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1 Supplementary Note 1: Algorithm Descriptions

The following descriptions have been provided by the algorithm development groups. These
materials have not been modified beyond minor formatting changes. Contact information
for further correspondence is provided in Supplementary Table 3.

1.1 FlowCAP-I: Cell Population Identification Challenges

1.1.1 ADICyt

Introduction: The algorithm Automated Detection in Cytometry ADICyt is a hierarchi-
cal clustering algorithm specifically designed for identifying relevant cell populations in flow
cytometry experimental data. The goal of the algorithm is to reproduce the gating results
of a human expert on a general flow cytometry dataset. A cytometrist typically analyzes a
flow cytometry dataset by performing a sequence of gating operations in two dimensional
projections of the data. ADICyt tries to mimic this process closely.

Method: ADICyt hierarchically (top to bottom) splits the data as would be done in
a sequence of manual gating events. At any level of the hierarchical splitting, the algorithm
tries to identify the optimal 2D-projection that differentiates the data to subpopulations.
The optimality in the above sense is formally defined in the further text. In the following
recursive steps of the algorithm, each identified subset of cells is being reanalyzed recursively
for further separations (on different 2D projections).

int[] ADICyt(data) {

return ClusterData(data, null)

}

int[] ClusterData(data, last2Dprojection) {

S := list of all 2D projections of data except last2Dprojection

C : = empty set of clusterings

foreach s in S{

C := C U Cluster2D(data,s)

}

C_opt, S_opt := the optimal clustering from C and

the corresponding 2D projection

if (Cop_t\$K > 1) # Copt\$K is the number of clusters of Copt {

K := Copt\$K

data1,...,dataK := splitData(data, K, Copt\$labels)

for (i in 1:K)

{

if (|data_i| > |fullDataset| * minimalProportionThreshold)

labels_i := ClusterData(data_i,S_opt)

else labels_i := {i,...,i}

}

labels := mergeLabels(labels_1,..., labels_K)

}

else labels := Copt\$labels
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return labels

}

In the above pseudo code, the function splitData(data,K,labels) generates K datasets,
placing the cells with the label i to the i-th dataset. The function mergeLabels(labels1,...,
labelsK ) combines the input partial labelings to a new labeling such that the number of
classes in the result is equal to the sum of those from the partial labelings. The subroutine
Cluster2D(data,2Dprojection) returns a clustering of the data on a 2D projection. It is called
multiple times throughout the ADICyt execution and it is its sole computation-intensive part.
The 2D clustering algorithm used in the current version of ADICyt in place of Cluster2D()
is Entropy-Merger, an algorithm motivated by flowMerge [1]. Our experimentations with
flowMerge suggest that neither its merging order nor its default decision rule for the final
number of clusters is optimal. Therefore, we modified flowMerge and designed Entropy-
Merger.

Entropy-Merger starts with a flowClust [2] execution with a number of clusters fixed to
a constant based on the size of the data. In the next steps, iteratively a pair of clusters
that has the largest relative entropy decrease (RED) is merged together. If all possible pair
merges have RED lower than a cutoff, no further merging is performed. The relative entropy
decrease is defined as a difference between the original entropy and the resulting entropy,
normalized by the size of the smaller of the two merged clusters. The value of RED cutoff
is kept on its default value, 1.7, for all the FlowCAP datasets.

Another key part of the ADICyt algorithm is the optimality heuristic for deciding which
of the attempted 2D clusterings is optimal or most expert-like. Consider an expert that
would be given an anonymous FCS file that she is supposed to gate. She might try to look
on all 2D projections of the data and pick one that looks most appropriate for placing the
first gate(s). The optimality should mimic this expert decision as much as possible. In
ADICyt, the optimality is a function of two entities: The first is the minimal mahalanobis
distance between any pair of resulting clusters (this prefers clusterings whose components
are well separated). In the second term, the optimality favors those clusterings that have
balanced component assignments (in terms of labels entropy). The above two terms are
normalized and averaged to form the optimality measure. The optimality of a 1-Clustering
is set to 0 so it is inferior to any clustering with at least two clusters

If ADICyt is executed in a mode in which the target number of populations (KT ) is known
it runs in a slightly modified mode. As the first step it performs the default calculation.

• If the found number of clusters (KF ) is equal to KT , ADICyt terminates.

• If KF > KT , Entropy-Merger is applied with an exception that no RED cutoff is used
as a merging stop criterion, but instead the merging is performed until the resulting
number of clusters equals to KT .

• If KF < KT , the ADICyt algorithm is restarted with the following modification. If
at the step of picking copt, the set of clusterings C contains only 1-clusters (no differ-
entiation found), then the set C is being recalculated with iteratively increasing RED
cutoff. The RED cutoff is being increased in the sequence 1.9, 2.0, ..., 2.4, until a
clustering with at least two clusters is present in C. The increased RED cutoff can
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however with higher chance generate an under-merged clustering, a clustering that has
more components than an expert would identify. To reduce the rate of false under-
merging, the optimality of a clustering that was accepted due to the increased RED
cutoff is set to a negative constant, if the labels entropy is higher than 1.0. This causes
that the subpopulation identified due to the increased RED cutoff is accepted only if
it is a relatively small population; equally sized splitting shall be identified only by the
regular RED cutoff. Finally, if the new value of KF > KT , the merging of the resulting
clusters by Entropy-Merger is performed to match the target KT .

Note that Entropy-Merger requires the probability of cluster assignments for each cell
on the input so it can evaluate entropy of a clustering (same as in flowMerge). Thus it
cannot be applied directly on a hard clustering (e.g. defined by labels). One can however
overcome this technical difficulty by reducing a hard clustering to a mixture model of her
choice and execute one M and one E step of the EM algorithm to obtain the probabilities of
assignments.

Implementation: ADICyt algorithm is implemented in C# and CUDA and when
executed on a computer with a NVidia GPU it runs about 100 times faster than the prototype
used for the FlowCAP submission.

Availability: ADICyt algorithm is available in a commercial software available from
www.adinis.sk/en/. The software has a typical set of features for analysis of flow cytom-
etry data extended with ADICyt clustering algorithm. A free demo version with limited
functionality can be downloaded from the above website.

1.1.2 CDP

We describe the integration of Bayesian non-parametric mixture models, massively parallel
computing on GPUs and software development in Python to provide an extensible toolkit
for automated statistical analysis in high-dimensional flow cytometry (FCM). The use of
standard Bayesian non-parametric Dirichlet process mixture models allows the flexible den-
sity estimation of the posterior distribution (MCMC) or modes (EM) of high-dimensional
FCM data, and provides a coherent statistical framework for data analysis and interpreta-
tion ( [3–5]). By exploiting the massively parallel nature of GPUs to achieve greater than
100 fold speed-ups over serial code, it is now realistic to perform large scale data analysis
using these methods [6]. To facilitate dissemination to the computational cytometry commu-
nity, the statistical and computational foundations have been wrapped into fcm, a Python
library that makes it simple to design and implement analysis and visualization pipelines for
FCM. Used interactively, Python is ideal for rapid prototyping and algorithm development.
In addition, Python has robust support for databases, networking, XML processing, GUIs
and web development, facilitating the development of full stack applications [7]. Together,
statistical mixture models, GPU computing and Python glue provide a principled, efficient
and extensible foundation for research into automated FCM analysis [8].

The fcm and cytostream packages can be accessed via:

• http://code.google.com/p/py-fcm

• http://code.google.com/p/cytostream
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1.1.3 FLAME

Introduction: FLAME (FLow analysis with Automated Multivariate Estimation) is an
EM-based multivariate finite mixture model algorithm for the analysis of high-dimensional
flow cytometry (FCM) data [9]. A distinguishing feature of FLAME is its use of skew-
t distributions, which was motivated by the observation that biologically meaningful data
clusters are often skew and heavy-tailed. FLAME includes a metaclustering step during
which cell populations are matched across samples.

Method: Maximum likelihood estimation via the Expectation-Maximization (EM) al-
gorithm is used to optimally fit the parameters of the mixture model. The algorithm for
matching cell populations across samples uses Partitioning Around Medoids (PAM) [10] and
linear optimization to achieve a bipartite matching of the population “centers.” See [9] for
further details.

Implementation: FLAME is written in R and makes use of the EMMIX-skew library,
which is written in C. FLAME can run on Linux, MacOs and Windows systems.

Availability: FLAME is publicly available as part of the GenePattern genomic analysis
platform developed at the Broad Institute of MIT and Harvard [11]. Detailed information
about the use of FLAME in GenePattern is at: http://www.broadinstitute.org/cancer/
software/genepattern/modules/FLAME.

The EMMIX-skew R package for fitting skew normal and t-densities is available at:
http://www.maths.uq.edu.au/~gjm/mix_soft/EMMIX_R/index.html.

Source code and documentation for the FlowCAP 1 challenges is available at: http:

//www.maths.uq.edu.au/~gjm/FlowCAP/index.html.

1.1.4 FLOCK

Introduction: FLOCK (Flow Clustering without K) is an automated software system
developed for the analysis of high-dimensional flow cytometry (FCM) data [12]. Unlike
traditional model-based approaches, FLOCK employs a grid-based partitioning and merging
scheme to identify density-based data clusters. The number of clusters is decided based
on the density gap between partitioned data regions in different subspaces. FLOCK has
been applied to many FCM datasets, including all five FlowCAP datasets in all four types
of challenges with encouraging results. The grid-based approach makes the system highly
efficient in identifying dense regions in very large data sets. The use of dimension selection
and normalization makes the system robust for the analysis of datasets with different number
of markers. FLOCK has been used to identify both known and novel cell populations (see [12]
for 17 B-cell populations identified by FLOCK). Population statistics are also calculated,
including mean fluorescence intensity (MFI), proportions, coefficient of variation (CV), and
expression profiles of each population. Populations identified by FLOCK can be mapped
based on their centroid positions and compared across samples that use the same reagent
panel.

Method: There are five major steps in the FLOCK algorithm: preprocessing, hyper-
grid generation, identifying dense hyper-regions, merging dense hyper-regions, and generat-
ing final clusters. Preprocessing converts binary FCS files into TXT files, and normalizes
marker expressions per-channel to balance their contribution to distance between events.
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Hyper-grid is generated through partitioning each data dimension with equal-sized bins.
Each hyper-bin may contain a different number of events, which defines the density of the
hyper-bin. Dense neighboring hyper-bins are merged together to form the center area of
a density-based data cluster. Finally each event in a non-dense hyper bin is assigned to
a data cluster based on the Euclidean distance, which finalizes the data clusters(i.e., cell
populations).

Implementation: FLOCK is written in C with its user interface implemented in Java.
It has been implemented in the publically available Immunology Database and Analysis Por-
tal - ImmPort (http://immport.niaid.nih.gov) with an advanced graphical user interface
and visualization for open use by the immunology research community, where we are also in
the process of linking FLOCK results to cell types defined in the Cell Ontology (CL) [13]
for population interpretation and knowledge integration. We have also developed our own
open source FCS conversion and transformation method in R (FCSTrans [14]) that gener-
ates output consistent with FlowJo (TreeStar, Inc.), to ultimately facilitate an end-to-end
free analysis pipeline that starts from instrument FCS files to biologically interpreted cell
populations.

Availability: Source code of FLOCK and FCSTrans can be downloaded from: http:

//immportflock.sourceforge.net/. Implementation of FLOCK pipeline with advanced
graphical user interface can also be found at http://immport.niaid.nih.gov/.

1.1.5 flowClust/Merge

Introduction: FlowMerge is a framework for automated gating of flow cytometry data [1].
It was developed to address the problems with existing clustering methods overestimating
the number of cell populations in flow cytometry data.

Method: FlowMerge identifies distinct cell subpopulations in flow cytometry data based
on merging mixture components, using an entropy criterion, from multivariate-t mixtures
under the BoxCox transformation, implemented in the flowClust package [2]. The cluster-
merging algorithm under our framework improves model fit and provides a better estimate
of the number of distinct cell subpopulations than either gaussian mixtures or multivariate-t
mixtures alone applied to flow cytometry data. The framework allows the automated se-
lection of the number of distinct cell subpopulations and allows for merged cell populations
to be readily summarized in a simple manner that integrates with the existing flowClust
framework and enables downstream data analysis.

Implementation: flowClust and flowMerge are implemented in R and C, and are avail-
able through the BioConductor project.

• flowClust: http://www.bioconductor.org/packages/release/bioc/html/

flowClust.html

• flowMerge: http://www.bioconductor.org/packages/release/bioc/html/

flowMerge.html
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1.1.6 flowKoh

Introduction: Self-organizing map (SOM) [15] is an artificial intelligence method for
clustering, visualizing and analyzing high-dimensional data. It can efficiently handle large
datasets and makes no assumptions about underlying dataset distributions. These properties
make SOMs attractive for the analysis of flow cytometry (FCM) data. The SOM neural
network has a neurobiological background and simple and elegant mathematical model. It
is an approach widely used in different domains, yet there were few attempts to apply SOM
in the FCM and microarray data analysis..

Method: The flowKoh software is specifically designed and developed for cell popula-
tion identification in flow cytometry data. It includes the R package kohonen [16] which was
applied to cluster three FlowCAP datasets in unsupervised mode. SOM networks are based
on competitive learning. The flowKoh algorithm incorporates all the mechanisms that are
basic to self-organization: competition, cooperation and self-adaptation. Through iterative
selection and learning process data organize itself into two dimensional map, topology pre-
serving. Resulting SOM presents a simplified relational view of a high dimensional data.
Visualization of the results indicates that SOM might help us in automatic feature selection.
The focus of the current investigation is to determine the accuracy of flowKoh algorithm for
cell population identification.

Implementation: The flowKoh software is implemented using R language. It is plat-
form independent and uses R kohonen package and BioConductor flowCore library.

Availability: The algorithm source code is publicly available at http://commons.bcit.
ca/radina_nikolic/docs/flowKoh_R_Code.zip.

1.1.7 flowMeans

Introduction: The K-means clustering algorithm was the first automated data analysis
approaches applied to FCM data. However, the adoption of K-means has been restricted,
because it requires the number of populations to be pre-identified, it is sensitive to its
initialization, and it is limited to modelling spherical cell populations. Robust statistical
mixture models have been developed to address these issues however, these models increase
the time complexity of the algorithms.

Method: We have developed flowMeans, a time-efficient and accurate method for au-
tomated identification of cell populations in flow cytometry (FCM) data based on K-means
clustering. Unlike traditional K-means, flowMeans can identify concave cell populations by
modelling a single population with multiple clusters. Our framework uses a change point
detection algorithm to determine the number of sub-populations, enabling the method to be
used in high throughput FCM data analysis pipelines.

Implementation: flowMeans is available as a cross-platform R package and have been
tested on Linux, MacOS X, and MS Windows.

Availability: The flowMeans software, including documentation and examples, is
publicly available as an open source R package through Bioconductor http://www.

bioconductor.org/packages/2.6/bioc/html/flowMeans.html. A detailed description of
the methodology is available elsewhere [17].
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1.1.8 FlowVB

Introduction: The increasing dimensionality and size of the data produced by modern flow
cytometry platforms poses a major challenge to manual gating. In particular, accurately
gating high dimensional data that cannot be directly visualized is difficult. We propose an
algorithm that fits a Bayesian mixture model of Student-t distributions to solve the problem
of clustering noisy data with an unknown number of clusters.

Method: Mixture models are popular as an automated means of gating flow cytometry
data, as mixtures of Gaussian densities, or more robust Student-t densities, can cluster flow
data in a statistically meaningful way. A major challenge to the use of mixture models is the
requirement of a-priori specification of the number of clusters. If the number of clusters is
unknown, we can treat determination of the correct number of clusters as a model selection
problem. But this approach can be computationally expensive, requiring multiple runs of the
software with varying numbers of clusters specified. We propose a computationally cheaper
alternative that allows us to fit a Student-t mixture model (SMM) in a single run using a
Variational Bayes (VB) inference algorithm. SMMs have been previously used to analyse
flow cytometry data, and generally outperform Gaussian based solutions because of the
robustness of the Student-t distribution to outliers. Our contribution is the implementation
of an efficient inference algorithm based on [18], which through the use of sparsity promoting
priors allows for automatic determination of the number of clusters. In contrast to model
selection based methods, we can determine the number of clusters in a single run leading to
dramatic decrease in run times.

