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Abstract

We present a mesoscopic approach to analyse the dynamics of a single magnetic dipole un-
der the in
uence of an oscillating magnetic �eld, based on the formulation of a Fokker–Planck
equation. The dissipated power and the viscosity of a suspension of such magnetic dipoles are cal-
culated from non-equilibrium thermodynamics of magnetized systems. By means of this method
we have found a non-monotonous behaviour of the viscosity as a function of the frequency
of the �eld which has been referred to as the “negative” viscosity e�ect. Moreover, we have
shown that the viscosity depends on the vorticity �eld thus exhibiting non-Newtonian behaviour.
Our analysis is complemented with numerical simulations which reproduce the behaviour of the
viscosity we have found and extend the scope of our analytical approach to higher values of the
magnetic �eld. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is well-known that the dynamics of a suspension of dipolar particles is strongly
in
uenced by the presence of an external �eld. Concerning the viscosity of the sus-
pension, its behaviour as a function of the magnetic �eld is monotonous in the case of
a constant �eld, reaching a saturation limit where the magnetic moments are oriented
along the �eld. In contrast, when the �eld oscillates that behaviour is considerably
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modi�ed to the extent that the contribution of the oscillating �eld to the e�ective vis-
cosity of the suspension may become negative, for frequencies of the �eld larger than
the local vorticity. This phenomenon observed experimentally in [1] and reported in
Refs. [2] and [3] has been referred to as the “negative” viscosity e�ect in ferro
uids.
It reveals the presence of two regimes, one essentially dissipative in which the varia-
tion of the viscosity is positive and other in which the energy of the oscillating �eld
is practically transformed into kinetic energy of the particle. It is in this last regime
where the variations of the viscosity become negative.
Our purpose in this paper is to present an explanation of that e�ect based on a

Fokker–Planck dynamics describing the time evolution of the probability density for the
orientation of the dipolar particle. The starting point is the formulation of that equation
and its perturbative solution. In this way we compute the di�erent components of the
susceptibility. The dissipated power and the viscosity follow from an analysis based
on non-equilibrium thermodynamics.
The general methodology we introduce accounts for the results of Ref. [3], valid

in the limit of small �eld, and agree with the experimental data of Ref. [1]. Our
theoretical results are also compared with numerical simulations we have performed,
indicating that the qualitative behavior of the system is satisfactorily reproduced even
for a moderate intensity of the oscillating magnetic �eld.
The paper is organized as follows. Using linear response theory, we compute in

Section 2 the generalized susceptibility associated with the orientation vector of the
magnetic dipoles in the ferro
uid, when this is under the in
uence of an oscillating
magnetic �eld. Section 3 is devoted to obtain the contributions of the oscillating �eld
to the dissipation of energy and to the e�ective viscosity. In Section 4 we report results
on the viscosity obtained from numerical simulations, whereas in Section 5 we present
our main conclusions.

2. Response of a magnetic dipole to an oscillating �eld

We consider a dilute colloidal suspension of ferromagnetic dipolar spherical particles
[4], with magnetic moment, m=msR̂, where R̂ is an unit vector accounting for the
orientation of the dipole. Each dipole is under the in
uence of a vortex 
ow with
vorticity 
=2!0ẑ, with ẑ being the unit vector along the z-axis, and of an oscillating
�eld H =He−i!t x̂, with x̂ being the unit vector along the x-axis. For t/�r , the motion
of the particle is overdamped with �r = I=�r being the inertial time scale. Here I is the
moment of inertia, �r =8��0a3 is the rotational friction coe�cient, with �0 the solvent
viscosity, and a the radius of the particle. This time scale de�nes a cut-o� frequency
!r = �−1r , such that the condition for overdamped motion is equivalent to !.!r . In
this case, the balance of the magnetic and hydrodynamic torques acting on each particle

m ×H + �r( 12
−
p)= 0 ; (1)
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together with the rigid rotor evolution equation

dR̂
dt
=
p × R̂ (2)

lead to the dynamic equation for R̂

dR̂
dt
= {!0ẑ + �(t)(R̂× x̂)} × R̂ : (3)

Here �(t) ≡ (msH=�r)e−i!t , with 
p being the angular velocity of the particle.
With allowance for Brownian motion, the stochastic dynamics corresponding to Eq.

