 2, No. 5, pp. 247–255
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(DGo
k ) as well as the number of molecules bound ( jk).

Typically, this is done in the form of a table, which has as
many entries as the number of states of the system [22]. In
this way, for a macromolecular complex with N elements
that can either be present or absent in the complex, one
would need a table with 2N entries for the standard free
energy and another 2N for the number of molecules. In
general, if there are different conformational states, the
number of states can be higher than 2N. This is the case of
the complex formed by two-operator DNA and the lac
repressor (Fig. 1b) [26]. In this case, n is the concentration
of free repressor in the cell right before the binding event
takes place, and jk is the number of molecules bound
specifically to operator DNA in the state k. Thus, for the
states k¼ (i), (ii), (iii), (iv) and (v) in Fig. 1b one has j(i)=0,
j(ii) ¼ j(iii) ¼ j(iv) ¼ 1 and j(v) ¼ 2.

The connection of macromolecular assembly with gene
regulation is done simply by assuming that each state k has
a well-defined transcription rate, Gk, which is used to
compute the effective transcription rate as the average
�G ¼

P
k GkPk [26].

4 Thermodynamic binary-variable
approach to transcription regulation
Straightforward application of the traditional thermodynamic
approach in a general framework is of limited use because
the number of states that must be considered, as we
have discussed, typically increases exponentially with the
number of components. It has become clear recently that
it is possible to efficiently overcome this limitation with
a new approach that expresses the free energy of all
the states in a compact form in terms of binary variables
[16].

This approach is based on four major premises [16].

1. The specific configuration or state of the macromolecular
complex can be described by a set of M binary variables,
denoted by s ¼ (s1, . . . si, . . . sM), whose values indicate
whether a particular molecular component is present
(si ¼ 1) or absent (si ¼ 0) at a specific position within the
complex [16]. The use of binary variables provides a
concise method to describe all the potential complexes
without explicitly enumerating them. This type of approach
has been used in a wide range of interesting biological
situations, such as diverse allosteric processes [27], binding
of molecules to a substrate [28, 29], binding of multi-state
proteins to receptor docking sites [30] and signalling
through clusters of receptors [31–33].

2. The free energy of the complex can be decomposed into
different modular contributions so that the free energy of
all the possible configurations of the complex can be
expressed as a function of both the different contributions
to the free energy and the binary variables s. These
Syst. Biol., 2008, Vol. 2, No. 5, pp. 247–255
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contributions can be divided into positional, interaction
and conformational free energies [1]. Briefly, the positional
free energy, p, accounts for the cost of bringing one
component to the protein-DNA complex, for instance,
bringing the lac repressor to its DNA binding site. Its
dependence on the component concentration, n, is given by
p ¼ p8 2 RT ln n, where p8 is the positional free energy at
1 M. Interaction free energies, e, arise from the physical
contact between components (e.g. electrostatic interactions)
and conformational free energies, c, account for changes in
conformation (e.g. looped vs unlooped states).

3. The transcription rate, as well as other quantities
of interest, can also be expressed in terms of the binary
variables.

4. The different expressions in terms of the binary variables s
can be used to compute the quantities of interest without
having to instantiate explicitly all the potential states of the
complex [16].

With this approach, taking together premises 1–4, the
effective transcription rate is obtained from

�G ¼
1

Z

X
s
G(s)e�DG(s)=RT (1)

by computing the thermodynamic average over all the
representative states. Here, DG(s) and G(s) are the free energy
and the transcription rate for each state of the complex

s ¼ (s1, . . .si, . . . , sM ), respectively, and Z ¼
P

se
�DG(s)=RT is

the partition function used as a normalisation factor.

5 Application to a two-operator
lac operon setup
In the case of the lac operon with two operators, O1 and O2,
this new approach has a straightforward implementation
(Fig. 1c) [16].

The free energy of the protein-DNA complex can be
expressed as

DG(s) ¼ (pþ e1)s1 þ (pþ e2)s2 þ (cL � ps1s2)sL (2)

Here, e1 and e2 are the interaction free energy between the
repressor and O1 and O2, respectively; and cL is the
conformational free energy of looping DNA. The binary
variables s1 and s2 indicate whether (si ¼ 1; for i ¼ 1,2) or
not (si ¼ 0; for i ¼ 1, 2) the repressor is bound to O1 and
O2, respectively; and sL is a variable that indicates the
conformational state of the DNA, either looped (sL ¼ 1) or
unlooped (sL ¼ 0). Thus, it is possible to write a global
concise expression [16], instead of one for each of the five
states [26], to specify the thermodynamic properties of the
system.
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The transcription rate is expressed in terms of these binary
variables as

G(s) ¼ Gmax(1� s1) (3)

where Gmax is the maximum transcription rate.