Implementation: We are offering an implementation of our the algorithm in Python.
Minimum requirements to compile and run FlowVB are:

• Python 2.6.5

• Numpy 1.4.0

• Scipy 0.8.0b1

• Matplotlib 0.99.3

• Enthought Traits API 3.4.0

• Cython 0.12.1

• A C-compiler

Availability: The code is freely available from http://flowvb.github.com/.

1.1.9 L2kmeans

Introduction: The discrepancy learning process is used to recover the spatial distribution
where the individual events, in the given FCS file, are either clumped or scarce. The process
provides a quantitative level of information to track the most insiders and outliers.

Method: The insiders are used to determine the number of sub-populations and to use
them as centroids initialization for K-means clustering method. Our framework enabled
K-means clustering method to be used in high throughput FCM data analysis pipelines.
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Implementation: The source code is a framework written in Java language that imple-
ments the algorithm design process to actually run on multiple platforms.

Availability: http://FlowCAP.flowsite.org/download/2010Participants/MEAN_

DISCR_CLUST.java

1.1.10 MM & MMPCA

MM
Introduction: Model based clustering requires serial clustering for all cluster numbers

within a user defined interval. The final cluster number is then selected by various criteria.
These supervised serial clustering methods are time consuming and frequently different cri-
teria result in different optimal cluster numbers. We developed a new, unsupervised density
contour clustering algorithm, called MM (Misty Mountain), that is based on percolation
theory and that efficiently analyzes large data sets.

Method: The approach can be envisioned as a progressive top-down removal of clouds
covering a data histogram relief map to identify clusters by the appearance of statistically
distinct peaks and ridges. This is a parallel clustering method that finds every cluster after
analyzing only once the cross sections of the histogram. The multi-dimensional data is first
processed to generate a histogram containing an optimal number of bins by using Knuths
data-based optimization criterion. Then cross sections of the histogram are created. The
algorithm finds the largest cross section of each statistically significant histogram peak. The
data points belonging to these largest cross sections define the clusters of the data set.

The algorithm is unbiased for cluster shape, robust to noise and fast (The clustering of
1 million data points in 2D data space takes place within about 15 seconds on a standard
laptop PC). It is unsupervised (it does not need estimation for cluster number) and the
computation time linearly increases with the number of data points. Its performance with
various datasets supports its reliability and utility for automating the analysis of FCM data.
More details about the methodology are available elsewhere [19].

Availability: Executable for Windows and example input files are available at Addi-
tional files 6-8 in [19].

MMPCA
Introduction: MMPCA (Misty Mountain clustering combined with Principal Compo-

nent Analysis) is a variation of MM. In the case of MM when the dimension of the data space
(i.e.: the number of fluorescent stains) is larger-equal than 5 the data are projected to a 5D
subspace by means of principal component analysis. After running MM on the projected
data the assigned clusters are projected back to the original data space.

Method:
In the case of MMPCA every data set is projected to a subspace by means of principal

component analysis. The subspace dimension is less or equal with the dimension of the
original data space. The dimension of the subspace is determined by the analysis of the
eigenvalues of the covariance matrix of the data. After running MM on the projected data
the assigned clusters are projected back to the original data space.

Availability:
A Windows executable is available at: FlowCAP-I/Attachments/MM-PCA
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1.1.11 NMFcurvHDR

Introduction: Our core classification method is based on a two-dimensional implementation
of an automated method for clustering flow cytomety data, called curvHDR. Given a data
set with two dimensions or variables, 2D curvHDR defines N possibly overlapping clusters,
where a cluster is defined by a many-sided polygon approximating an enclosed curve. The
value of N is determined in a data-driven manner; so N will vary from data set to data set.
curvHDR is an attempt to mimic manual gating and human perception of clusters using
significant high negative curvature and highest-density region estimation. It is theoretically
extensible to any number of dimensions, has a minimum of tuning parameters, and is able to
handle data sets of very large size. Another important difference between curvHDR and other
methods is that curvHDR is non-parametric, so that it does not have any particular shape
restrictions on the gate; this is illustrated in the Results section of the curvHDR paper:
Naumann, U., Luta, G. and Wand, M.P. (2010). The curvHDR method for gating flow
cytometry samples. Bioinformatics, 11:44, 1-13. A three-dimensional version of curvHDR
has since been implemented, and is now available in the R package.

In our R code, the subfunction ClassifyNonoverlapRow is used to assign data points in
non-overlapping areas to a cluster. On the other hand, the subfunction ResolveOverlaps
is used to assign data points in overlapping areas to the cluster with the closest centroid.
Data points which fall outside any clusters are assigned to cluster #0. Ultimately, the main
R function ClassifyUsing2DCurvHDR outputs a total of N + 1 classifications: N classes
corresponding to well-defined clusters/polygons, and one class for data points falling outside
any of the N well-defined clusters/polygons.

Feature Extraction Method: In order to use the 2D version of curvHDR, the di-
mensionality of the data must be reduced to 2. This could have been done in an initial
feature extraction step by performing a Principal Components Analysis or an Independent
Components Analysis and then keeping only the first two components. However, we thought
it would be interesting to use non-negative matrix factorization (NMF) to perform the
feature extraction, with the desired number of factors / components set to 2. The reference
for NMF is: Lee DD, Seung HS. Learning the parts of objects by non-negative matrix
factorization. Nature. 1999 Oct 21;401(6755):788-91.

The NMF method requires the data to be non-negative. However, the NDD data set is
based on difference data, and therefore has negative values. To enforce non-negativity so
that NMF can be used, the absolute values of the NDD were taken. Then, the variances
within each column were set to unity, and NMF was performed. Finally, the two-column
W matrix output from NMF was transformed using the asinh function, and then fed to
curvHDR for classification. The processing stream for the NDD data set was as follows:

abs()→ V arianceNormalization→ NMF → asinh()→ curvHDR (1)

For the other four data sets, if any negative values were detected, the minimum was sub-
tracted from all values to force non-negativity; if there were no negative values, then min-
imum subtraction was not performed. Thus, subtracting the minimum was conditional on
the presence of negative values. (The WNV data has negative values, although it wasnt
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described as a data set of differences.) The processing stream for the other four data sets
was as follows:

V arianceNormalization→ Conditional minimum subtraction→ NMF → asinh()→ curvHDR (2)

Implementation: Both NMF and curvHDR have been implemented in R, and are freely
available as R packages on the CRAN website.

Availability: The R package implementing NMF that we used can be obtained
here: http://cran.r-project.org/web/packages/NMF/index.html
And the R package implementing curvHDR can be obtained here: http://cran.r-

project.org/web/packages/curvHDR/index.html A vignette illustrating the use of
curvHDR is available at this web page: http://www.uow.edu.au/~mwand/Rpacks.html

1.1.12 SamSPECTRAL

Introduction: Spectral clustering is a non-parametric clustering method that avoids the
problems of estimating probability distribution functions by using a heuristic based on
graphs. Not only does it not require a priori assumptions on the size, shape or distribution of
clusters, but it is not sensitive to outliers, noise or shape of clusters; it is adjustable so that
biological knowledge can be utilized to adapt it for a specific problem or dataset; and there
is mathematical evidence to guarantee its proper performance. However, spectral clustering
cannot be directly applied to flow cytometry datasets due to time and memory limitations.
To address this issue, we modified spectral clustering by adding an information preserving
sampling procedure and applying a post-processing stage. We call this entire algorithm Sam-
SPECTRAL. It has significant advantages in the proper identification of populations with
non-elliptical shapes, low density populations close to dense ones, minor subpopulations of a
major population and rare populations. In particular, the performance of SamSPECTRAL
was tested in identifying a rare population in 34 samples from our stem cell dataset [20].
The rare population in that dataset comprised between 0.1% to 2% of total events and
SamSPECTRAL could distinguish it correctly in 27 (79%) samples.

Method: To address the challenge of applying spectral clustering on flow cytometry
large data, we developed a data reduction scheme consisting of two major steps; first we
sample the data in a representative manner to reduce the number of vertices of the graph.
Sample points cover the whole data space uniformly, a property that aids in the identification
of both low density and rare populations. In the second step as described in [20], we define a
similarity matrix that assigns weights to the edges between the sampled data points. Higher
weights are assigned to the edges between nodes in dense regions so that information about
the density is preserved. Then spectral clustering is efficiently applied on the resulting
smaller graph to identify the clusters. Detailed description of the methodology is available
elsewhere [20].

Implementation: SamSPECTRAL is available as a cross-platform R package and have
been tested on Linux, MacOS X, and MS Windows.
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Availability: The SamSPECTRAL software, including documentation and exam-
ples, is publicly available as an open source R package through Bioconductor http:

//www.bioconductor.org/packages/2.6/bioc/html/SamSPECTRAL.html. Also, the algo-
rithm and a report on performance on some flow cytometry datasets are published in [20].

1.1.13 SWIFT

Introduction: Recent advances in data generation platforms and staining reagents for flow
cytometry (FC) result in massive datasets containing high-dimensional measurements for
millions of cells. The large size, dimensionality, and overlapping nature of cell populations
pose a significant challenge to the traditional manual data analysis via ‘manual gating’
and highlight the need for automated, objective, multivariate clustering. Several statistical
model-based flow-clustering methods have been proposed, but they do not scale well to large
FC datasets due to their high computational complexity. We propose a scalable clustering
framework SWIFT based on weighted iterative sampling (Naim et al., 2010) that scales
existing statistical model-based clustering methods to large FC datasets and allows detection
of small populations that are frequently of interest.

Method: The proposed clustering algorithm SWIFT has three stages. In the first
stage, SWIFT introduces a novel weighted iterative sampling framework for efficient Gaus-
sian mixture modeling by the Expectation-Maximization (EM) algorithm. We show that
the proposed weighted iterative sampling, not only increases scalability, but also facilitates
better resolution of small clusters. In the second stage (after mixture model fitting), SWIFT
examines each of the Gaussian clusters and splits any clusters that are bimodal along any
dimensions or principal components. This stage is often crucial for identifying rare popula-
tions in high-dimensional flow datasets. Finally in the third stage, a graph-based merging
is applied to fuse strongly overlapping Gaussians based on a normalized overlap measure
and an entropy-based stopping criterion. This stage allows the method to represent skewed
clusters frequently seen in FC data. A major contribution of SWIFT is its scalability to
larger datasets. SWIFT provides significant speed-up for model-based clustering methods.
Moreover, SWIFT shows excellent results in resolving overlapping and rare populations.

Implementation: SWIFT is implemented in Matlab and requires the Matlab Statistics
Toolbox.

Availability: The source code for SWIFT can be downloaded from: http://www.

ece.rochester.edu/projects/siplab/Software/SWIFT.html. For more detailed de-
scription, please see the manuscript: http://www.ece.rochester.edu/~gsharma/papers/

Naim_SWIFT_FCClustering_ICASSP2010.pdf.

1.1.14 RadialSVM

Support Vector Machines (SVMs) are discrete algorithms that can be used to find the max-
imum margin between classes of data for the purpose of separating the data by class [21].
For a training set x, with weights w, bias b and classification values yi on {−1, 1} used to
separate two classes n and m, SVM training is a minimization problem with the constraints:

• xi · w + b ≥ +1 for yi = +1 (class n)
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• xi · w + b ≤ −1 for yi = −1 (class m)

of the function: f(x) = sign((x · w) + b). In concept, minimizing f with respect to this
constraint finds the location of the hyperplane directly between the positive and negative
training sets. The training points that lie on the hyperplanes at each edge of the margin
are called support vectors. Data that cannot be directly separated by a hyperplane can
be mapped to a space of higher dimensionality where separation is possible. Mapping was
implemented though a non-linear transformation of the data, specifically with a Gaussian
function that transformed pattern x to pattern z = ϕ(x) using:

ϕ(x) =
exp(−x2)√

2π
. (3)

SVMs are commonly used tools in pattern recognition that have only occasionally been
applied to flow cytometry, notably in silico [22] and on data collected from cultured cells and
murine bone marrow [23]. Par of what makes SVMs appealing are that many are publicly and
freely available. For this work we have used Matlab version 6.5 software (The Mathworks,
Natick, MA) for pre-processing the data and then applied an SVM coded into a Matlab script
by Junshui Ma and Yi Zhao of Ohio State University. SVMs require training data, and so we
have entered them only into the final FlowCAP competition. The source code can be down-
loaded from: http://flowjo.typepad.com/the_daily_dongle/2011/04/FlowCAP.html
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1.2 FlowCAP-II: Sample Classification Challenges

1.2.1 2DhistSVM

The key motivation for this method is that SVM can perform well in very large feature
spaces. As it is possible that differences between the two groups we would like to classify
may be restricted to changes in rare cell populations we reasoned that a feature extraction
method that preserves much of the structure of the data at the expense of generating a lot
of features may be valuable.

Feature extraction method: Our method is based on computing 2D histograms of all
possible pairs of stains (forward and side scatter were ignored.). Each feature in the dataset
represents the proportion of cells that fall into a specific bin on a 2 dimensional scatter plot.
The bin width was set to 0.1 of the range of values in each dimension resulting in a total
of 100 possible bins for each stain pair. Bins that were empty for all samples were excluded
from the feature set.

Classification method: The resulting features were used for classification with SVM-
struct [24] using precision-recall break-even point as the loss function. The tradeoff constant
was empirically optimized over the range of 10−5 to 103. The number of cross-validation tri-
als was 50 for the AML challenge and 22 for the HIV challenge (in this case this represents
leave-one-out cross-validation). Classifications of unlabeled results were obtained from all
cross-validation models and the results were averaged to produce final classification values.
As SVM produces continuous classification values a threshold was chosen to achieve best
classification accuracy on held out examples.

Implementation: Classification used SVMperfer a wrapper around SVMstruct that
automates cross-validation and prediction which is available as part of the Sleipnir library
(https://bitbucket.org/libsleipnir/sleipnir).

1.2.2 admire-lvq

Introduction: The first step of our analysis concerned the extraction of simple, yet
meaningful features from the flow-cytometry data. In contrast to frequently employed clinical
workflow, we refrained from using clustering or gating procedures to pre-select a subset of
cells for further analysis. Instead, we chose to make use of all cells and all markers in a
single analysis. We reduced the data to a few characteristic quantities which describe the
marker statistics for each patient. Note that our feature extraction also disregards properties
of individual cells or correlations between these. A particular subject was represented solely
in terms of frequency counts for markers over the entire cell population. While this was
meant as a first attempt, originally, the achieved excellent performance indicated that more
sophisticated features were not required for the task at hand.

A data driven classifier was obtained by means of a recently developed machine learning
technique: Generalized Matrix Relevance Learning Vector Quantization (GMLVQ) provides
easy to implement, highly flexible, intuitive classifiers and has proven to yield competitive
performance in many practical problems [25]. In contrast to many other machine learning
approaches like multi-layered neural networks or support vector machines, it allows for a
straightforward interpretation of the emerging classifier. GMLVQ, like other prototype-
based systems, determines typical representatives of the classes which are defined in the
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same space as the observed data. In addition, an adaptive matrix of parameters is used
to define a discriminative similarity measure. This so-called relevance matrix quantifies the
discriminative power of individual features and pairs of features within the multivariate
analysis. Consequently, GMLVQ provides important insights into the nature of the data set
and the classification problem at hand.
Feature Extraction Method: After a first, visual inspection of histograms of the marker
values for individual patients, we considered simple statistics based features derived from
the data. Classification performance based on this simple choice was highly encouraging and
further sophistication of the feature set did not appear necessary.

Note that the entire cell population of a given subject was considered in the feature
extraction. In contrast to frequent clinical practice, no gating or pre-clustering of cells was
performed. Moreover, the information of the individual cells’ marker configurations was
disregarded, only the frequencies of marker values in a given patient were computed and
analysed.

We have not taken into account the non-specific data corresponding to tube 8. For each
of the remaining 31 quantities or markers, respectively, we obtained 6 descriptive features
per patient, i.e.