(3) is given by the Fokker–Planck equation, involving the probability density 	(R̂; t)

@t	(R̂; t)= (L0 + �(t)L1)	(R̂; t) ; (4)

where L0 and L1 are operators de�ned by

L0 = − !0ẑ · R+ DrR2 ;
L1 = 2R̂ · x̂− (R̂× x̂) · R ;

(5)

with Dr = kBT=�r being the rotational di�usion coe�cient, and R= R̂× @=@R̂ the rota-
tional operator. Notice that the �rst and second terms on the right-hand side of Eq. (5)1,
correspond to convective and di�usive term, respectively. Moreover Eq. (4) which, ac-
cording to Eq. (3), rules the Brownian dynamics in the case of overdamped motion, is
valid in the di�usion regime. This regime is also characterized by the condition t/�r ,
or equivalently !.!r , which implicitly involves the white noise assumption.
To solve the Fokker–Planck equation (4) we will assume that �0 ≡ |�(t)| constitutes

a small parameter such that this equation can be solved perturbatively. Thus up to �rst
order in �, the solution of the Fokker–Planck equation (4) is

	(R̂; t)= e(t−t0)L0	0(t0) +
∫ t

t0
dt′ �(t′)e(t−t

′)L0L1	0(t′) : (6)

Here 	0(t′)= e(t
′−t0)L0	0(t= t0) is the zero-order solution at time t′, and

	0(R̂; t= t0)= �(R̂− R̂0) ; (7)

with R̂0 being an arbitrary initial orientation. As follows from Eq. (5)1, the unperturbed
operator L0 is composed of the operators Rz and R2, which are proportional to the
orbital angular momentum operators of quantum mechanics Lz and L2, respectively,
and, therefore, their eigenfunctions are the spherical harmonics [5]

RzYlm(R̂)= imYlm(R̂) ;

R2Ylm(R̂)= − l(l+ 1)Ylm(R̂) : (8)

Given that we know how R acts on the spherical harmonics, it is convenient to
expand the initial condition in series of these functions, since the spherical harmonics
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constitute a complete set of functions which are a basis in the Hilbert space of the
integrable functions over the unit sphere [6]

	0(R̂; t0)= �(R̂− R̂0)=
∞∑
l= 0

l∑
m=−l

Y ∗
lm(R̂0)Ylm(R̂) : (9)

Using this expansion in Eq. (6), for the �rst-order correction to the probability density,
�	 ≡ 	 −	0, we obtain

�	(R̂; t)=
∞∑
l= 0

l∑
m=−l

∫ t

t0
dt′ �(t′)Y ∗

lm(R̂0)e
(t−t′)L0L1e(t

′−t0)L0Ylm(R̂) : (10)

Note that the integral of �	(R̂; t) over the entire solid angle is zero, in agreement
with the fact that the unperturbed solution 	0(R̂; t) is normalized.
Since, we are interested in the asymptotic behaviour we will set t0→−∞. In this

limit, Eq. (6) becomes

	(R̂; t)=
1
4�

{
1 +

∫ t

−∞
dt′ �(t′) e(t−t

′)L02R̂ · x̂
}
; (11)

where now

�	(R̂; t)=
1
4�

∫ t

−∞
dt′ �(t′) e(t−t

′)L0 2R̂ · x̂ ; (12)

and

	0(R̂; t)=
1
4� (13)

is the uniform distribution function in the unit sphere.
From Eq. (12) the contribution of the AC �eld to the mean value of the orientation

vector R̂ can be obtained as

R̂(t)=
∫
dR̂ R̂�	=

1
4�

∫ t

−∞
dt′ �(t′)

∫
dR̂ R̂ e(t−t

′)L0 2R̂ · x̂ : (14)

This equation can be written in the more compact form

R̂i(t)=
∫ t

−∞
dt′ �(t′)�i(t − t′) ; (15)

where the response function [7] has been de�ned as

�i(�)=
1
4�

∫
dR̂ R̂ie�L0 2R̂ · x̂ ; (16)

for �¿ 0.
By causality, we can write t→∞ in the upper limit of the integral in Eq. (15);

hence, this equation becomes

R̂i(t)= �i(!)�(t) ; (17)

where �i(!) is the generalized susceptibility, which is the Fourier transform of �i(�)

�i(!)=
1
4�

∫ ∞

−∞
d� ei!�

∫
dR̂ R̂ie�L02R̂ · x̂ : (18)
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From this equation we obtain the components of the susceptibility

�x(!) =
1
3

{[
2Dr

4D2r + (!− !0)2 − i
(!0 − !)

4D2r + (!− !0)2
]

+
[

2Dr
4D2r + (!+ !0)2

+ i
(!0 + !)

4D2r + (!+ !0)2

]}
; (19)

�y(!) =
1
3

{[
(!0 − !)