The effective transcription rate, �G, is obtained by
computing the thermodynamic average of G(s) over the
representative states, as discussed previously. This average
can be computed straightforwardly using standard
computer algebra software (Fig. 2) or if the system is too
large, using Monte Carlo algorithms [16].

Note that the fact that there are usually multiple copies of
the lac operon in a single cell is straightforwardly taken into
account by considering that the different DNA regions
containing a copy of the lac operon, which are located in
different chromosomes, behave independently of each other
and therefore that the average transcription rate is
proportional to the number of copies. For practical
purposes, this dependence with the number of copies is
already incorporated in the value of Gmax when it is
identified with the maximum transcription rate per cell.

6 Effects of DNA looping
DNA looping has many obvious effects because of its role in
mediating long-range interactions on DNA. It allows two, or
more, DNA regions that are far apart to come close to each
other, which is needed, for instance, to allow the transfer of
genetic information that happens during recombination
[34, 35]. DNA loops are also used to tie the end of
chromosomes and regulate the length of telomeres [36].

Beyond these systems in which it is strictly required, DNA
looping is also used to increase the binding of regulatory

Figure 2 Calculation of the repression level

This figure illustrates how to compute the repression level with the
software package Mathematica 6 (http://www.wolfram.com/) for
the two-operator lac operon. The repression level is defined as
the inverse of the normalised effective transcription: Gmax/Ḡ. The
result obtained (Out[6]) is plotted in Fig. 3
The Institution of Engineering and Technology 2008
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molecules to their cognate sites. In the case of the lac
operon, such increased binding results in repression of
transcription that is 30 times stronger (Fig. 3). DNA
looping has also other more subtle roles, which are strongly
interrelated with the inherent stochastic nature of cellular
processes. Computational modelling of the lac operon [26]
together with experimental data [20] showed that DNA
looping can also be used to decrease the sensitivity of
transcription to changes in the number of regulatory
proteins. The transcription rate in the lac operon for the
looping case shows a plateau-like behaviour, which is not
present in the regulation with just a single operator
(Fig. 3). The low sensitivity obtained with DNA looping
in this region can be used to achieve fairly constant
transcription rates among cells in a population, irrespective
of the fluctuations in the numbers of lac repressor
molecules. In contrast, using a single operator just
propagates the fluctuations proportionally [1, 26].

It has also been shown [26] that DNA looping can reduce
the intrinsic fluctuations of transcription [37–41]. If
transcription switches slowly between active and inactive,
there are long periods of time in which proteins are
produced constantly and long periods without any
production. Therefore, the number of molecules fluctuates
strongly between high and low values. In contrast, if the
switching is very fast, the production happens in the form
of short and frequent bursts. This lack of long periods of
time with either full or null production gives a narrower
distribution of the number of molecules. DNA looping

Figure 3 Repression with and without looping in the lac
operon

The repression level (Gmax/Ḡ) is shown as a function of the lac
repressor concentration for the lac operon with two (grey curve,
labelled ‘01-02 loop’) and one (black curve, labelled ‘01, no loop’)
operators. The two-operator case corresponds to the output
(Out[6]) of the Mathematica 6 code shown in Fig. 2. The one-
operator case was calculated in a similar fashion using a modified
version of the Mathematica 6 code, adapted for a single binding
site. Adding another binding site and DNA looping (O1 –O2 loop)
to the one-operator set-up (O1, no loop) increases the
repression level by a factor �30 for wild-type concentrations of
the repressor (grey circles; �10 repressors/cell) [26]
IET Syst. Biol., 2008, Vol. 2, No. 5, pp. 247–255
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naturally introduces a fast time scale: the time for the
repressor to be recaptured by the main operator before
unbinding the auxiliary operator, which is much shorter
than the time needed by a new repressor to bind to the
main operator. Therefore, DNA properties are also
important for controlling transcriptional noise [26].

7 Application to the wild-type,
three-operator lac operon
The wild-type lac operon has three operators for specific
binding of the repressor (Fig. 1a). In this case, the
thermodynamic binary-variable approach has to consider
the presence of multiple loops by the lac repressor between
different combinations of pairs of DNA sites. The free
energy of the protein-DNA complex of the wild-type lac
operon can be expressed as [12]

DG(s) ¼ (pþ e1)s1 þ (pþ e2)s2 þ (pþ e3)s3

þ (cL12 � ps1s2)sL12 þ (cL13 � ps1s3)sL13

þ (cL23 � ps2s3)sL23

þ1(sL12sL13 þ sL12sL23 þ sL13sL23) (4)

where s1, s2 and s3 are the binary variables that indicate
whether or not the repressor is bound to O1, O2, and O3,
respectively; and sL12, sL13 and sL23 are the variables that
indicate whether or not DNA forms the loops O1–O2,
O1–O3, and O2–O3, respectively. The subscripts of the
different contributions to the free energy have the same
meaning as those of the corresponding binary variables. In
this case, with three interaction and three conformational
free energies, it is possible to obtain the free energy of 14
states for different repressor concentrations. An important
advantage of the binary variable description is that it can
straightforwardly implement ‘logical conditions’. For
instance, the infinity in the last term of the free energy
implements that two loops that share one operator cannot
be present simultaneously by assigning an infinite free
energy to those states.