1. mean value

2. standard deviation

3. skewness

4. kurtosis

5. median

6. interquartile range.

For FS Lin, SS Log, and CD 45, the above were determined over all events (i.e. from 7 tubes
per patient). IgG1-PE, IgG1-PC5, IgG1-PC5, and Ig-G1-PC7 were treated separately as if
they were truly individual markers. Note that FS Lin was rescaled by dividing by the largest
found entry to limit all observations to the interval [0,1]. For each patient the 6× 31 = 186
characteristic quantities were combined into one feature vector.

Note that, in the course of the machine learning analysis described below, an additional
z-score transformation was performed. From the training data only, we obtained for each of
the 186 features xj the mean value mj over all training set patients and the corresponding
standard deviation σj . All data (training and test) were then rescaled according to

xj ← (xj −mj)/σj for j = 1, 2, ..., 186. (4)

This z-score transformation is not essential for the performance of our algorithm, but
allows for better interpretability of the resulting classifier.

Obviously, the obtained features display significant redundancy. Firstly, some of the
markers may be strongly correlated, an obvious example being the above mentioned four
measurements of IgG1 per patient. Moreover, one would expect a marker’s mean value
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and median, as well as standard deviation and interquartile range, respectively, to provide
highly related information. The GMLVQ approach described below, can cope with such
redundancies by assigning relevances to features and pairs of features, thus providing an
implicit, data driven weighting or selection of the most discriminative features.

Classification Method: We have employed Generalized Matrix Relevance Learning Vector
Quantization (GMLVQ) in order to analyse the data and provide a classification scheme. A
detailed description of the algorithm and classifier can be found in [25]. For the data set
at hand, the resulting classifier is parameterized in terms of two prototype vectors (one per
class) in the 186-dim. feature space, and a so-called relevance matrix Λ defining the distance
measure

d(x,w) = (x− w)TΛ(x− w) with Λ = ΩTΩ (5)

where x is one of the 186-dim. feature vectors, w is a 186-dim. prototype vector and Ω as
well as Λ are 186× 186 matrices. The parameterization in terms of the unrestricted matrix
Ω ensures that Λ is symmetric and positive semi-definite.

Given an LVQ system consisting of prototype w1 (representing the class of normal pa-
tients), prototype w2 (representing the class of AML patients) and matrix Λ, the score of an
arbitrary feature vector x is computed as

s(x) = 2
[d(x,w1)− d(x,w2)]

[d(x,w1) + d(x,w2)]
+ 1 with 0 < s(x) < 1. (6)

Note that s ≈ 0 indicates that d(x,w1)� d(x,w2), i.e. the feature vector is much closer to
the prototype representing class 1 (normal). On the contrary s ≈ 1 corresponds to feature
vectors which appear to belong to class 2 (AML). For an actual crisp classification, scores s
would have to be compared with an appropriate threshold values which was, however, not
requested in the challenge.
Training of the GMLVQ system
The GLMVQ classifier is obtained from the training set of labeled data {xi, yi} (i =
1, 2, . . . 179), where xi is one of the 186-dim. feature vectors and the label yi = 1 if pa-
tient i is labeled as normal, whereas yi = 2 if patient i is labeled as AML. Prototypes w1

and w2 and the matrix Ω are obtained by means of minimizing the cost function

E(w1, w2,Ω) =
179∑
i=1

d(xi, wJ)− d(xi, wK)

d(xi, wJ) + d(xi, wK)
(7)

where the sum is over all training examples, index J = yi (i.e. the class label of the example)
and K 6= yi (the wrong class). Here we refrained from introducing an additional nonlinear
function, see also [25]. Numerical minimization of the cost function was done in terms
of modified batch gradient descent with automated step size adaptation, obtaining, both,
prototypes and the matrix Ω in the same training process.
Validation experiments
Initial experiments with the labeled data were performed in order to obtain estimates of
the performance quality in terms of crisp classification. To this end, we split the available
training data randomly in about 5/6 of the subjects used for training and the remaining
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ones as a test set. In order to obtain results independent of the precise set composition we
performed averages over 50 random splits.

From the excellent performance observed in the validation runs we concluded that the
resulting prediction is of high quality already in the simplest setting of the GMLVQ with one
prototype per class and a single, global relevance matrix [25]. Performance also turned out
very robust with respect to the number of gradient steps performed. For the final results we
performed 40 steps of the gradient descent procedure. In addition we initialized the GMLVQ
system randomly (prototypes close to class conditional means, matrix Ω close to identity)
and averaged the resulting system over 50 initial conditions. One interesting observation
concerned a particular subject: In all our GMLVQ analyses, patient 116 from the training
set turned out to be very close to the typical, normal patient profile. Removing the patient
from the data set resulted in close to perfect validation performances with, for instance,
ROC-AUC very close to 1. We suspected that patient 116 is either an atypical case of AML
or had been mislabeled in the data set. All results submitted to the challenge, however,
correspond to using the full data set including patient 116.

Implementation and Availability: Feature extraction, GMLVQ training, and classifi-
cation were implemented in Matlab and, consequently, are not platform dependent. All
our code could be easily ported to generic programming languages.

The specific Matlab code was submitted to the challenge and the entire software is
available as supplementary information: FlowCAP-II/Attachments/admire-lvq. Generic im-
plementations of GMLVQ and related algorithms are also available upon request from M.
Biehl (m.biehl@rug.nl).

1.2.3 biolobe

Introduction: Facing the large amount of data to be processed, a tool chain with low
computational footprint was sought. Since computational methods for vector spaces are
widely available, the initial task is a robust reduction of the input data of varying length
to feature vectors with identical dimensions. Afterwards the correlative matrix mapping
(CMM) approach is used as a subspace mapping method to project these feature vectors
into a plane that allows for both visual inspection of the relationship between patients and
also their analytic assessment of disease-induced mapping order.

Feature Extraction Method: Although histograms are a natural representation of
marker-specific events, their appearances are dependent on the start and end of the domain
binning intervals and the number of bins. Thus, in order to avoid fluctuations across adjacent
histogram bins, simple density kernel estimation was carried out. A one-dimensional k-means
clustering was used to determine centers. In combination with the standard deviations of
their receptive fields these can be considered as Gaussian basis functions for each marker-
specific event set. In order to get independence from scale and physical dimensions, the
coefficients of variation (CVs) were calculated from these means and standard deviations.
After all, a number of only k = 3 CVs per feature was chosen to provide a minimum number
of degrees of freedom in the model; it turned out that larger numbers of k did not improve
much the discrimination on training and validation sets for the subspace mapping method.
To summarize the data pre-processing steps:
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1. Blind tube 8 was always ignored, leaving 35 markers from website Table 1 plus 7×(FS
and SS);

2. k-means with k = 3 was computed per subject and feature resulted in 49×3 dimensional
feature vectors per subject;

3. in each of the three k-means-induced 1D-Voronoi cells the standard deviation was
computed;

4. ratios of standard deviations and corresponding means (=coefficients of variation, CVs)
were computed;

5. redundant CVs for 7 × FS Lin, 7 × SS Log and 7 × CD45-ECD were averaged;

Application of these steps resulted in 3 × (4 × 7 + 3) = 93-dimensional feature vectors for
each of the 359 subject.

Classification Method: For predicting the health state of patients the 93-dimensional
feature vectors are mapped to a 1-dimensional subspace. To do so, a regularizing alternative
to linear discriminant analysis (LDA) was applied. For the given data matrix X containing
179 training samples (rows) and its 93-dimensional feature vectors (columns) the correspond-
ing labels L with entries of 1 for the normal state and of 2 for AML are connected by a distance
metric learning framework. If DV

X is a 179x179 V -adaptive distance matrix of the training
samples, and DL is the distance matrix of labels, being binary here, then metric parameters
V are sought such that the correlation of matrix entries r(DV

X , DL) = max. The matrix ele-
ments (DV

X)ij =
√

(xi − xj)V V t (xi − xj) describe the adaptive (Mahalanobis-like) matrix
distance between data vectors xi and xj with V being optimized according to the maximum
correlation mapping criterion induced by DL. In addition to the plain algorithm described
in [26] regularization is applied during optimization by clustering the mapping parameters to
their k-means centers. This mapping functionality is available in the CMM software package
by setting the regul parameter to a number between 0, excessive regularization, and 1, no
regularization, i.e. describing the target fraction of the feature vector dimension.

Availability: Correlative Matrix Mapping (CMM) is online available at https://

mloss.org/software/view/293/ for use with MATLAB and GNU-Octave environments.
The maximization of correlations is obtained as optimization of parameter matrix V by
second-order quasi-Newton memory-limited Broyden-Fletcher-Goldfarb-Shanno (l-BFGS)
optimization.

Experiment Setup: Initial CMM experiments were conducted, showing that
1-dimensional subspaces (V = R93×1) are sufficient for a reliable separation of the train-
ing data. The choice of parameter regularization at regul=0.1, that is 10% of the original
dimension providing 9 centers of the parameter vector (integer part of 93 × 10%), was de-
termined in an interactive manner by looking at the separation characteristics of a 20%
hold-out validation data set. By making sure that very reliable separations were obtained
on random splits of the 179 training samples, confidence was created to validly utilize all
these training samples in the final modeling stage. In order to deal with random initial-
izations, 1009 (prime number for breaking ties) independent models were trained by until
convergence, that is ’TolFun’=10−11, ’TolX’=10−12, and ’DiffMinChange’=10−12. Training
these 1009 models took about 3 hours on a regular desktop computer.

19
Nature Methods: doi:10.1038/nmeth.2365

https://mloss.org/software/view/293/
https://mloss.org/software/view/293/


Scoring: All computed 1009 models were considered for the final scoring. If the mean of
the mapped normal training samples was greater than the mean of AML, the direction of the
mapping vector V was flipped to induce a reference ’normal’ < ’AML’ score relation for the
mapping of unknown test data. The ranks of the resulting 1-dimensional projections were
taken, low ranks being related to normal subjects and high ranks to AML. For summarizing
the 180 ranks of test subjects across all 1009 experiments rij, {i = 1...180, j = 1...1009} to
one final value for each subject, the welfare measure of Moore was used [27]:

Ri = (

∑1009
j=1 (Rij)

1−z

n
)1/(1−z) (8)

with a strongly discriminative value of z = 100. This provides a generalization of the ge-
ometric mean used in the popular rank products method proposed by Breitling et al. [28].
Computed ranks Ri were min-max normalized to the interval [0, 1] and submitted as predic-
tion results to the competition.

1.2.4 daltons

Introduction: This solution uses simple dimension reduction and one-dimensional distri-
bution comparison techniques to derive a set of features forwarded to a logistic regression
classifier. The algorithm was one of those reaching 100 % prediction accuracy on the chal-
lenge test data. The key feature in this solution is the sparsity enforcing estimation of the
classifier parameters, which discards most of the flow cytometry tubes making the model
simple and economical. The following figure gives an overview of the solution.

Feature Extraction Method: Preprocessed flow cytometry data that consists of the
7 tube dependent fluorescence channels together with the forward and side scatter mea-
surements is used. First, the dimensionality of the data from each tube is increased to
135 by appending all possible 9 inverses, 45 multiplications (including self multiplications),
and 72 divisions of the measurement channels into the data. Second, the dimensionality is
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reduced to 1 by using Linear Discriminant Analysis (LDA). The empirical cumulative densi-
ties (EDFs) of the one-dimensional tube data are then compared against the corresponding
training densities. For EDF comparison, the mean squared error (MSE) between the EDFs
is used. This results in two MSE values per tube, one for AML positive and one for AML
negative populations. Thus, we have a 14-dimensional vector of MSE values per patient.

Classification Method: A logistic regression model is used to map the 14-dimensional
feature vector into scalar indicating the confidence of the patient being AML positive. L1
regularization of the model coefficients is used, which effectively reduces the dimension of
the input vector by selecting only the relevant features and tubes. In our final submission,
the L1 regularization resulted in an extremely economical model in the sense that it only
used 2 of the 7 available tubes. The AML confidence score is given by the logistic regression
model as

p =
1

1 + exp(0.31− 29.9ω
(0)
4 − 9.5ω

(0)
5 + 35.2ω

(1)
4 + 51.5ω

(1)
5 )

, (9)

where ω
(c)
t is the MSE between the tested EDF and the trained EDF of either AML negative

(c = 0) or AML positive (c = 1) samples in tube t ∈ {1, . . . , 7}.
Below is the pseudo code for training the predictor given data D of all the training patients:

train(D) {

for t = 1 to 7 { // For each tube

// Generate arithmetic combinations of tube data

X = GenerateFeatures(D(tube t))

X0 = X(AML negative)

X1 = X(AML positive)

// Compute LDA coefficients

wLda(t) = TrainLDA(X0,X1)

// Compute EDFs in LDA projection space

edf0(t) = EDF(MapLDA(X0; wLda(t)))

edf1(t) = EDF(MapLDA(X1; wLda(t)))

for p = 1 to 179 { // For each training patient

// Compute EDF in LDA projection space

edf = EDF(MapLDA(X(patient p); wLda(t)))

// Calculate error with all patients’ EDFs

E(p,t,0) = MSE(edf, edf0(t))

E(p,t,1) = MSE(edf, edf1(t))

}

}

// Train regularized logistic regression model

wLogReg = TrainLogReg(E)
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// Return trained predictor parameters

return wLogReg, wLda, edf0, edf1

}

Here is the pseudo code for applying a trained predictor for one patient whose data is
given in D:

predict(D ; wLogReg, wLda, edf0, edf1) {

for t = 1 to 7 { // For each tube

// Generate arithmetic combinations of tube data

X = GenerateFeatures(D(tube t))

// Map to LDA space

x = MapLDA(X; wLda(t))

// Compare EDFs

e(t,0) = MSE(EDF(x), edf0)

e(t,1) = MSE(EDF(x), edf1)

}

// Return AML confidence by logistic regression

return MapLogReg(e; wLogReg)

}

Implementation: The algorithm has been implemented by using MATLAB. The pro-
gram depends on a third party toolbox PMTK3 (http://code.google.com/p/pmtk3/).

Availability: The source code, documentation, and additional scripts for reproduction of
the results are available as supplementary information in FlowCAP-II/Attachments/daltons.

1.2.5 DREAM–A

Introduction: In essence, we evaluated several related method by a nested cross-validation
approach, and selected the best one for making predictions on the target samples. The
methods are based on 2D and 3D histogram representations of each sample.

Feature Extraction Method: The histograms were generated from the preprocessed
data files (*.CSV files).

2D histograms were generated for all pair-wise combinations of surface antigens and
optical read-outs present on the same tube. The dynamic ranges for the readouts were
assumed to be 0 to 1000 for column 1 of a *.CSV file, and 0 to 1 for all other columns.
The dynamic ranges were partitioned into 50 bins, yielding a total of 2500 bins for a 2D
histogram.

3D histograms were generated for all possible combinations of a subset of readouts. This
subset consisted of the three readouts common to all tubes (column 1,2,5 of the *.CSV files)
and the two best performing readouts from each tube. The selection of best-performing
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readouts was based on results obtained with predictors built from 2D histograms. For 3D
histograms the dynamic ranges were partitioned into 20 bins yielding a total of 8000 bins.

A pair-wise or triple combination of readouts will be referred to as a feature. For a given
feature and sample, we first count the number of cells that fall within each bin of the 2D
or 3D histogram. A pseudo-count is added to each bin, and the counts are converted into
fractions that sum up to one. For a given feature, we then compute a reference histogram for
the classes AML and Normal, respectively, by taking the averaging over the bin frequencies
over all samples belonging to the corresponding class. Note that after these processing steps
the samples as well as the reference matrices are arrays of positive real numbers summing
up to one; in other words, they have the properties of a probability distributions.

For each sample, we compute its distance to the two reference histograms, using one of
the following distance measures: correlation distance (1 − r) or conditional entropy of the
sample, given the reference histogram.

