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Abstract

We have analyzed the interplay between noise and periodic spatial modulations in bistable
systems outside equilibrium and found that noise is able to increase the spatial order of the
system, giving rise to periodic patterns which otherwise look random. The phenomenon we
report, which may be viewed as the spatial counterpart of stochastic resonance, then shows a
constructive role of noise in spatially extended systems, not considered up to now. c© 2000
Elsevier Science B.V. All rights reserved.

PACS: 05.40.+j; 47.54+r

1. Introduction

Contrarily to intuitive arguments, arising from the frequent identi�cation of noise
with a source of disorder, in systems outside equilibrium the presence of noise may be
responsible for an increase of order. Noise then can play a constructive role, losing its
usually assumed character of nuisance. One of the most important manifestations of this
constructive role played by noise takes place when noise and a weak signal periodic in
time exhibit a cooperative behavior, giving rise to the enhancement of the periodic re-
sponse. This fact, which is evidenced by an increase of the output signal-to-noise ratio
(SNR) as the noise level increases, constitutes the main �ngerprint of the phenomenon
known as stochastic resonance (SR) [1,2]. The importance and interest of SR has been
revealed by the great number of situations in which it has been found [3–10]. In regards
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to spatially extended systems, this constructive role of noise has only been reported for
situations in which also a time periodic signal enters the system. This feature occurring
in the phenomenon known as spatiotemporal stochastic resonance [11–15] only deals
with the e�ects of the spatial degrees of freedom in the time evolution of the system,
but no enhancement of the spatial order, in a similar fashion as the temporal order,
has been found up to now.
In this paper we show that randomness may be responsible for spatial ordering of

a system in such a way that the emergent structures look more regular, i.e., periodic,
when the noise level is increased. This phenomenon can be viewed as the spatial
counterpart of SR. In it, the SNR is de�ned through the structure factor instead of
the power spectrum and the system is periodically modulated in space instead of in
time. In this sense, noise is able to increase the order of a spatial structure in a similar
fashion as noise is able to do it in the time evolution.
The paper is organized as follows. In Section 2 we introduce the explicit model we

consider: the �4 model in the presence of advection, an external periodic force and
noise. Section 3 presents the results, showing the ordering of periodic spatial structures.
Finally, in Section 4 we summarize the main conclusions.

2. The model

To illustrate the essentials of the phenomenon we consider explicitly the �4 model,
although similar results could also be obtained for other systems provided that they
exhibit bistability. Additionally, the system is under the in
uence of a spatial periodic
force and driven outside equilibrium by advection. We �rst study the one-dimensional
case in which the �eld � is advected by a constant velocity v,

@t�+ v@x�= r�− g�3 + �@xx�+ A cos(k0x) + �(x; t) : (1)

Here A cos(k0x) is the periodic force, accounting for the spatial modulation, with
A the amplitude and 2�=k0 the period. The parameters r, g and � are positive constants,
whereas the noise term �(r; t) is Gaussian and white with zero mean and correlation
function 〈�(x; t)�(x′; t′)〉= 2D�(x − x′)�(t − t′), de�ning the noise level D.
With the purpose of characterizing the spatial con�guration we will consider the

structure factor de�ned as

F(k) = 〈�̂k �̂−k〉 ; (2)

where �̂k is the Fourier transform of the �eld �(x) and 〈 〉 indicates average over
the noise realization. Due to the presence of the periodic force, it consists of a delta
function centered at the wave number k0 plus a function Q(k) which is smooth in the
neighborhood of k0 and is given by

F(k) = Q(k) + S(k0)�(k − k0) : (3)
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The structure factor, as expressed previously, explicitly shows the intensity of the
periodic component of the system, S(k0), and the stochastic component, Q(k). The
SNR, de�ned as the ratio between both quantities,

SNR = S(k0)=Q(k0) ; (4)

indicates the order present in the system.

Fig. 1. SNR as a function of the noise level for di�erent values of the advection velocity: v = 0:2; 0:5,
and 1. The values of the remaining parameters are r = 1, g = 1, � = 0:03, A = 0:3, and k0=2� = 0:05.

Fig. 2. Structure factor as a function of the dimensionless wavenumber kL=2�, with L (=1024) the length
of the system, for three noise levels: D = 0:02, 0.1, and 1 (from left to right). The values of the remaining
parameters are v = 0:2, r = 1, g = 1, � = 0:03, A = 0:3, and k0L=2� = 50.
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Fig. 3. Field � as function of position x for the same situation as in Fig. 2 [D= 0:02, 0:1, and 1 (from top
to bottom)]. The inset illustrates the periodicity of the force which accounts for the spatial modulation.