Expression of the wild-type lac operon is completely
abolished when the repressor is bound to O1; otherwise,
transcription takes place either at an activated maximum
rate Gmax when O3 is free or at basal reduced rate xGmax

when O3 is occupied. This reduction by a factor x arises
because binding of the repressor to O3 prevents the
catabolite activator protein (CAP) from activating
transcription [42]. Activation is achieved when CAP bound
to cyclic adenosine monophosphate (cAMP) binds between
O3 and O1 and stabilises the binding of the RNA
polymerase to the promoter [43]. The transcription rate
G(s) can be expressed in terms of binary variables as

G(s) ¼ Gmax(1� s1)(xs3 þ (1� s3)) (5)

which provides a mathematical expression for the observed
cis-regulatory transcription control [42, 44].
Syst. Biol., 2008, Vol. 2, No. 5, pp. 247–255
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It has been shown [12] that this approach accurately
reproduces without free parameters the observed behaviour
of the lac operon in quantitative detail over five orders of
magnitude of the repression level for three repressor
concentrations and eight strains with all the possible
combinations of operator deletions (Fig. 4). In addition,
this approach is able to reproduce the observed induction
curves [45] of the system for different cellular conditions,
such as in the presence or absence of active CAP [12].

8 Molecular gear for robust
repression and sensitive induction
In the lac operon, the main operator and at least one auxiliary
operator suffice to form DNA loops that substantially
increase the ability of the repressor to bind the main
operator and provide robust repression levels (Fig. 3). To
what extent do the properties of transcription regulation
depend on the molecular complexity that multiple DNA
loops bring about?

The analysis of the model for the wild-type lac operon has
revealed that the three-operator setup provides an efficient
mechanism to combine robust repression with sensitive
induction (Fig. 5) [46]. A key element is CAP, which

Figure 4 Model vs. experimental repression levels

The repression levels (Gmax/Ḡ) obtained from the three-operator
wild-type lac operon model [12] are plotted against their
corresponding experimental values [42], showing an excellent
quantitative agreement over five orders of magnitude for wild-
type and seven mutants accounting for all the combinations of
deletions of the three operators. Three different repressor
concentrations are considered, which lead to a total of 24 data
points, shown as grey squares with different shades indicating
increasing repressor concentrations from wild-type (darkest)
with 10 repressors per cell, to 50 (medium shade) and 900
(lightest) repressors per cell. The black line corresponds to
the identity between model and experimental values. The
values of the parameters used are [12]: e1 ¼ 227.8 kcal/mol,
e2 ¼ 226.3 kcal/mol, e3 ¼ 224.1 kcal/mol, cL12 ¼ 23.35 kcal/mol,
cL13 ¼ 22.05 kcal/mol, cL23 ¼ 23.50 kcal/mol, po ¼ 15 kcal/mol,
and x ¼ 0.03. A deleted operator is modelled by increasing its free
energy by 5 kcal/mol
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controls the stability of one of the DNA loops besides
activating transcription [12]. When CAP is bound to its
DNA site, the multi-loop system is sensitive to changes in
the repressor concentration. The resulting sensitivity would
make the system ready for induction when the repressor is
inactivated by inducers such as allolactose or isopropyl-
b-D-thiogalactoside (IPTG) [18]. This result strongly
contrasts with the previous studies of regulation by single
loops [26] which show that repression is highly insensitive
to changes in repressor concentration (Fig. 3). Such
robustness is recovered when active CAP is absent and the
O1–O3 loop is not stabilised [12, 46]. Under these
conditions, repression relies only in the O1–O2 loop and
the system displays a lack of sensitivity to changes in
repressor concentration. A three-operator system is thus
able to put two apparently contradictory properties such as
robustness and sensitivity together into a functional
metabolic switch [46].