Classification Method: To build a predictor, we used the distances of the training
set samples to the reference histograms computed for selected features as input to a machine
learning method: linear discriminant analysis (LDA), neural net, or SVM. Different configu-
rations of neural nets and SVM were used. For each method, we selected up to five features
by a recursive procedures described below. Note that an individual method is characterized
by the following components:

1. A set of feature: 2D, 3D or both

2. A distance measure: correlation or entropy

3. A machine learning method (LDA, several variants of neural nets and SVM)

Each method is evaluated by the following nested cross-validation procedure. The com-
plete training set S was split into five subsets S1 ... S5 of approximately equal size. The
pseudo-code of the procedure follows:

Part 1: Computation of distance measures:

For all features fj :

For k = 1 to 5:

Make reference histogram RAk(fi) from all samples si not in Sk

and class(si) = AML.

Make reference histogram RNk(fj) from all samples si not in Sk

and class(si) = Normal.

For all si :

DAi,k,(jj) = distance[ Histogram(si, fj) , RAk(fj) ]

DNi,k(fj) = distance[ Histogram(si, fj) , RNk(fj) ]

For m k, 1 k 5 :

Make reference histogram RAk,m(fi) from all samples si not

in Sk Sm and class(si) = AML.

Make reference histogram RNk,m(fj) from all samples si not

in Sk Sm and class(si) = Normal.

For all si :
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DAi,k,,m(fj) = distance[ Histogram(si, fj) , RAk,m(fj) ]

DNi,k,m(fj) = distance[ Histogram(si, fj) , RNk,m(fj) ]

Part 2: Recursive feature selection and evaluation:

For k = 1 to 5 :

Fk,0 = {} (initialization of feature collections)

For n = 1 to 5 : (5 rounds of feature selection)

For k = 1 to 5 :

For all features fj not in Fk,n-1 :

For m k, 1 k 5 :

Make Predictor from all samples not in Sk Sm

using distances DAi,k,m,(fj), DNi,k,m,(fj) for all

features in Fk,n-1 {fj}.

Use Predictor to compute Probk,n,j(si) for all si

in Sm.

Compute performance measure Qk,n,j for fi from Probk.n.j(sj)

and class(si) using all si not in Sk .

Select f* = best fj. according to Qk,n,j . Fk,n = { f*} Fk,n-1.

Make Predictor from all samples not in Sk using distances DAi

,k,(fj), DNi,k,(fj) for all features in Fk,n.

Use Predictor to compute Probn(si) for all si in Sk .

Compute performance measure Qn from Probn(si) and class(si) using all

si in training set .

Using this evaluation procedure, the method using 2D histograms, LDA, a correlation
distance measures and five rounds of features selection showed the best performance. We
thus used this method to build a predictor from the entire training set and to predict the
classes of the target samples.

Implementation: Evaluation and cross-validation procedures were written in R lan-
guage, using the packages MASS, e1071 and nnet.

1.2.6 DREAM–B

Introduction: The following algorithm was specifically designed for the AML challenge
and has its major point of innovation in the procedure for feature extraction: the main
rationale beyond the procedure is to describe the wealth of measurements for each patient
(31 different measures for thousands of cells) with 31 corresponding mixtures of Gaussians,
each summarized by a finite number of parameters. This allowed us to capture the high-level
properties of the distributions underlying each of the different measures.

For feature selection and classification, on the other hand, we exploited two recognized
and consolidated techniques, namely Recursive Feature Elimination (RFE, [29,30]) and Sup-
port Vector Machines (SVM, [31]).

Feature Extraction Method: For each patient, we considered all preprocessed mea-
surements of the 31 variables, aggregating the variables measured on multiple aliquots (Cell
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Forward Scatter, Cell Side Scatter and biomarker CD45-ECD) and ignoring the noise mea-
surements.

From visual inspection, we observed that most of the variable distributions are unimodal
or bimodal, with a spike at the bottom end of the scale, possibly due to lower detection
limits. We thus developed the following procedure for discriminating between unimodal and
bimodal distributions:

1. For each patient and each variable, remove the bottom end spike from the variable
distribution and compute maximum likelihood fits to data of both a normal distribution
(10) and a weighted sum of two normal distributions (11):

funimodal(x) =
1√

2πσ2
1

e
− (x−µ1)2

2σ2
1 (10)

fbimodal(x) = p
1√

2πσ2
1

e
− (x−µ1)2

2σ2
1 + (1− p) 1√

2πσ2
2

e
− (x−µ2)2

2σ2
2 (11)

2. Classify variable distributions as unimodal or bimodal exploiting the three following
indicators, computed from the fit of the Equation 11:

• The D statistic, defined as

D =
|µ1 − µ2|

[(σ2
1 + σ2

2)/2]1/2
(12)

where µ1 and µ2 are the means and σ1 and σ2 are the standard deviations of the
two normal distributions. D > 2 is required for a clean separation between the
two modes (as reported in [32]);

• The misclassification area A, defined as the overlapping area under the two normal
distributions (as reported in [33]). A < 0.2 is used as misclassification threshold;

• The probability p from Equation 11. The minimum between p and 1 − p has to
be greater than 0.01.

Distributions meeting all three criteria are considered as bimodal, otherwise as uni-
modal.

Each distribution is then described by 5 different parameters: p, µ1, µ2, σ1 and σ2
(unimodal distributions are characterized by p = 1 and µ2 = σ2 = NaN). For the purpose
of classification, we exploited parameters p, µ1 and σ1 of each variable distribution (further
analyses including also µ2 and σ2 did not yield significant improvements). Each patient was
thus completely described by a total of 31× 3 = 93 features.

Classification Method: Classification was carried out with the Support Vector Ma-
chines classifier. To increase the robustness of the prediction, we exploited the Recursive
Feature Elimination procedure. This allowed us to select a meaningful subset of the 93
features, which was then used for classification.

The classification procedure was accomplished through the following steps:
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1. Choice of the kernel and tuning: we exploited a leave-one-out procedure on the training
set to select the best kernel for the SVM and to tune its parameters. Linear, polynomial
and Gaussian Radial Basis Function (RBF) kernels were tested. All three kernels
depend on a regularization parameter C; furthermore, the RBF kernel depends on a
scaling factor 2σ2 and the polynomial kernel depends on the degree of the polynomial
d. Grid search with exponential step size was carried out in the parameter space,
and each combination of parameters was evaluated through the Matthews Correlation
Coefficient (MCC, [34]) on the samples left out by the leave-one-out procedure. MCC
ranges between -1 and 1 and it is often preferred to classification accuracy when classes
are highly unbalanced (as in the current case). RBF resulted the optimal kernel, with
parameters C = 26 and 2σ2 = 210.5 and a MCC of 0.95.

2. Feature Selection: with a Bootstrap procedure, we obtained 100 train-test set pairs
(trb,tsb), 1 < b < 100: each trb is obtained by sampling with replacement 179 subjects
from the original train set, keeping the unsampled subjects for the corresponding test
set tsb. The Recursive Feature Elimination procedure was then applied to each pair
(trb,tsb): an SVM with the optimal kernel and parameters is trained on trb, then the
importance of each feature with respect to the training error is estimated as explained
in [30] and the least important feature is removed from the feature set. Then the SVM
is trained again, another feature is removed and the procedure continues until only one
feature remains. Every time a feature is removed, the SVM is tested on the set tsb and
the MCC of the prediction is computed. The list of removed features, read backwards,
provides a ranking of the features in terms of importance for classification.

By applying Recursive Feature Elimination to each bootstrap pair, we obtained 100
rankings of the feature set and 100 realizations of the distribution of MCC vs. the
number of selected features. We obtained a global feature ranking by averaging the
rank of each feature in the 100 feature lists. To select the optimal number of features
f ∗ to be used for classification, we studied the curve of mean MCC vs. number of
features: we fitted a double exponential to the curve and selected as f ∗ the point for
which the relative increase in the fit at the subsequent point was less than 5 × 10−4.
The optimal number of features resulted 24, thus only the 24 topmost features from
the global feature ranking were used for classification.

3. Re-tuning and classification: leave-one-out and grid search were used again for tuning
the parameters of the RBF kernel, to optimize SVM classification for the new feature
set. Optimal parameters resulted C = 24 and 2σ2 = 214, with a new MCC of 0.97. The
optimal SVM was then trained on the whole train set and used for prediction on the
test set. Test subjects were ranked according to real valued prediction values, scaled
between 0 an 1.

Implementation: The feature estraction method is implemented in MATLAB and re-
quires the Statistics Toolbox. Feature selection and classification are implemented with a
mixture of MATLAB and Python code and require the mlpy Python package.

Availability: MATLAB and Python source codes of our procedure are freely download-
able from https://www.dei.unipd.it/~dicamill/flowcap/. The mlpy Python package
can be downloaded from https://mlpy.fbk.eu/.
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1.2.7 DREAM–C

Introduction:
This algorithm uses thresholding to convert signal measurements into real feature values,

which are further normalized using control experiments. To avoid the problem of high
dimension of feature set, Principal Component Analysis is performed at the beginning to
cluster the features, and the most significant PCs are selected using cross validations. Finally,
an ensemble classifier is built containing six regular machine learning methods.
Feature Extraction and Training:

Step 1: Transforming multiple measurements to a single feature value
Each CSV file contains thousands of events (rows) that correspond to the measurements

for a series of cells, and 7 columns that correspond to 7 features. The first problem is
how to transform these multiple measurements (rows) into one single measurement (row),
which represents the values of the features for each CSV file (each sample). A naive way
to summarize the multiple measurements is to use the mean. This approach, however, is
inappropriate, because an AML sample likely contains both normal cells and AML cells,
which means the values of each feature for this sample likely follows a bimodal distribution.
Taking the mean will smooth away the measurements for AML cells in this sample. We
propose to transform the multiple events for a particular feature into a single value, by
calculating the proportion of the events (rows) whose value is bigger than a cutoff value K.
After trying different values of K for each feature, we choose to use K = 600 for feature cell
size (FS Lin), and K=0.6 for all other features.

For each subject, since features FS Lin and SS Log are measured 8 times from tube 1
to tube 8, and feature CD45-ECD is measured 7 times from tube 1 to tube 7, we use the
median for these three features.

Finally, for each subject we have 31 features including the following: (1) FS Lin, SS Log
and CD45-ECD (2) measurements of FL1, FL2, FL4 and FL5 from tube 1 to tube 7.

Step 2: Normalization against tube 8 : Features FS Lin and SS Log and CD45-ECD are
not normalized, and feature values from FL1 to FL5 in tubes 1-7 are normalized based on
the background noise in tube 8. The calculation of normalization is very simple: subtract
the feature values (defined in Step 1) in tube 1-7 by the feature values in tube 8. If after
normalization, the feature value is smaller than 0, then we convert it to 0.

Step 3: Feature selection and model training : For each subject, we have 31 feature values
from flow cytometry data; however, we only have 179 training samples, and especially we
only have 23 AML training samples. We need to perform feature selection before model
training. First, we performed principal component analysis (PCA) on all the 359 data points
to generate 31 principal components (PCs) that are ranked by their % variance explained.
Here is the pseudo code about how we perform feature selection on PCs:

1, for (i = 1; i <= 31; i++) {

2, use the first i PCs as features

3, evaluate model by 10-fold cross validation on the known 179 samples

4, compute the prediction error from step 3

5, repeat previous two steps (3 and 4) 10 times

6, }

7, pick the smallest number of PCs that give prediction results as good as the best one
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Classification Method:
Our ensemble classifier contains the following 6 learners: (1) linear discriminant classifier,

(2) quadratic discriminant classifier, (3) support vector machine with linear kernels, (4)
naive Bayes classifier, (5) logistic regression, and (6) random forests. The feature selection
procedures described above suggested to use the top 3 PCs that account for about 75% of
the variance within all data.

Step 4: Predicting on the test dataset: 10-fold cross validation test in Step 3 suggested
us to use the top 3 PCs, hence we trained the 6 machine learning models using the top 3
PCs on all the 179 training samples, and the trained models are applied to the 180 test
samples. The confidence score of classifying a sample as AML is computed as: the number
of classifiers that classify a sample as AML divided by 6.
Implementation and Availability:

This program was implemented in R with some Perl scripts, and relies on some open-
source machine learning packages in R. Please contact Bo Liu at boliu@umiacs.umd.edu for
availability.

1.2.8 DREAM–D

Introduction: Systems biology research generates ever-increasing datasets. Unsupervised
clustering is an efficient way to organize data and discover patterns, but is computation-
ally challenging for very large datasets. As current clustering methods do not scale well, or
fail to satisfy every of the important properties enumerated below, we developed a parallel
computing clustering algorithm (MegaClust), which addresses all of them. We applied Mega-
Clust to the DREAM AML flow cytometry challenge. The important properties satisfied by
MegaClust are the following:

1. does not assume a specific number of clusters a priori

2. properly separate arbitrarily shapes of various densities and overlapping distributions

3. is not affected by the order in which the data is presented

4. resistant to noise (e.g. does not assign outliers to clusters)

5. uses intuitive free parameters (e.g. minimal size a population should have to be of
interest).

6. is capable of completely clustering millions of observations, without data sampling or
reduction.

7. parallelized (fast processing).

Methods: Our method is fully automated, does not require any human intervention,
any a priori biological knowledge, any knowledge about the markers, nor any knowledge
about how many patients have AML.

We used the R library PRADA to extract all the events of every patient, without any
further filtering, gating, compensation or normalization, and pooled all events together. This
resulted in data-sets of 10318313 to 10366310 events depending on the tube (slightly less than
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359 x 30000 events, as some patients did not have 30000 cells analyzed for a given tube).
We did not use the tube 8.

As we did not know a priori which surface marker were relevant for the prediction of
AML vs Normal status, we decided to treat each tube independently. To further mitigate
the risk of incorporating markers that were not relevant and would hence just add noise,
we decided to retain only 4 out of the 5 markers at the same time. Thus for each tube, we
created sub-data-sets consisting of each of the five possible combinations of taking 4 out of
the 5 markers. SSC and FCS measurement were ignored.

For each sub-data-set, we performed an unsupervised clustering of the 10.4 million events
using the 4 markers chosen, which were treated as a feature vector to group similar events
together, based on their Euclidian distance. Only populations containing a minimum of 1000
events were retained. Depending on the sub-data- set, the number of populations identified
varied between 3 and 27, plus one population containing outliers.

Outliers were discarded, and we then computed the fraction of events classified in each
cell population for each of the 359 patients.

To determine which cell populations could be used to discriminate between AML and
Normal, we checked if a given cell population was significantly increased in known AML
patients. We retained the population for which the one-sided t.test pval was 0.1. We also
checked that the size of the candidate cell population of at least one of the known AML was
larger than the maximal size observed for any of the known Normal patients.

We then computed an AML score for each retained cell population. The score was
defined as how many times the population size observed for a given patient was above the
interquartile range of the known Normal patients.

We then checked if any cell population was significantly decreased in known AML pa-
tients, and applied the same scoring methodology.

The prediction itself was done by summing the scores obtained for every patient, and
ordering them by decreasing order. We retained the list of patients with unknown status
that scored above the lowest known AML patient as positive for AML. The resulting number
of predicted AML patients was exactly 20, and each of these 20 patients had scores above
the scores of the 3 lowest known AML. As the DREAM challenge stated that we should aim
at getting 20 additional AML patients, we did not look further. However, to get a sense of
the reliability of the prediction, we repeated our scoring procedure 1000 times, each time
randomly leaving out 25

Implementation: MegaClust is implemented in C, and relies on the MPI libraries to
runs across several nodes of the Vital-IT HPC cluster of the Swiss Institute of Bioinformatics.
The extraction of measurements from fcs files and the post-analysis treatment (e.g. the leave
25

Availability: More information about the availability can be found at http://

megaclust.vital-it.ch

1.2.9 EMMIXCYTOM and uqs

Introduction: EMMIXCYTOM (EM-based MIXture models for CYTOMetry data) is a
supervised clustering method for the flow cytometry data.
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To construct the distribution template of a class such as AML, EMMIXCYTOM fits a
skew-t mixture model on the pool of all training samples of the class AML. Each class is
acquired a template which is an object of skew-t mixture parameter list.

The similarity of a new sample to the template is measured by the approximate KL
distance.