4D2r + (!− !0)2 + i
2Dr

4D2r + (!− !0)2
]

+
[

(!0 + !)
4D2r + (!+ !0)2

− i 2Dr
4D2r + (!+ !0)2

]}
; (20)

�z(!)= 0 : (21)

The quantities �x, and �y, have poles at != ±!0±2Dri. The inverse of the imaginary
part of these poles, (2Dr)−1, de�nes the Brownian relaxation time.

3. Non-equilibrium thermodynamics of the relaxation process

Our purpose in this section is to compute the energy dissipated during the relaxation
process of the magnetization and the rotational viscosity of the suspension. The starting
point is the entropy production corresponding to the relaxation of the magnetization,
as given in Ref. [8]

�= − 1
T
dM ′

dt
· (H ′

eq −H ′) : (22)

Here M is the magnetization of the suspension and H the magnetic �eld. Moreover,
Heq is the magnetic �eld related to the instantaneous value of M . The primes indicate
that the corresponding quantities have been computed in the frame of reference rotating
with the 
uid.
The entropy production can alternatively be written in terms of the corresponding

quantities in the laboratory frame. Using the relation between the temporal derivatives
of the magnetization in both frames

dM ′

dt
=
dM
dt

− 1
2

×M : (23)

from Eq. (22), one obtains

� = − 1
T

{
dM
dt

− 1
2

×M

}
· (Heq −H)

= − 1
T
dM
dt

· (Heq −H) + 1
2T

×M · (Heq −H) ; (24)
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where now the di�erent quantities refer to the laboratory system. Note that in our case
M = cmsR̂, where c is the concentration of particles. Moreover, Eq. (24) written in
this way ensures the frame material invariance of the entropy production.
The linear law inferred from this expression coincides with the relaxation equation

postulated by Shliomis [3], provided we identify the phenomenological coe�cient with
the inverse of the Brownian relaxation time.
The form of Eq. (24) suggests the following decomposition:

�= �D + �V : (25)

The �rst contribution

�D= − 1
T
dM
dt

· (Heq −H)= − 1
T
dM
dt

·H (26)

accounts for the entropy production coming from Debije relaxation, whereas the second

�V = 1
2(
×M) · (Heq −H)= − 1

T
 · (M ×H) (27)

is related to the viscous dissipation. To obtain these expressions use has been made of
the relation M = �Heq, with � being the static susceptibility, and of the fact that M
remains constant which implies (dM =dt) ·Heq = 0, and (
×M) ·Heq = 0.
The power dissipated in a period of the �eld follows from the entropy production

we have computed. For the di�erent contributions one has

P�(!)=
!
2�

∫ 2�=!

0
T�� dt; (�=D; V ) : (28)

For the Debije contribution we obtain

PD(!) = 6�0�! Im �x(!)�(t)2

= �0�!�20

[
!+ !0

4D2r + (!+ !0)2
+

!− !0
4D2r + (!− !0)2

]
; (29)

where we have used Eqs. (17) and (19), with �=(4�=3)a3c being the volume fraction
of particles. Similarly, by using Eqs. (17) and (20) the viscous part yields

PV (!) = 6�0�!0 Re �y(!)�(t)2

= �0�!0�20

[
!0 + !

4D2r + (!0 + !)2
+

!0 − !
4D2r + (!0 − !)2

]
: (30)

This last contribution introduces the rotational viscosity de�ned through the relation

PV (!)= �r(2!0)2 : (31)

Combining Eqs. (30) and (31) one infers the value of the rotational viscosity

�r =
1
4
�0�!−1

0 �
2
0

[
!0 + !

4D2r + (!0 + !)2
+

!0 − !
4D2r + (!0 − !)2

]
(32)

which represents the contribution of the rotational degrees of freedom of the dipoles
to the e�ective viscosity of the suspension given by

�eff = �+ �r ; (33)
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where � is given by Einstein law �= �0(1 + 5=2�), [9]. In view of the former results,
the total dissipation P(!)=PD(!) + PV (!) is

P(!)= �0��20

[
(!0 + !)2

4D2r + (!0 + !)2
+

(!0 − !)2
4D2r + (!0 − !)2

]
: (34)

Note that although the contributions to the dissipation PD(!) and PV (!) may achieve
negative values, the total dissipation remains always positive, in accordance with the
second law.
The linear law derived from the entropy production (24) is valid for situations closed

to equilibrium, when the distribution function is not too di�erent from the equilibrium
distribution. For larger deviations, this approach and equivalently the relaxation equation
of Shliomis are no longer valid. One should then employ the Fokker–Planck description
we have introduced in Section 2. In this way, results for higher values of the �eld could
also be obtained by means of the formalism we have developed.