9 Stochastic dynamics of
macromolecular assembly networks
It has been shown [16] that the binary-variable
thermodynamic approach can be used as an efficient

Figure 5 Robust repression and sensitive induction

The repression level in the presence (curve labelled ‘with CAP’)
and in the absence (curve labelled ‘without CAP’) of active CAP
obtained in [46] is plotted as a function of the repressor
concentration. In the absence of active CAP, in addition to a
reduced transcription Ḡ ¼ (1/Z)

P
s Gmaxx (1 2 s1)e2DG(s)/RT, the

formation of the O1 2 O3 loop is �1 kcal/mol more costly
(c 0L13 ¼ 23.05 kcal/mol) than in the presence of active CAP,
which leads to an almost flat profile of the repression level
around wild-type repressor concentrations (grey circle). In the
presence of active CAP, repression is reduced at the same time
that the system becomes sensitive to changes in repressor
concentration. Variability in repressor concentration over a
population of cells, with a distribution such as that shown in
light grey (top), would lead to a much wider distribution of
repression levels with active CAP (in dark grey) than without
active CAP (in black)
he Institution of Engineering and Technology 2008
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starting point to study the kinetics. We outline here the
main ideas for the case in which only one component can
change at a given time: either the component gets into or
out of the complex. For each component i, we can define
on (kon

i ) and off (koff
i ) rates for the ‘association’ and

‘dissociation’ rates, respectively, which, in principle, would
depend on the pre-transition and post-transition states of
the complex.

The explicit dynamics can be obtained by considering the
change in binary variables as reactions

si ! (1� si) (6)

with rates

ri ¼ (1� si)k
i
on(s)þ sik

i
off (s) (7)

The reaction changes the variable si to 1 when it is 0 and to 0
when it is 1, representing that the element gets into or out of
the complex. The mathematical expression of the transition
rate reduces to ki

on when the element is outside the complex
(si ¼ 0) and to koff

i when the element is inside the complex
(si ¼ 1). Typically, the on rate does not depend as strongly
on the state of the complex as the off rate. The on rate is
essentially the rate of transferring the component from
solution to the complex. The off rate, in contrast, depends
exponentially on the free energy. The principle of detailed
balance can be used to obtain the off rates from the on rates:

ki
off (s) ¼ ki

on(s0)e�(DG(s0)�DG(s))=RT (8)

As this expression shows, the thermodynamic model alone
does not contain sufficient information to describe
transition rates between all states but it can efficiently be
used to relate the rates with each other and to explicitly
obtain multiple off rates from a single on rate.

Note that, in general, not only the off rates but also the
generalised on rates depend on the variables s. For instance,
in the case of looping with two operators (Fig. 1), we have
kL

on ¼ klooping(1� s1s2), where klooping is the rate of loop
formation. The term (1� s1s2) accounts for the fact that no
loop can be formed when different repressors are bound to
each operator.

The implementation of this kinetic framework considers
the compact expressions for the transition rates between
different states of the complex together with other reactions
that affect or depend on the state of the complex. The
whole set of reactions can thus be simulated using kinetic
Monte Carlo algorithms [47, 48]. For instance, this
methodology has allowed, for the first time, the study of
the effects that DNA looping has in the induction kinetics
of the lysogenic-to-lytic switch in the phage l genetic
system [16]. The processes considered included also,
among others, binding and unbinding of repressors to
DNA, conformational changes, production and degradation
IET Syst. Biol., 2008, Vol. 2, No. 5, pp. 247–255
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of mRNA, production and degradation of proteins, protein
association and dissociation [16]. In this way, it has been
possible to integrate the stochastic dynamics of
macromolecular assembly into networks of chemical
reactions and move the effects of macromolecular assembly
up to the properties of cellular processes.

It is important to emphasise that the use of binary variables
provides a very efficient avenue to tackle the combinatorial
complexity even in highly cooperative systems. For
instance, if the interactions are pairwise, as usually
assumed, the energetics of all possible interactions between
N components can be taken into account with just
N(N 2 1)/2 terms in the free energy, which scales
quadratically with the number of components instead of
following the exponential increase of the number of states.
The resulting expression for the free energy can in turn be
used together with the detailed balance principle to specify
an exponentially large number of off rates from a single on
rate. In general, there can be situations in which the free
energy and the transitions are inherently combinatorially
complex. These situations, however, can only be
characterised experimentally with an effort that grows
exponentially with the number of components.

10 Conclusions
In this review, we have illustrated how recent statistical
thermodynamics approaches based on binary variables are
able to naturally incorporate the underlying molecular
complexity into gene regulation models and to provide an
avenue to accurately infer the effects of multiple DNA
loops between different DNA sites. With this
methodology, it has been possible to show that, in the lac
operon, escalating complexity from one to two operators
introduces stronger repression; and from two to three
operators, concurrent robustness and sensitivity. Thus, the
complexity of multiple repeated distal DNA binding sites,
far from being just a remnant of evolution or a backup
system as often assumed [18], can confer subtle, yet
important, properties that are not present in simpler
setups. These results indicate that key design principles
that have been shown to play important roles in shaping
the structure of biochemical networks [49–51] are also
operating at the molecular level in the design and
structure of protein–protein/DNA interaction networks.
To bring forward these extra levels of regulation, it is
crucial to have efficient methodologies, as the ones we
have reviewed here, for comprehensively characterising
and accurately predicting the collective properties of
macromolecular complexes in terms of the properties of
their constituent elements.
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