A new sample is classified into the class AML if its KL distance to the AML template is
smaller than for the normal template.

Methods: There are 2872 samples in the AML data, in which the first half are labeled
and the second half are to be labeled.

The first 12 AML (training) samples are used to get the AML templates, namely aml-
template1,..., aml-template7 for each of the first seven tubes. Similarly, the first 20 normal
samples are used to get the normal templates, norm-template1,...,norm-template7. Each
template is an eight component skew-t mixture (MST) object. The 8th tube samples are
treated as back-up information and are ignored in this challenge.

Then we do data analysis on each sample and assign a label to each of them. In this
approach, an 8 component skew-t mixture model is fitted and the KL distances of a sample
to its corresponding two tube templates are calculated and compared.

Finally,, the risk of having AML for each person is calculated based on the AML labels
assigned to them, i.e the number of AML labels divided by the total successfully assigned
labels for each person.

The software is available as supplementary information FlowCAP-
II/Attachments/EMMIXCYTOM.

Implementation: EMMIXCYTOM is written in R and makes use of the EMMIX-skew
library, which is written in C. EMMIXCYTOM can run on Linux, MacOs and Windows
systems.

Availability: The EMMIX-skew R package is available at http://www.maths.uq.edu.
au/~gjm/mix_soft/EMMIX_R/index.html.

Source code for the FlowCAP 2 challenges is available at: http://www.maths.uq.edu.

au/~gjm/FlowCAP/index.html.

1.2.10 fivebyfive

We developed a supervised machine learning approach for the classification of patients with
and without acute myeloid leukemia (AML). The approach uses a support vector machine
(SVM) trained on feature vectors obtained from histograms of flow cytometry data for each
patient. Formally, SVMs work by plotting data in a high-dimensional feature space and
constructing a hyperplane that maximally separates true positives from true negatives from
a set of training data.

The SVM code used for training and predicting purposes is the open-source libSVM
software, available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/; the code has been
modified in-house. While this software will compute the optimal hyperplane for a set of
training data, there are additional inputs that must be provided by the user that can signif-
icantly affect the results. Our complete approach is based off an SVM-based algorithm we
developed for the prediction of transcription factor binding sites [35, 36] and is explained in
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more detail there. The algorithm outline followed by detailed explanation of each line is as
follows:

Algorithm outline

1 Map patient data to feature vectors

2 Repeat 500 times (steps 3-5):

3 Penalty parameter optimization by grid search and cross-validation

4 SVM parameter optimization using training data

5 Classify patients

6 Count runs for which each patient is classified as positive or negative

1. We started with the curated CSV file set. Each patient had data from 8 flow cytometry
experiments. Each of these experiments had 7 columns of data (5 antibody conjugated
fluorophores , plus forward scatter (FS) and side scatter (SS) measurements). For each
column, we binned the data into 10 bins obtained by looking at the global maximum
and minimum for each column and evenly spacing 10 bins in the interval. The value
recorded for each bin was the frequency. The result is an 8 x 7 x 10 = 560 dimensional
feature vector for each patient.

2. The SVM training procedure was repeated 500 times, due to the inherent stochasticity
in the cross-validation procedure, discussed in step (3).

3. In the cross-validation step, the training data is randomly split into 3 sets, and each
third is predicted using the SVM trained (see step (4) for details) on the other remaining
two thirds. We use the F-measure, the harmonic mean of precision and recall, to assess
the accuracy from cross-validation. Because of the random splitting of the data, the F-
measure may vary slightly over repeated runs (typical coefficient of variance is around
0.03).

We use the radial basis function kernel (RBF) in the SVM. There are two parameters in
the RBF kernel, C and γ, which are not optimized in the SVM training procedure. Grid
parameter search aims to optimize these two parameters, which are used in training
the SVM: both values are varied over a coarse grid (C in {2−5, 2−3, . . . , 215} and γ in
{2−15, 2−13, . . . , 25}) (11 × 11 = 121 points in the grid), and the F-measure at each
grid point is computed over 5 cross-validation repeats (to account for variations in
the F-measure computation). The grid point with the largest average F is used as
a starting point for a refined grid and the procedure is repeated; this refinement is
carried out twice. For example, if the optimum F-measure from the coarse grid were
(C, γ) = (23, 2−5), the first refined grid would vary C over (21, 22, 23, 24, 25) and γ over
(2−7, 2−6, 2−5, 2−4, 2−3). The second refined grid would space 5 points in intervals of
20.5 around the optimum (C, γ) from the first refined grid.

The ultimate result of this step is the optimized parameters C and γ that are used to
train the SVM on all the data in step (4). Because the optimal F-measure from this
procedure depends on the random three-way splitting of the training data, the optimal
C and γ change from one run to another.
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4. The SVM is trained on the training data (179 patients) using the C and γ parameters
from step (3).

5. The trained SVM model is used to predict the test patients as positive (diagnosed
leukemia) or negative (healthy).

6. The results of step 2 (500 repeats of steps 3 - 5) are compiled. Each patient has been
predicted to be healthy or have leukemia 500 times, and we determined the percentage
of predictions that diagnosed each patient with leukemia.

1.2.11 flowBin

Introduction: Multiplexing flow cytometry experiments across tubes containing different
combinations of markers is a common solution to the problem of measuring the expression
of more markers than a particular flow cytometer can handle in one run. Data from such
experiments produces unique challenges, particularly for cross centre and retrospective anal-
ysis, since markers are often assayed in different combinations. One solution is Pedreira et
als method of combining tubes via K-nearest neighbours (KNN) applied across parameters
shared by all tubes, to create a very high- dimensional single file. [37] However, this method
implies imputation, and can lead to spurious artificial populations. [38]

Feature Extraction Method: To solve this problem, we instead binned data using
overfitted K-means clustering in the shared parameters, and mapped these bins across tubes
using KNN. We then extracted summary statistics (e.g., median fluorescence intensity) for
each bin in terms of each parameter. Although this approach involved some data reduction,
it avoided imputation.

Classification Method: Binning within patients raised the problem of linking features
across patients for classification. To solve this, we took each bin from each sample as a
separate training instance, labelled with the sample label, and then trained a support vector
machine (SVM) classifier. For class prediction, we took the majority vote of the predicted
labels for a given samples bins. Classification with parameter optimization and three-fold
cross-validation was implemented using the ksvm R package, but could in theory be made
to work with any modern classification method.

Implementation: flowBin was implemented in the R statistical programming language,
and is dependent on the flowCore Bioconductor package as well as the class package from
CRAN.

Availability: The software (in the form of an R package), documentation, and addi-
tional scripts for reproduction of the results are available as supplementary information in
FlowCAP-II/Attachments/flowBin. We expect that a version will also be made available via
Bioconductor soon.

1.2.12 flowCore-flowStats

Introduction: We applied existing BioConductor packages for flow cytometry data analy-
sis to gate and analyze an intracellular cytokine staining assay of T-cells from HIV-vaccinated
individuals, (challenge three of FlowCAP II). The goals of the challenge were two-fold: a)
predict the antigen stimulation group of each sample, b) identify whether the CD4 and CD8
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T-cell subpopulations for each subject were responders or non-responders to each stimula-
tion. Our approach builds upon the hierarchical gating that is typically performed manually,
however we performed data–driven automated gating rather than manual gating of each sam-
ple.

Feature Extraction Method: Using the flowStats and flowCore packages, we applied
a knowledge-driven gating approach (hierarchical gating using a known hierarchy) and a new
sequential normalization strategy by alternately gating and normalizing subpopulations to
identify cytokine-positive, CD4 and CD8 T-cells in each sample. Normalization allowed
us to use a common set of gates for each subject across stimulations, whereas cytokines
were gated in a sample-specific manner to account for variation in the peak width of the
cytokine-negative population. For the classification challenge, the negative control was used
to compute the background adjusted proportion of cytokine positive cells for each subject.
The extracted features were the proportions of cytokine positive CD4 and CD8 T–cells (i.e.
the leaf nodes in the gating hierarchy) for each subject. Since the populations for each sample
are defined through a common gating hierarchy, automated population matching was not
required for our approach.

Classification Method: We applied a decision tree classifier (Weka), trained on the the
subject–paired marginal cytokine features (i.e CD4 or CD8 T–cells marginally positive for
each cytokine, paired by subject) to distinguish between antigen stimulations, under 10-fold
cross validation.

Implementation: The software packages (flowCore and flowStats) used to implement
our gating strategy are implemented in R and C, and are available in Bioconductor.

• flowCore: http://bioconductor.org/packages/2.10/bioc/html/flowCore.html

• flowStats: http://bioconductor.org/packages/2.10/bioc/html/flowStats.html

The R scripts for reproduction of the results are available as supplementary information in
FlowCAP-II/Attachments/flowCore-flowStats.

1.2.13 flowPeakssvm and Kmeanssvm

Introduction: K-means algorithm was proposed more than 50 years ago and is still one of
the most widely used algorithms for clustering [39]. K-means has been served very well in the
data compression technique such as vector quantization widely used in signal processing. In
the application of the sample classification for the FlowCAP II challenges, we used K-means
with a large K (maybe much greater than the actual number of clusters) to prototype the
data, the determination of the exact cluster number K is not as crucial as in the traditional
clustering so we fix it to be 300. We have applied the K-means algorithm incorporating
the following two techniques to achieve better separation of the K-means clusters and faster
computation: i) the seeds of the K-means algorithm are generated by the kmeans++ [40];
ii) the algorithm is implemented by using k-d tree [41] to speed up computation.

The K-means algorithm is good for prototyping the data, but may not be a good choice to
reveal the data clustering structure. We have developed algorithm flowPeaks [42] to address
this issue. The flowPeaks combines the clusters of the K-means into a larger cluster based
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on the local peaks of the density function, where the density function is a Gaussian finite
mixture model using the summarized data of each K-means cluster.

Feature extraction: To reduce the data complexity, we initially apply the K-means
with a large K (for this challenge, K is fixed to 300) and flowPeaks to partition the cells in
the training data into many clusters. The proportions of all clusters are computed and these
proportions form the feature space for machine learning. Classification method: To build
a classifier, we used the support vector machine (SVM) due to its ability to handle high
dimensional data, in which many variables can be correlated. When using the proportions
for the SVM input, we filter out the clusters that do not change much between the two groups
either by the magnitude or by a two sample t-test. We have used the SMO algorithm [43]
implemented at WEKA [44] to train the SVM machine. The performance of this machine
learning technique has been assessed by the cross-validation accuracy on the training data
only. The final prediction of the testing data is based on the SVM machine that is optimized
by SMO by using all training data. Implementation: The K-means and flowPeaks are
implemented initially in C++, and later packed into the R package flowPeaks. The SVM is
computed using WEKA implementation.

The combination of K-means and SVM works quite well for Challenge 3 with between
zero and two cross-validate errors out of 54. For Challenge 2, flowPeaks and SVM gives a
slightly better cross-validation accuracy than using the plain K-means algorithm. None of
the two approaches can give reasonable cross-validation accuracy for Challenge 1. In the end,
we submitted K-means and SVM for Challenge 3, and flowPeaks and SVM for Challenge 2.

Specific steps for the AML challenge:

1. For each of the 8 tubes, we collect a dataset that contains all cells from “normal”
patients and another dataset that contains all cells from “aml” patients.

2. For the 16 datasets (8 tubes x 2 disease conditions), we applied flowPeaks algorithm
to do automatic clustering after the FS and SS channels have been removed.

3. For each original CSV file, find out the corresponding tube number, and then compute
the proportions using the flowPeaks clustering from step 2. Note that two proportion
vectors are computed, one for “aml” and the other for “normal”, even though the CSV
file itself may be associated with just “aml” or with just “normal”.

4. For each patient (“aml” or “normal” or “NA”), concatenate all of the two proportion
vectors of the 8 tubes together to form a long vector.

5. We filter out the element of the long vector (formed from step 4) where the proportion
changes less than 0.1% or the p-value for the two sample t-test is greater than 0.5
between the two groups of patients. A support vector machine (SVM) with a linear
kernel and scale normalization is used to build a classifier, which is used to predict the
NA labeled patients. The parameters of the SVM are optimized by SMO.

Specific steps for the HVTN challenge:

1. For each CSV file that is associated with one of the two antigens (ENV-1-PTEG and
GAG- 1-PTEG), cells are randomly picked and combined into a single dataset of 270K
cells.
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2. A K-means algorithm with K=300 is carried out on these 270K cells after the FSC-A
and FSC-H and SSA channels have been removed.

3. For each original CSV file that is associated with one of the two antigens (ENV-1-
PTEG and GAG-1-PTEG) or NA, we have computed the proportion of the cells that
are classified to one of the 300 centers from the K-means.

4. Since each sample in the training data (antigen is labeled with ENV-1-PTEG and
GAG-1- PTEG) and testing data (antigen is labeled with NA) has two antigens, the
proportion has been normalized by subtracting the average proportion for the two
antigens.

5. We filter out the cluster where the proportion changes less than 0.1% or the p-value
for the two sample t-test is greater than 0.5 between the two antigens. A support
vector machine (SVM) with a linear kernel and scale normalization is used to build
a classifier, which is used to predict the NA labeled antigens. The parameters of the
SVM are optimized by SMO.

Availability: The source code for the R package flowPeaks is available at https://github.
com/yongchao/flowPeaks and at http://www.bioconductor.org/. The flowPeaks algo-
rithm has been recently published in Bioinformatics [42].

1.2.14 flowType and flowType FeaLect

Introduction: Multi-dimensional cell population identification (using clustering algo-
rithms) for exploratory analysis of FCM data is associated with several complications. First,
the cell populations need to be matched to each other across multiple samples. This pro-
cess has proven to be subjective, often requiring input from human experts. Second, this
approach ignores the hierarchical nature the cell populations by assuming that every cell
belongs to only one cell population. However, in presence of a larger number of mark-
ers, cell populations should be allowed to overlap and the computational model should be
able to explore the exclusion of certain markers to determine if they are clinically relevant.
Third, these algorithms cannot incorporate the background knowledge of human experts to
guide the identification of rare cell populations that cannot be automatically identified. We
have developed two computational pipelines for extracting a large number of overlapping im-
munophenotypes and for feature (immunophenotype) selection using a small training cohort.
We have submitted two sets of results for challenges 1, 2, and 3:

Feature Extraction (flowType): This pipeline uses the flowMeans algorithm for cell
population identification [17]. Briefly, flowMeans identifies a large number of clusters in the
data and merges them based on the Mahalanobis distance between them until the desired
number of clusters is reached. For each of the markers in a given dataset, flowMeans was used
to identify a partition that divides the cells into a positive and a negative population. This is
based on the assumption that the cells either express a given marker or not (i.e., there are two
distinct cell populations). For N markers this results in 2N phenotypes. To allow exclusion
of markers from population identification (which later enabled us to identify the important
markers), each marker was also allowed to be neutral (i.e., that marker was excluded from the
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clustering); thus, for any single subset, each marker could be negative, positive, or neutral
(ignored). This increases the number of cell populations to 3N . These phenotypes are then
evaluated using ROC analysis, t-test with Bonferroni correction, and bootstrapping-based
sensitivity analysis. These tests result in a hit list of ”statistically significant” features (with
the exception of the HEUvsUE challenge were non of the phenotypes remained significant
after p-value correction). These phenotypes are then divided to several groups, based on the
Pearson correlation between them and the markers required for defining the phenotypes in
each group are identified. The final representative phenotype with maximum area under the
ROC on the training set is used to label the samples in the test set.

Classification (FeaLect): This pipeline builds a multivariate model using the pheno-
types measures by flowType. FeaLect is specifically designed for cases in which the number
of features is several orders of magnitute higher than the size of the training set. A bagging
technique is used to score the features for the linear classifier. Robustness of the model is
measured by both cross-validation and holdout-validation on the training-set. The model is
then used to label the samples in the test-set.

Implementation: flowType and RchyOptimyx are available as a cross-platform R pack-
age and have been tested on Linux, MacOS X, and MS Windows.