4. Numerical simulations

In order to check the validity of our results and explore the behaviour of the system
for higher values of the oscillating �eld we have performed numerical simulations by
using a standard second-order Runge–Kutta method for stochastic di�erential equations
[11,12]. To this purpose we have considered the Langevin equation corresponding to
Eq. (4):

dR̂
dt
= {!0ẑ + �(t)(R̂× x̂) + �(t)} × R̂ ; (35)

where �(t) is Gaussian white noise with zero mean and correlation 〈�i(t)�j(t + �)〉=
2Dr�ij�(�).
From the previous equation one can easily compute the mean angular velocity of the

particles by averaging over several realizations of the noise. This quantity then gives
the rotational viscosity

�r =
3
2
�0�

(
1− 
p

!0

)
: (36)

To obtain this expression we will �rst rewrite the entropy production in terms of P a,
the axial vector related to the antisymmetric part of the pressure tensor

�V =
1
T
P a ·
 ; (37)

from which one derives the phenomenological law

P a= �r
 : (38)

The balance of torque densities, which is achieved in the asymptotic regime [9],

2P a=M ×H =6�0�( 12
−
p) (39)

together with Eqs. (38), and (39) then leads to expression (36).
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Fig. 1. Normalized rotational viscosity, �r=�0��20, as a function of the frequency of the applied �eld for
�0 = {12:8; 6:4; 3:2; 1:6; 0:8; 0:4} and linear response theory (LRT). The values of the remaining parameters
are Dr =0:5 and !0 = 2�.

Fig. 2. Normalized rotational viscosity, �r=�0��20, as a function of the angular velocity of the 
uid for
�0 = {12:8; 6:4; 3:2; 1:6; 0:8; 0:4} and linear response theory (LRT). The values of the remaining parameters
are Dr =0:5 and !=2�.
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In Figs. 1 and 2 we show the results obtained for the normalized rotational viscosity,
�r=�0��20, as a function of the frequency of the applied �eld and as a function of the
angular velocity of the 
uid, respectively, for di�erent intensities of the oscillating �eld.
These �gures clearly illustrate how for low intensities of the oscillating �eld the results
obtained through numerical simulations can accurately be reproduced by linear response
theory, as well as for higher values, linear response theory is still qualitatively correct.
The crossover point from positive to negative values of the rotational viscosity seems
not to depend signi�cantly on the amplitude of the oscillating �eld. It is interesting
to realize that, at high frequencies all the simulation curves match the linear response
theory curve. Thus, in this frequency regime linear response theory provides an accurate
description of the phenomenon. Fig. 2 also makes the non-Newtonian character of the

uid manifest. Note that these e�ects are more pronounced for angular velocities of
the 
uid near the angular frequency of the applied �eld, i.e., for high and low values
of the vorticity the rotational viscosity goes to zero and a constant negative value,
respectively, whereas for intermediate values it depends on the particular value of the
vorticity. From both �gures, one concludes that the vorticity plays just the opposite
role to the frequency of the �eld.

5. Conclusions

In this paper we have presented a mesoscopic approach to explain the “negative”
viscosity e�ect ocurring in suspensions of magnetic particles. The dynamics of the
magnetic moment in the oscillating �eld is described by means of a Fokker–Planck
equation which can be solved perturbatively. This equation gives rise to a hierarchy
of equations [10] for the di�erent moments, describing the relaxation of the magnetic
moment. The �rst equation of the hierarchy, when linearized in the �eld, agrees with
the phenomenological equation obtained from non-equilibrium thermodynamics and the
corresponding one postulated by Shliomis.
Following this procedure, we have been able to compute the dissipated power and

the viscosity which is a non-monotonous function of the frequency of the �eld. Up to
�rst order in the �eld our results agree with the corresponding ones of Ref. [3] based
on the phenomenological equation proposed by Shliomis.
The phenomenological approach, dealing with the phenomenological law derived

from the entropy production, is strictely valid at small �elds and is no longer correct
when larger deviations from the equilibrium distribution occur. If we are interested in
the response of the system to larger values of the �eld the correct approach is the one
based upon the Fokker–Planck equation we have proposed in Section 2. This approach
involves the evolution equation for higher-order moments of the probability distribution
in the hierarchy. After introducing a decoupling approximation, the solution for the �rst
moment can be used to compute the energy dissipation that allows one to de�ne an
e�ective viscosity.
In order to go beyond the linear regime we have performed numerical simulations.

This numerical analysis enables us to discern about the validity of the linear response
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theory treatment. Our conclusion is that qualitatively linear response theory may provide
a reasonable explanation of the phenomenon.
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