Availability: More detailed descriptions of the pipelines are available elsewhere [45,46].
The R packages are available through Bioconductor and CRAN:

• flowType: http://www.bioconductor.org/packages/devel/bioc/html/flowType.

html

• FeaLect: http://cran.r-project.org/web/packages/FeaLect/index.html

1.2.15 jkjg

Introduction: We solve the classification problem based on the following assumptions:

• Each experiment (tube) is an independent indication if this patient suffers from AML
or not

• For each cell in a tube we may independently decide if this cell is infected or not

• The number of cells classified as infected differs substantially between patients suffering
from AML and healthy patients

Feature Extraction Method: Following these assumptions we take a step-wise ap-
proach:

1. We build a classifier that returns the probability that a specific cell from a specific
tube is infected or not. Such a classifier is learned for each kind of tube (that means
each selection of markers) independently, where the measurements of all cells of AML
patients are used as foreground (positive) and the measurements of all cells of healthy
patients are used as background (negative). The log-values of the measurements are
modeled by normal distributions and the parameters are learned by the maximum
conditional likelihood principle.
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2. For each patient, we compute the fraction of cells in a tube classified as infected. For
each patient we obtain a series of 8 such fractions, one for each tube.

3. We create another classifier working on these 8 values using a logistic regression and
learn its parameters by the maximum supervised posterior principle based on the la-
beling of patients. The output of this classifier is the final prediction.

This approach can be summarized by the following pseudo code:

For each tube do

1.Load the measurements for each cell in this tube;

2.Compute log-values for all measurements;

3.Create a sample based on the log-values of the individual cells and label all cell

stemming from AML patients as foreground class and all cells from healthy

patients as background class;

4.Create a classifier based on 7 independent normal distributions, corresponding

to the measurements for the two scatter and five antibody measurements, for the

foreground and background class each;

5.Estimate the parameters of the classifier (i.e., means and standard deviations)

from this sample using the maximum conditional likelihood (MCL) learning

principle.

6.Classify the log-measurements of all cells of a patient and compute the fraction

of cells (later denoted as patient posterior) with a probability P(AML | cell) > 0.5;

Done;

For each patient do

Create a sequence of the 8 patient posteriors;

Done;

Create a sample from these sequences with labels according to the patient’s state

of health; Create a classifier based on logistic regression;

Estimate the parameters of the classifier from this sample using the maximum

supervised posterior (MSP) learning principle and a product normal prior with

standard deviation 1;

Classification Method:
For the predictions for the unlabeled data, we use the trained classifiers and follow the protocol

as before:

• Classify each cell in each tube

• Compute the fraction of cells classified as infected

• Finally, use the classifier based on logistic regression to obtain the final prediction based on
this sequence of patient posteriors.

This approach can be summarized by the following pseudo code:
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For each tube do

Load the measurements for each cell in this tube;

Compute log-values for all measurements;

Create a sample based on the log-values of the individual cells;

Classify the log-measurements of all cells of a patient using the previously

trained classifier for this tube and compute the fraction of

cells (later denoted as patient posterior) with a probability P(AML | cell) > 0.5;

Done;

For each patient do

Create a sequence of the 8 patient posteriors;

Done;

Implementation: The approach is implemented platform independently in Java based on
the Jstacs library.

Availability: Jstacs, a Java framework for statistical analysis and classification of biological
sequences, can be downloaded at http://www.jstacs.de [Grau et al., 2012, JMLR]. The software
can be downloaded at http://www.jstacs.de/index.php/FlowCap.

1.2.16 PBSC (Population-Based Sample Classification)

Introduction: PBSC classifies sample/subject groups based on characteristics of cell popula-
tions. Compared with approaches that do not identify cell populations but directly classify sam-
ples/subjects, PBSC provides straightforward biological interpretation. Any population identi-
fication method can be used with PBSC to form a classificatin pipeline. Based on population
characteristics identified by the population identificatin method, we model the similarity between
populations across different samples using F-measure-based relative distance model. Population
shifts between different samples are quantified for accurate mapping. PBSC is general and can be
combined with other existing automated population identification and mapping methods.

Feature Extraction Method: In PBSC, the most important feature to distinguish subject/sample
groups is their population proportions. Populations are first identified and their proportions are
calculated. Then T-test p-values are calculated across subject groups to identify key populations
that change significantly between subject/sample groups. The key populations together with p-
values are output as features for classification.

Classification Method: In PBSC, the first step of classifying a new sample/subject is identi-
fying its cell populations and mapping them to those of the ssample/subject groups, which can
be done with existing population identification and mapping methods (e.g., FLOCK used in our
experiments). As the feature extraction method has identified the key populations that distinguish
different sample/subject groups, a nearest neighbor classification decides which sample/subject
group the new sample/subject belongs to, based on the proportions of its key populations.

Implementation: Population mapping and comparison across samples is written in C.T-test
p-values are calculated within MS Excel.

Availability: Source code of PBSC can be downloaded from: http://immportflock.

sourceforge.net/.

1.2.17 PRAMS

Introduction: Th PRAMS method uses an automated extension of the Density Based Merging
(DBM) Algorithm [47] to first identify clusters, calculates each cluster’s density on a per-sample
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basis, and then uses L1-penalized logistic regression to build a classifier for predicting sample class.
It has the advantage of using pairwise projections of the data to automatically identify clusters,
thus enabling each automatically identified population to be easily re-identified by manual gating.

Method Description: All sample data is first combined into a single aggregate data file.
Next, clusters of cells are identified by first projecting data in all pairwise sets of dimensions
and then using DBM to identify single pair of dimensions that contains the highest confidence
cluster. Cells from each identified cluster are again then projected into all pairwise dimensions
to identify the next most informative set of dimensions. This process is recursively repeated
until no new clusters are found. The number of cells in each cluster is then computed on a
per-sample basis and these features are used to train an L1-penalized logistic regression classifier.
Cross validation is used to select the optimal regularization constraint which is used to constrain
the final classification model. This model was then used to predict the labels of each test-set sample.

Implementation: Clustering is performed using a Matlab-implementation of DBM. All
feature extraction and classification is performed in R.

Software Availability: PRAMS software is available on the Nolan Lab Github website:
https://github.com/nolanlab/flowcap2

1.2.18 Pram Spheres, CIHC, & Random Spheres

Introduction: Our approach was focused at providing good classification, thus we have effectively
dropped the gating step. Instead of looking for cell populations first and then at the event density
differences inside them, we have been directly looking for regions that are useful for classification.
Precisely, we have been automatically creating large amounts of small gates covering interesting
regions and combining their predictions using various ensemble schemes to provide accurate and
non-overfitted classifiers. To this end we have employed the perambulating spheres algorithm which
is using genetic algorithm to build those gates and the gradient boosting scheme to assemble them
into a final model.

Feature Extraction Method: The core of our approach is the idea of describing the density
of events on the descriptor space by its fuzzy overlap with a N -dimensional spherical Gaussian
density distribution described with its centre ~ξ and radius r. The overlap is given by

k(E, ~ξ, r) :=
1∑

~x∈E 1

∑
~x∈E

e
||~x−~ξ||2

r2 ,

where E is a set of events ~xi. Thus, such sphere alone could be perceived as a simple learner
which, for some event set, returns a score the higher the bigger probability it is that this event
set has a certain decision. We have used a genetic algorithm to find spheres for which the values
of overlap correlate best with the decision. Due to our simultaneous participation in DREAM5,
for the challenge 2 we have employed an earlier, simpler variant of this method, Random Spheres,
in which the overlap between the spheres and the event density was treated in a crisp way, i.e.
without gaussian membership weight:

k(E, ~ξ, r) :=
1∑

~x∈E 1

∑
~x∈E

{
1 for ||~x− ~ξ|| < r

0 otherwise
.

Classification Method: Unfortunately the accuracy of the optimised sphere is not satisfying
and the process is prone to overfitting. Thus, we employ a simple stochastic gradient boosting
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with shrinkage [48] to combine several spheres build on a different subsets of the training set and
on residuals of a previous sphere’s predictions as a decision. To be able to reasonably combine
predictions of spheres within ensemble, we have been using simple, OLS linear model to rescale the
spheres’ predictions to the range of current pseudoresiduals.

Implementation: Our method is implemented as an R package and does not depend on any
other software.

This is the pseudocode of the full algorithm. N denotes the dimensionality of the descriptor
space, Ns number of samples, Ng number of genetic algorithm generations, σ is the shrinkage
parameter and δ is the depth of boosts.

Prediction with a single sphere:

← Ei {event set for some sample i}
← ~ξ, r {sphere}
for i← 1 to Ns do
di ← k(Ei, ~ξ, r)

end for
return di

Building a sphere:

← Ei {event set for each sample i}
← di {decision for each sample i}
E ←

⋃
iEi

{Initial population}
for j ← 1 to 100 do
~ξj ← random element of E
rj ← random number from U(0.05, 0.5)

end for
{Evolution}
for k ← 1 to Ng do

for j ← 1 to 100 do
Sj ←Correlation(predict with sphere(Ei, ~ξj , rj), di)

end for
Sort ~ξj and rj in order of decreasing Sj
{Leave the best sphere untouched, . . . }
j ← 2
{. . . mutate top-20 with certain repetitions, . . . }
~ξ∗j ← ~ξj
for l in {1− 10, 1− 10, 1− 9, 1− 20} do
~ξj ← ~ξ∗l + vector of N random numbers from N(0, 0.05)
if random number from U(0, 1) > 0.7 then
rj ←random number from U(0.05, 0.5)

end if
j ← j + 1

end for
{. . . finally replace the rest of spheres with new random ones}
for j ← j to 100 do
ξj ← random element of E
rj ← random number from U(0.05, 0.5)

end for

40
Nature Methods: doi:10.1038/nmeth.2365



end for
return ~ξ1, r1

Training:

← Ei {event sets for each sample i}
← di {decision for each sample i}
for j ← 1 to δ do
~b← random subsample of 2

3 of elements of {1, . . . , Ns}, with the same proportion of classes
~ξj , rj ← build sphere(E~b

, d~b)

aj , bj ← coefficients of a simple linear model fitted to d~b ∼predict with sphere(E~b
, ~ξj , rj)

di ← di − (1− σ)× (aj×predict with sphere(Ei, ~ξj , rj) + bj)
end for
return ~ξj , rj , aj , bj

Prediction:

← Ei {event sets for each sample i}
← ~ξj , rj , aj , bj {boosting ensemble of spheres}
di ← 0
for j ← 1 to δ do
di ← di + (1− σ)× (aj×predict with sphere(Ei, ~ξj , rj) + bj)

end for
return di

The selection of the hyperparameters of this algorithm (Ng, σ and δ) depends on the problem; the
reasonable default values are Ng = 20, σ = 0.5 and δ = 10.

The correlation function is a simple Pearson correlation coefficient when we want to find some
specific state among ‘normal’ samples (as in challenge 1 and 2) and an absolute value of it when
we want to distinguish two different states (as in challenge 3a).

As usual with stochastic learners, the performance of a single sphere boost is quite variable.
To cope with that, and also further increase the accuracy, we have imposed yet another level of
ensemble learning. Namely, we have been building the learners in a 64-fold bagging loop, i.e. on M
random subsamples of the training set, each containing 2

3s of samples selected in a way to retain
the class proportions.

In all challenges we have calculated a simple median of all predictions from all bagging iterations
and used it as the final score. While in both challenges we knew how many samples in the test set
should have which class, we have just ordered the samples in order of their scores and label them
accordingly to satisfy the count constrain.

Availability: Our tool is available from the following URL: http://bioinfo.icm.edu.pl/
pramSpheres.tar.gz.

1.2.19 BCB and SPADE

Introduction: Flow cytometry and the next-generation mass cytometry technologies capture the
heterogeneity of biological systems by providing multiparametric measurements of single cells. Even
as cytometry technology is rapidly advancing, methods for analyzing this complex data lag behind.
Especially that the advent of mass cytometry (CyTOF) is quickly increasing the dimensionality of
the data to 30+, making the traditional analysis approaches a critical bottleneck. To objectively
explore the richness of such high-dimensional single-cell data, new computational methods are
needed.
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We developed a novel analytical approach, Spanning-tree Progression Analysis of Density- nor-
malized Events (SPADE), to explore high-dimensional cytometry data in a robust and unsupervised
manner, and reveal a likely underlying cellular hierarchy [Qiu, et al, Nature Biotechnology, 2011].
Briefly, SPADE views a cytometry dataset as a high-dimensional point cloud of cells, and uses
topological methods to reveal the geometry of the cloud. To solve the challenges in FlowCAP2,
we coupled SPADE with the Earth Mover’s Distance (EMD) and the Relief classifier, which is a
nearest neighbor classification algorithm.

Feature Extraction Method used for AML prediction:

1. Initial inspection of the CSV data: Look at the mean and variance of each channel
across all files, and determine whether normalization is needed. The conclusion was: the
FSC channel needs to be normalized to mean=0, std=0.1; the other channels do not need
normalization.

2. Divide the data into 7 sets, and analyze them separately: Since there are 7 staining
panels with minimal overlapping, a joint analysis is probably not the best idea. Therefore,
the data of all 359 samples were divided into 7 subsets. Each subset contained the CSV files
for 359 samples, one staining panel. The 8th panel (iso) was not used for subsequent analysis.

3. SPADE analysis of each of the 7 subsets separately: SPADE stand for Spanning-tree
Progression Analysis of Density-normalized Events. This is a new approach for analyzing flow
cytometry data, and is published in Nature Biotechnology in 2011. Briefly, SPADE views a
flow cytometry dataset as a cloud of cells, and derives a tree structure to represent the shape
of the cloud. Each node can be viewed as a mini-gate. The tree connecting the gates may
reveal the underlying cellular hierarchy. For one of the 7 subsets, we perform the following:
(1) downsample the FCS file of each sample, reduce the number of cells; (2) pooled the data
of all 359 samples together, obtaining a big FCS file that represents the union of all samples;
(3) perform agglomerative clustering; (4) construct a minimum spanning tree to represent
the linkage among the clusters; (5) for each of the 359 samples, calculate the percentage of
cells in each cluster.

4. Extracted feature: After the above steps, we obtained 359 distributions (how cells in each
sample distribute across the tree). This cellular distribution can be viewed as a characteristic
of each sample.

Classification Method used for AML prediction:

1. Classification using EMD and NN: We use the cellular distributions, the tree structure,
and the Earth Mover Distance (EMD) to define distances / dissimilarities between each pair
of samples. For each testing sample, we calculate the difference between its distance to its
nearest normal sample and its distance to its nearest normal sample. The difference between
the above two distances is compared with 0, in order to make a decision whether this testing
sample is normal or aml.

2. Result summary: We performed 3 and 4 for each of the seven datasets (corresponding
to the seven signal tubes). Therefore, we have seven classifiers, and a total of seven sets of
prediction results, one from each classifier. It turned out that the prediction results of the
seven classifiers are highly consistent, meaning that the seven classifiers gave similar answers.
Their consensus was the basis of our final prediction.
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Method used for the HVTN stimulation prediction:

1. Initial inspection of the raw fcs: Look at the mean and variance of each channel across
all files, and determine whether normalization is needed. We chose to use hyperbolic inverse
sine transformation, with co-factor = 100.

2. SPADE analysis of 96 files jointly: For this challenge, we jointly analyzed the data
of 96 files [(24 training + 24 testing) * 2 stimulations]. We performed the following: (1)
downsample the FCS file of each of the 96 samples, reduce the number of cells; (2) pool the
data of all 96 samples together, obtain a big FCS file that represents the union of all samples;
(3) perform agglomerative clustering; (4) construct a minimum spanning tree to represent
the linkage among the clusters; (5) for each of the 96 samples, calculate the percentage of
cells in each cluster. After the above steps, we obtained 96 distributions (how cells in each
sample distribute across the tree). This cellular distribution can be viewed as a characteristic
of each sample.

3. Classification using PCA: For each of the 96 sample, we subtract its cellular distribution
by its paired sample (same sample has two stims). We observed that (ENV-1-PTEG minus
GAG-1-PTEG) and (GAG-1-PTEG minus ENV-1-PTEG) of the training samples formed
two distinct patterns in PCA space. This was the basis for our classification analysis.

Implementation: SPADE was originally developed and implemented in Matlab. An enhance
versiond, SPADE2 was used to perform the analysis described above. Compared with the original
version, SPADE2 is 20 times faster and has interactive graphical user interface. SPADE has also
been re-implemented efficiently in R and Cytoscape.

Availability: Details of the SPADE algorithm is described in Qiu, et al, Nature Biotechnol-
ogy, 2011. The Matlab source-code of SPADE is available at FlowCAP-II/Attachments/SPADE.
The Matlab-based implementation, SPADE2, is available at http://odin.mdacc.tmc.edu/~pqiu/
software/SPADE2/index.html. The R/Cytoscape version of SPADE is named CytoSPADE and
is available at http://cytospade.org/.

1.2.20 SPCA+GLM

Introduction: The given data pertain to study of an immunological disease, namely leukemia.
Measurements from single cell level were taken for 179 individuals of which 23 were AML patients.
Flow-cytometry technique was used to study the samples. Further description of the original data
can be found above.

We have implemented a combination of supervised principal component analysis (SPCA) and
generalized linear model (GLM) as framework for building the predictive model. Since the objective
is to be able to predict successfully the disease status of new sample, model assessment was carried
out based on 4-fold cross validation. While use of SPCA and/or GLM is not novel however in
numerous occasions we have noticed inappropriate or careless use of these techniques for building
predictive model. Thus in every level of model building and prediction caution was taken to ensure
stability of the learning samples across folds, we ensured against leakage of information from test
set, numerical accuracy as much as computationally feasible , etc.

Feature Extraction Method: Furthermore the challenge in this particular data was to
derive useful predictor variables to be used for model building. It was noticed that a varied number
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of observations were measured for each subject from each tube with minimum of 9252 to a maximum
of 29920 observations for any single subject from any tube. The average number of observations for
any individual did not seem to be affected by the disease status. Thus, instead of depending on
actual number of observations from an individual, percent frequencies of different attributes were
used. Note that seven types of features from each of the eight tubes together yielded 56 types of
measurements for any single individual. Using the sample percentiles (over all individuals) as bins
for each feature we derived estimate of marginal distributions of these attributes and computed
percent frequency of observations for each bin (for each feature of each subject). Although initially
11 percentiles for the 56 features were used, some appeared redundant and altogether 519 such
bin-based frequencies were used as (summary) covariate for each individual.

Classification Method: Feature selection: Noting that we have data on 179 individuals and
in fact for the 4-fold validation described above we would have approximately only 135 subjects
as learning set within a fold, it was essential to carry our variable selection. As mentioned earlier
supervised principal component method would be used for this purpose. For the supervised part
noting that response is binary while predictors are continuous we chose the following measure to
ascertain usefulness of a predictor for the response variable (i.e. disease status).

For each fold we computed the means for normal and AML subject for each of the 519 covari-
ates. Higher difference in the absolute mean difference would indicate usefulness of a covariate to
distinguish between the normal and AML subjects. In subsequent discussion we would refer to
these measurements as abs-MDF (absolute mean difference). Note that abs-MDFs were calculated
for each fold-specific learning set. Different (percentile based) cut-offs on the 519 abs-MDF values
were used select top covariates into the model. Thus different learning sets could very well use
different sets of top covariates for same cut-off value.

Further dimension reduction was by Principal component analyses on the selected covariates for
each such cut-off on the abs-MDF measurements. Once again PCAs were carried out for different
fold specific learning sets. The corresponding rotation matrix was used to the remaining subjects
for that fold which are used to assess out-of sample prediction quality.

Classification: The principal components thus obtained were used as regressors into logistic
regression models. For each cut-off on abs-MDF varied numbers of principal components were used
in the regression model to determine the optimal choice of cut-off and optimal number of principal
components to be used to generate best predictive results. Altogether 22 different choices of cut-
offs on abs-MDF were used and for each cutoff 35 different choices of (number of top) principal
components were considered, giving rise to 770 possible model choices attempted.

In this exercise it appears several choices provide comparable results. We chose top 40% covari-
ates of the 519 covariates. As mentioned before the set of these top covariates would be fold-specific.
For the corresponding covariate matrix first 55 principal components were then used in the logistic
model.

Implementation and availability: The code for prediction is available in R and does
not require any specific libraries and is available upon request. However the method of feature
extraction was carried out partly in R and partly in it Excel (manually) thus as yet not readily
available to be implemented elsewhere.

1.2.21 SWIFT

Introduction: Variability in clustering poses a challenge for further analysis of samples based on
features derived from clustering. To effectively exploit SWIFT in the supervised learning tasks in-
volved in FlowCap II, a SWIFT-based (see FlowCAP 1 for a description) co-clustering methodology
was adopted to overcome the hurdle posed by variability in clustering.
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Method: SWIFT (see FlowCAP-I for a description) was used to cluster a concatenate of
training samples. The output mixture model representation provided by SWIFT was then used
to perform assignment of events in training and test samples to clusters. The cluster membership
counts, i.e. the numbers of events per cluster in the sample, were then utilized as features in a
standard supervised classification framework utilizing a support vector machine (SVM). The SVM
was trained using the known sample labels for the training samples and the resulting trained SVM
was used to classify the test samples, in both cases using the cluster assignment counts as features.

Implementation: SWIFT is implemented in Matlab and uses the Matlab Statistics Toolbox.
The SVM based classifier was also implemented using the SVM toolbox in Matlab.

Availability: See FlowCAP 1 description of SWIFT.

1.2.22 team21

Introduction: The approach uses relative entropies to evaluate if the distribution of the values
of flow cytometry data for a given individual is closer to the overall distribution for AML or for
Normal individuals in the space of values Γ.

Feature Extraction Method: Entropies are computed for Γ=(”FS Log”, ”SS Log”, ”FL3
Log”, j) with j ∈ {”FL1 Log”,”FL2 Log”, ”FL4 Log”,”FL5 Log”} for Tube k ∈ {1,2,3,4,5,6,7}.
The total relative entropy difference for individual i, ∆Si =

∑
j,k ∆Si,j,k, is defined as the sum of

all the contributions.
Classification Method: The relative entropy with respect to AML minus that with respect

to Normal individuals indicates that the individual looks like an AML patient for positive values
and like a Normal subject for negative values.

Implementation: The algorithm is implemented in python using standard libraries.
Availability: The details of the approach, the source code, and the instructions to execute the

code are available at: http://www.ehu.es/biologiacomputacional/team21_vilar
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2 Supplementary Note 2: Refined Manual Gates

2.1 Problems with Manual Gating as a Gold Standard

A surprising aspect of the FlowCAP results is the variability that individual algorithms exhibited
across challenges in some cases. As an example, the flowClust/flowMerge algorithm performed
poorly in Challenges 1 and 2 across nearly all data sets, while performing quite well in Challenge
4, even though the participants did not train their algorithm for Challenge 4. For Challenges 1
and 2, flowClust/flowMerge was applied sequentially, first to the scatter dimensions, and then to
the fluorescence dimensions for each population identified in the scatter channels. However, for
Challenge 4 the FSC/SSC dimensions were excluded from prediction algorithm, since it was clear
from the training data that they were not used for manual gating. Consequently, the difference
in F-measure for flowClust/flowMerge between Challenges 1 and 4 was due to the inclusion or
exclusion of the scatter channels in automated gating.

Closer examination of the data showed that the FSC/SSC channels contained structure that
was not captured by the manual gates (data not shown). When we examined the output of the flow-
Clust/flowMerge algorithm, we found that 1: it captured the structure of the data in FSS/SSC, and
2: it found sub-clusters within each FSC/SSC population based on the fluorescence markers (data
not shown). To further investigate this, we computed the F-measure for the flowClust/flowMerge
algorithm conditional on the FSC/SSC subpopulation. That is to say, for each FSC/SSC subpopu-
lation, we computed the F-measure with respect to the same subset of cells using the manual gate
assignments. We repeated this analysis across all samples and data sets for which manual gates
were available in the original FlowCAP data (15 samples in all, 3 per data set). We found that
conditioning on the FSC/SSC populations significantly improved the F-measure for the algorithm
(paired t-test, ∆µ = 0.167 p = 9.5 × 10−5 vs manual gating and ∆µ = 0.152 p = 2.1 × 10−5 vs
flowMeans.

These results indicate that flowMeans, manual gating, and flowClust/Merge agree extremely
well on some subpopulations of cells defined in the FSC/SSC dimensions. However, incomplete
manual gating combined with a global cluster agreement statistic penalized the flowClust/flowMerge
F-measure due to increased cluster heterogeneity in the manually defined (but arguably erroneous)
clusters. Note that this effect is likely not restricted to the flowClust/flowMerge algorithm, but the
two-stage gating approach undertaken in Challenges 1 and 2 by the flowClust/flowMerge authors
probably exacerbated this anomaly.

These findings highlight the problem of using unsupervised manual gating as the reference for F-
measure determination. In addition to problems associated with the subjective, non-deterministic
nature of manual gating, the subject matter experts who provided the manual gating results did
not attempt to identify all cell populations apparent in their datasets (exhaustive gating). As is
often the case, experimentalist often focus on a subset of cells based on their underlying hypothesis
or physiological process of interest, essentially ignoring other structures in their data. However,
the automated algorithms were design to provide a complete dissection of the population structure
in a given dataset. Therefore, in some cases relatively low F-measure values are not an indication
of poor algorithm performance, but rather problems associated with incomplete manual gating.
We tried to further investigate this issue by analyzing additional manual gates produced by eight
independent experts who were instructured to identify all cell populations discernible from the
available data (exhaustive gating).
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2.2 Additional Manual Gates

2.2.1 Instructions for Manual Gaters

These instructions explain how we guided manual gating by multiple operators to achieve ”good
current practice” gating, without providing too much guidance that might make the manual gates
artificially consistent.

Technical notes:
There are 30 fcs files located in the StemCell directory, and 12 fcs files located in the GvHD

directory. FlowJo version 9.3-9.4 or higher is recommended for analysis. Adjust Flowjo settings
so that all parameters FSC, SSC and the fluorescence parameters display as linear (the data has
already been transformed).

Strategy:
To compare automated algorithms with the current practice of manual gating, we established

a set of guidelines that were given to eight experienced flow cytometrists, who then constructed
manual gates for all discernible populations (a.k.a. exhaustive gating) without further discussion
between them. The design of this manual gating process is intended to produce good-quality and
reasonably consistent manual gates by minimizing some sources of variation such as 1) including
all or almost all data events and 2) avoiding overlapping gates. Subjective decisions regarding the
number of populations and the cutoffs between populations were left to the individual operators to
reflect current practice.

Guidelines:

1. If samples have been pre-gated for FSC and SSC, i.e. the Hematopoietic Stem Cell Transplant
data (HSCT), these parameters do not need to be used for further gating. In the case of the
GvHD data, draw as many gates as needed to logically define distinct populations in the FSC
and SSC dimensions. These gates can be applied to all samples if desired. Some individual
gate adjustment may be needed in some samples to achieve clean population separation. It
is possible that not all populations are present in all the samples.

2. Using either the whole population (HSCT) or each FSC vs SSC-defined population (GvHD),
examine 2D plots of all possible pairs of parameters (FL1vs2, 1vs3, 1vs4, 2vs3, 2vs4, 3vs4)
and choose one plot for the further gating. Use whatever gating strategy that allows you
to clearly capture every distinct cell population observed in that 2D plot. The end goal is
to separate all populations that exist in this 2D plot, being as inclusive as possible so that
few if any cells are unassigned to any population. No event should be included in more than
one of the gated populations. This process should be repeated for each of the FSC vs SSC
populations.

Decision required: For some samples the values of some parameters may be artificially as-
signed to the first data bin and may appear along the axis of the plot. These points may
appear to be part of a negative population, i.e. continuous with the ’low’ cells, or they may
appear to represent a separate population. You should use your best judgment to decide
whether to gate on these zero value events as distinct populations or not.

Decision required: Ellipsoid, rectangular, quadrant, spider or polygon gates may be used,
as appropriate. Quadrant and spider gates have the advantage that all cells are included,
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whereas polygons provide the greatest opportunity to match the gate shape to the popula-
tion. If quadrants or spiders are used, include only those quadrants that contain significant
populations, i.e. not all possible populations may exist.

3. Plot each gated population from step 2 on the other two fluorescent parameters, and draw
more gates to encompass all populations that appear to be distinct. The end goal is to
separate all populations that exist in the data, being as inclusive as possible so that few if
any cells are unassigned to any population. No event should be included in more than one
of the final gated populations.

4. When you are satisfied with your results, save your workspace as an xml file (File
Save as XML) and send to Nima Aghaeepour at naghaeep@bccrc.ca. Please use the 9.x mac
version of flowjo and save your workspaces as version 2 XMLs. Come up with a consistent
format for labeling your gates and provide an excel spreadsheet of the labels that correspond
to the gates that should be included in the analysis (i.e., the final cell populations). For
questions regarding the data format or if you dont have access to flowjo, please contact
FlowCAPs organizing committee.
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3 Supplementary Note 3: Independent Analysis of the

AML Dataset by the DREAM Initiative

The participants to the DREAM6/FlowCAP-II challenge were required to submit a list of subjects
ordered according to the confidence assigned to the subject being affected with AML. That allowed
us to compute more metrics than the ones used in the other FlowCAP challenges and assign an
order to the teams that had perfect classification. We received 17 predictions, 8 of them achieved
perfect classification. The lowest precision and recall were 0.80. We scored participants using the
average of 4 metrics: Precision, Recall, Matthews Correlation Coefficient and Jaccard Similarity
Coefficient (Supplementary Table 2). Given that 8 teams obtained perfect score, we decided to
create an ad-hoc score given by the Pearson correlation between the confidence levels provided in
the submission and the “perfect” confidence level (1 for AML patients and 0 for healthy donors)
to further rank those 8 teams. This new metric created some interesting discussion, as archived in
the discussion group (http://www.the-dream-project.org/forum/29). This discussion reflects
the fact that there is always some arbitrariness in the choice of performance metrics.

A team’s rank is determined by the average of the following 4 metrics, which take into account
that 20 out of 180 subjects were AML positive.

• Prec: The Precision of the predictions, defined as the fraction of correct AML patients
amongst the first 20 predictions. Precision is a measure of accuracy.

• Rec: The Recall of the predictions, defined as the proportion of AML patients in the first 20
predictions out of all the AML patients in the cohort. Recall is a measure of completeness.

• MCC: The Matthews Correlation Coefficient is a measure of the quality of binary clas-
sifications. It takes into account true and false positives and negatives and is generally
regarded as a balanced measure which can be used even if the classes are of very dif-
ferent sizes. MCC is similar to the Pearson correlation coefficient in its interpretation.
MCC = TP×TN−FP×FN√

(TP+FP )×(TP+FN)×(TN+FP )×(TN+FN)

• JSC: The Jaccard Similarity Coefficient (also known as the Tanimoto coefficient) measures
similarity between two sample sets, and is defined as the size of the intersection divided by
the size of the union of the sample sets. In this case, set 1 is composed by the first 20 subjects
predicted to be affected by AML, and set 2 is composed of all the 20 AML patients.
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4 Supplementary Note 4: Post-hoc Analysis of the

HVTN Dataset

A post-hoc analysis of the ICS data was performed to compare the features selected by manual
gating against those selected by some of the automated gating methods. Specifically, one of the
algorithms flowCore-flowStats, was designed to mimic the manual gating hierarchy for this data
set (the positions of the gates were derived automatically from statistical analysis of the data).
This pipeline allowed us to make a direct comparison of the features identified by automated and
manual gating.

For the features extracted from the automated gates, we compared the paired proportions of
cytokine positive cells in the ENV and GAG stimulated samples and found that the ENV stimulated
samples had systematically higher IL2+/CD4+ proportions than the same sample stimulated with
Gag. The rule for predicting Env vs Gag was to classify the sample with the higher proportion of
IL2+/CD4+ cells as Env, and classify the other paired sample as Gag. In the training and testing
data, this rule gave perfect classification. Supplementary Figure 20 (top middle panel) shows
the difference between paired Env and Gag stimulated samples for various cytokine combinations.
CD4+/IL2+ is the only combination that discriminates perfectly between Env and Gag stimulations
(Env is always larger). When these same features were examined in the manually gated data
(Supplementary Figure 20 top left panel), we found that the Env vs Gag paired difference for the
CD4+/IL2+ population did not discriminate perfectly between stimulations but there was a trend
towards an increased IL2 response in the Env stimulated samples. In order to validate whether this
effect was caused by vaccination, we examined the placebo–treated group of samples from the same
trial and performed the same automated and manual gating analysis of that data. In the placebo–
treated group, the Env vs Gag paired difference of IL2+/CD4+ cell proportions did not discriminate
between stimulations for either automated or manual gating, suggesting that the effect was specific
to vaccination (Supplementary Figure 20 top right and left panels). Interestingly, closer post-hoc
examination of the data revealed that several of the control and stimulated samples in the data set
were matched from different experimental runs (i.e. control and stimulation samples were taken
from different plates), suggesting a possible run–specific effect. When these samples were filtered
out of the analysis, manual gating was also able to perfectly discriminate between Env and Gag
stimulated samples in the vaccinee group based on the CD4+/IL2+ population (Supplementary
Figure 20 bottom row).

Other algorithms, though not directly comparable to manual gates, also identified features with
the IL2+/CD4+ phenotype that could discriminate between Env and Gag stimulation. These
results demonstrate that automated gating can perform as well as manual gating, even exceed the
performance of manual gating in some cases, as evidenced by the ability of automated gating to
discriminate between Env and Gag stimulated samples even in the presence of specific technical bias.
Automated gating can reduce gating variability and increase statistical power to detect differences
between samples that might otherwise be missed by manual analysis. This is very important in
vaccine trials and ICS assays where effects of interest are often very small. The CD4+ specific
effect observed for the Env stimulation in the HVTN049 data is explained by the protein boost
given in the form of gp140 protein (a subunit of Env), thus eliciting an MHCII response through
CD4 T–cells.
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5 Supplementary Note 5: Future of FlowCAP Chal-

lenges

We identified several issues that remain to be addressed in future FlowCAP challenges. 1) For
sample classification, participants were asked to provide discrete outputs (class names) rather than
probabilities of each subject belonging to a particular class. This made it impossible to perform
receiver operating characteristic (ROC) analysis and potentially decreased the robustness of the
study. 2) For cell population identification, the data provided to the participants was pre-processed,
which could potentially be a source of bias. For example, in some datasets the analysis was limited
to the lymphocyte population, and other cells were manually excluded. Similarly, sometimes cell
populations identified by the manual gates were indeed several cell populations based on other
combinations of markers (an issue that in theory can be avoided through extensive back-gating).
In some cases, for consistency with manual gating, algorithms were forced to process data that was
improperly transformed. This was disadvantageous to the algorithms when, for example, artifactual
clusters of cells were introduced [49]. For example, in some cases a log-transformation was used
rather than the logicle resulting in a large number of events on the axes [49]. 3) Many of the algo-
rithms evaluated in the sample classification challenges relied on matching cell populations across
multiple samples. Several alternatives for this process have been proposed (e.g., see [9, 38,50,51]
and also the FlowCAP-II Algorithm Descriptions section of the Supplementary Information), but
the performance of population matching methods has never been compared objectively. 4) In
retrospect, the data used for the sample classification challenges appeared to be either overly chal-
lenging (HEU vs. UE) or overly simple (AML and HVTN) for the algorithms. The analysis of
these algorithms should be extended to evaluation using datasets with correlation structures that
can be more challenging for these algorithms to reveal their potential shortcomings in more details.
5) Our preliminary results (post-hoc analysis of HVTN) suggest that computational methods can
outperform humans in handling technical variation. This needs to be investigated in more detail by
providing benchmarks of cross-institutional datasets with standardized panels (e.g., those produced
by the Human Immunology Project [52]) to design computational pipelines that are more robust to
technical variation. 6) The runtimes of the cell population identification algorithms were measured
using different hardware and software environments. While this provided an estimate of the time
requirements, true direct comparison was not possible. In the sample classification challenges, the
situation was further complicated by having separate training and testing procedures that often
included visual exploration of the data by the algorithm developers. In future challenges, we intend
to address this problem by introducing standardized interfaces and data-formats between the par-
ticipating software and the evaluation pipeline so that the evaluation can be performed in a unified
hardware/software setting. In addition to providing an objective comparison of time requirements,
this will also facilitate both independent reproduction of the results and the adoption of these
pipelines in biological and clinical laboratories.
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6 Supplementary Figures
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Supplementary Figure 1: Confidence intervals of the overall F-measures for each challenge.
The top algorithm and the algorithms with overlapping CI’s (right of the dashed line) are
shown in green. The rest of the algorithms are shown in red.
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Supplementary Figure 2: Rank scores and runtimes (per CPU per sample) for each algo-
rithm/challenge. The ensemble clustering’s runtime is not included, but it would be close to
the sum of the runtimes of all other algorithms.
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Supplementary Figure 3: Rank scores of all individual algorithms (box plots) are compared
with the ensemble clustering (red dots) in each dataset/challenge.
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Supplementary Figure 4: Rank scores of all individual algorithms (box plots) are compared
with the ensemble clustering (red dots) across all challenges.
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Supplementary Figure 5: Ablation analysis results. The change in F-measure as each al-
gorithm was removed from the ensemble cluster in order of their relative contribution is
shown, with the algorithms contributing less to the ensemble results removed first. The
algorithm are listed in order of impact, from lowest to highest, on the F-measure value for
each challenge, and the respective F-measure of the combined predictions indicated on the
y-axis. Ensemble clustering for less than 3 algorithms is undefined for the CLUE package,
therefore, the last two steps (where 2 and 1 algorithms are left, respectively) are not shown
in this figure.
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Supplementary Figure 6: Reversed ablation analysis results. The algorithm with maximum
contribution at each step of the ablation analysis (for each challenge) and the respective F-
measure of the combined predictions are listed from highest to lowest. Ensemble clustering
for less than 3 algorithms is undefined for the CLUE package. Therefore, the last two steps
(where 2 and 1 algorithms are left, respectively) are not shown in this figure.
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Supplementary Figure 7: Scatter plot of Sample 26 of the HSCT dataset (the sample with
maximum number of reference cell populations) for Cell Population #3 (green in Supple-
mentary Figure 8) for which a relatively high agreement between all algorithms and manual
gates have been observed (Figure 2). In this plot, algorithm results are partitioned with
green ellipses and manual gating results are partitioned with red ellipses.
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Supplementary Figure 8: Scatter plot of Sample 26 of the HSCT dataset (the sample with
maximum number of reference cell populations), for visualization of all of the cell populations
in the consensus among manual gates . Colors are as follow (can be matched to the panels of
Figure 2): 1-black, 2-red, 3-green, 4-blue, and 5-cyan. The cyan population was consistently
missed by six of the algorithms and one of the manual gates (Figure 2 Cell Population #5).
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Supplementary Figure 9: Similar to Figure 2 for the GvHD dataset.
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Supplementary Figure 10: Scatter plot of Sample 1 of the GvHD dataset (the sample with
maximum number of reference cell populations). Colors are as follow (can be matched to
the panels of Supplementary Figure 9): 1-black, 2-red, 3-green, 4-blue, and 5-cyan. The red
population has been consistently missed by all of the algorithms and consistently identified
by most of the manual gates (Supplementary Figure 9 Panel B). The only major difference
between the red and the cyan population is in the forward scatter channel (FSC.H).
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Supplementary Figure 11: Mean F-measures of the validation subset of the three datasets
in FlowCAP-II.
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Supplementary Figure 12: Total number of mis-classifications for the samples in the test-set
of the HEUvsUE dataset.
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Supplementary Figure 13: Total number of mis-classifications for the samples in the test-set
of the HVTN dataset.
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Supplementary Figure 15: Correlation between F-measure value and cell population size.
These plots show the average F-measures versus the size of the cell population across the
samples in the two datasets for all eight sets of manual gates. Generally, these data suggest
that there is a stronger consensus among humans when the cell population is larger. Agree-
ment among independent human gaters can also be found for some small cell populations
but not for others.
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Supplementary Figure 16: Same as Supplementary Figure 15 using absolute cell count instead
of cell proportion.
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Supplementary Figure 17: Same as Supplementary Figure 15 on a log10 scale.
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Supplementary Figure 18: Forward and side scatters of the red and cyan populations in
Supplementary Figure 10 to confirm the existence of two different cell populations.
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Supplementary Figure 19: An example of manual gating of FCS data from one individual
from FlowCAP-II’s HVTN challenge. An example of hierarchical manual gating of CD4
and CD8 T-cells is shown (A-E), with cell population proportions corresponding to the
percent of cells in each gate. Gating of cytokine-positive, CD4+ T-cells is shown for the F)
negative control, G) ENV-1-PTEG stimulation, H) GAG-1-PTEG stimulated samples from
the same individual, with corresponding cell sub-population proportions. Typical manual
analysis requires such gating of each stimulation and control sample from each individual and
comparison of the cytokine-positive T-cell proportions (for CD4 and CD8) for all measured
cytokines.
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Supplementary Figure 20: Comparison of automated and manual gating on the paired dif-
ference between Env and Gag stimulated samples expressing different CD4 T–cell subpopu-
lations. Unfiltered data, including samples from mismatched plates / runs (top row) gated
using automated methods on the placebo group (first column), automated methods on the
vaccinee group (second column), manual methods on the vaccinee group (third column),
or manual methods on the placebo group (fourth column), as well as with samples from
mismatched plates filtered out (bottom row).
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7 Supplementary Tables
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Supplementary Table 1: Ranking of the algorithms based on the original and refined manual
gates. The algorithms that are not significantly different from the top algorithm are bolded
(see Table 2 in the manuscript for the confidence intervals).

GvHD HSCT

Original Refined Original Refined

Ensemble Clustering Ensemble Clustering Ensemble Clustering Ensemble Clustering
flowMeans ADICyt FLAME FLAME
SamSPECTRAL flowMeans ADICyt ADICyt
FLAME FLAME flowMeans MM&PCA
FlowVB SamSPECTRAL MM&PCA flowMeans
FLOCK FlowVB FLOCK FLOCK
MM&PCA FLOCK SamSPECTRAL FlowVB
MM MM flowClust/Merge SamSPECTRAL
ADICyt MM&PCA FlowVB flowClust/Merge
flowClust/Merge SWIFT MM L2kmeans
L2kmeans flowClust/Merge L2kmeans MM
SWIFT L2kmeans SWIFT SWIFT
CDP CDP CDP CDP

Supplementary Table 2: Results of the independent analysis by DREAM. Four of the algo-
rithm names are not disclosed and therefore have been replaced with DREAM-A to DREAM-
D.

Team Pearson Prec Rec MCC JSC Score Rank Rank Among
Best Performers

team21 1.00 1.00 1.00 1.00 1.00 1.00 1 1
BCB 0.99 1.00 1.00 1.00 1.00 1.00 1 2
Admire-LVQ 0.97 1.00 1.00 1.00 1.00 1.00 1 3
JKJG 0.97 1.00 1.00 1.00 1.00 1.00 1 4
Daltons 0.97 1.00 1.00 1.00 1.00 1.00 1 5
biolobe 0.88 1.00 1.00 1.00 1.00 1.00 1 6
UQS 0.97 0.95 0.95 0.94 0.90 0.94 7 -
FiveByFive 0.95 0.95 0.95 0.94 0.90 0.94 7 -
DREAM-D 0.94 0.95 0.95 0.94 0.90 0.94 7 -
DREAM-A 0.89 0.95 0.95 0.94 0.90 0.94 7 -
cihc 0.65 0.95 0.95 0.94 0.90 0.94 7 -
DREAM-C 0.93 0.90 0.90 0.89 0.82 0.88 12 -
DREAM-B 0.89 0.90 0.90 0.89 0.82 0.88 12 -
SPCA+GLM 0.87 0.85 0.85 0.83 0.74 0.82 14 -
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Supplementary Table 3: Contact information of the participating teams.

Algorithm Name Contact Person Email

ADICyt Peter Majek majek@adinis.sk
CDP Cliburn Chan cliburn.chan@duke.edu
FLAME Kui Wang kwang@maths.uq.edu.au
FLOCK Yu Qian qianyu cs@yahoo.com
flowClust/Merge Greg Finak Greg.Finak@ircm.qc.ca
flowKoh Radina Nikolic rnikolic@bccrc.ca
flowMeans Nima Aghaeepour naghaeep@bccrc.ca
FlowVB Hannes Bretschneider habretschneider@gmail.com
L2kmeans Faysal El Khettabi fkhettabi@bccrc.ca
MM, MM&PCA Istvan Sugar istvansugar0@gmail.com
NMF-curvHDR Joe Maisog bravas02@gmail.com
Radial SVM John Quinn john@treestar.com
SamSPECTRAL Habil Zare zare@u.washington.edu
SWIFT Iftekhar Naim naim@ece.rochester.edu

2DhistSVM Maria Chikina mchikina@gmail.com
admire-lvq Michael Biehl m.biehl@rug.nl
BCB, SPADE Peng Qiu pqiu@mdanderson.org
biolobe Marc Strickert strickert@informatik.uni-siegen.de
cihc Miron Kursa, m.kursa@icm.edu.pl
daltons Tapio Manninen tapio.manninen@tut.fi
EMMIXCYTOM and uqs Geoff McLachlan g.mclachlan@uq.edu.au
DREAM–A Anonymized -
DREAM–B Anonymized -
DREAM–C Anonymized -
DREAM–D Anonymized -
FiveByFive Mark Maienschein-Cline mmaiensc@gmail.com
flowBin Kieran O’Niell koneill@bccrc.ca
FlowCore-flowStats Greg Finak gfinak@fhcrc.org
flowPeakssvm and Kmeanssvm Yongchao Ge yongchao.ge@mssm.edu
flowType, flowType-FeaLect Nima Aghaeepour naghaeep@bccrc.ca
JKJG Jens Keilwagen Jens.Keilwagen@ipk-gatersleben.de
PBSC Yu Qian Yu.Qian@utsouthwestern.edu
PRAMS Robert Bruggner bruggner@stanford.edu
Pram Spheres, Random Spheres Miron B. Kursa M.Kursa@icm.edu.pl
SPADE Peng Qiu PQiu@mdanderson.org
SPCA+GLM Madhu Bhattacharjee chhanda.bhatta@gmail.com
SWIFT Gaurav Sharma gsharma@ece.rochester.edu
team21 Jose Vilar j.vilar@ikerbasque.org
uqs Geoff McLachlan g.mclachlan@uq.edu.au
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Supplementary Table 4: Summary of the description of the cell population identification
datasets.

Dataset #Samples #Events Analyte Detector Reporter Provided
By

DLBCL 30 5,000 CD3 Anti-CD3 CY5 BCCRC
CD5 Anti-CD5 FITC
CD19 Anti-CD19 PE

WNV 13 100,000 IFNγ Anti-IFNγ PEA McMaster
CD3 Anti-CD3 PECy5
CD4 Anti-CD4 PECy7
IL17 Anti-IL17 APC
CD8 Anti-CD8 AlexaFluor700

Free Amines NA CFSE

ND 30 17,000 Proprietary FITC Amgen
Proprietary PerCPCy5
Proprietary PacificBlue
Proprietary PacificOrange

CD56 Anti-CD56 Qdot605
Proprietary APC

CD8 Anti-CD8 Alexa700
Proprietary PE

CD45 Anti-CD45 PECy5
CD3/CD14 Anti-CD3/CD14 PECy7

HSCT 30 10,000 CD45.1 Anti-CD45.1 FITC BCCRC
Ly65/Mac1 Anti-Ly65/Mac1 PE
Dead Cells NA PI

CD45.2 Anti-CD45.2 APC

GvHD 12 14,000 CD4 Anti-CD4 FITC BCCRC
CD8b Anti-CD8b PE &
CD3 Anti-CD3 PerCP TreeStar
CD8 Anti-CD8 APC
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