3. Results

To analyze the behavior of the system we have numerically integrated the previous
equations by discretizing them on a mesh [16] and then by using standard methods
for stochastic di�erential equations [17]. In Fig. 1 we have represented the SNR as a
function of the noise level for representative values of the parameters corresponding
to the bistable situation. This �gure indicates, through the maximum of the SNR at a
nonzero noise level, that the presence of an optimum amount of noise enhances the
underlying periodic structure of the system. In this regard, in Fig. 2 we display the
structure factor for the optimum, a higher and a lower noise level. The existence of
a periodic pattern is revealed by the peak arising over the background noise at k0,
which for the optimum noise intensity, is more than an order of magnitude higher
than for the other displayed intensities. An instance of how the enhancement of this
peak, quanti�ed by the SNR, manifest in the spatial structure is shown in Fig. 3. It
is worth emphasizing the fact that the pattern for the optimum noise intensity looks
more deterministic, i.e., periodic, than for lower noise intensities. In this regard, noise
constitutes a source of order. Further increasing of the noise level, however, destroys
the coherent response to the periodic spatial modulation.
From Fig. 3 one can elucidate the mechanism giving rise to the enhancement of

the structure. For the previous values of the parameters the system exhibits bistability.
The e�ect of the periodic force is then to spatially modulate the system in such a
way that the most stable state changes from positive to negative values of the �eld �,
depending on position. Since the �eld � is advected, the system is unable to switch
between these two states when noise level is too small. The presence of an optimum
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amount of noise, however, makes these transitions possible in a coherent fashion, giving
rise to the enhancement of the underlying pattern. Further increasing the noise level
completely destroys the coherent response. In this context, this mechanism is the spatial
counterpart of the corresponding one of SR. Thereby, the parameter vk0, which has
dimensions of the inverse of time, plays the same role as the frequency !0 in SR.
This fact is displayed in Fig. 1, where the dependence of the SNR on v, for �xed k0,
is close to that on !0 in the case of SR. The striking similarity with the temporal case
is evidenced even more when considering Fig. 3 for the optimum noise level, which
looks quite similar to a bistable system in time when exhibiting SR.
To illustrate more the fact that noise can imply ordering in nonequilibrium systems

we have considered the two-dimensional counterpart of Eq. (1) on the (x; y)-plane.
The periodic force is now A cos(k0x)cos(k0y), whereas the system is again advected in
the x-direction by a constant velocity v. The other terms follow by the straightforward
extension to two dimensions. Hence, the system is described by

@t�+ v@x�= r�− g�3 + �(@xx + @yy)�+ A cos(k0x)cos(k0y) + �(x; y; t) : (5)

In Fig. 4 we have represented the �eld �(x; y) obtained from numerical simulations for
representative values of the parameters. For low and high noise level the spatial pattern
is completely disordered. In contrast, an optimum nonzero amount of noise makes the
presence of the underlying checkerboard pattern manifest. In this regard, the addition
of noise is able to increase the order of the system giving rise to periodic structures
which otherwise would not be observed. Note that the periodicity in the perpendicular
direction to the advection is also enhanced. It is worth emphasizing that, in contrast
to the one-dimensional case, in two dimensions a temporal counterpart does not exist
due to the one-dimensional character of time.
Another interesting situation comes when dealing with disorder represented by

quenched noise [18].1 The noise term is Gaussian with zero mean, but now with
correlation function 〈�(x; y)�(x′; y′)〉= 2D�(x − x′)�(y − y′). In this case, D accounts
for the degree of disorder. The explicit case we study is

@t�+ v@x�= r�− g�3 + �(@xx + @yy)�+ A cos[k0(x + y)] + �(x; y) ; (6)

where, for the sake of generality, we have considered a new expression for the periodic
force. The e�ects of disorder are illustrated in Fig. 5 which displays the �eld �(x; y)
for representative values of the parameters. In the �gure one can see that for weak
disorder, i.e., low D, the pattern is quite random, although the direction of the advection
is manifested in the elongated form of the spots. When increasing the disorder, the
system is able to increase its order, then displaying periodic striped patterns. This
constructive aspect, however, is lost by further increasing the intensity of the quenched
noise. In this sense, there exists an optimum amount of disorder which is responsible
for order.

1 It has been found that, paradoxically, the introduction of disorder may force a chaotic system to exhibit a
periodic behavior in time. However, in such a situation the spatial structure still remains disordered.
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Fig. 4. Representation of the two-dimensional �eld � for di�erent values of the noise level [D = 10−6=3,
10−5=3, 10−4=3, 10−3=3, 10−2=3, and 10−1=3 (from bottom to top)] and di�usion [� = 10−9=6, 10−7=6, and
10−5=6 (from left to right)]. The system size is 100 × 100. The values of the remaining parameters are
v = 0:2, r = 1, g= 1, A= 0:3, and k0=2�= 0:05. Black and white colors stand for minimum and maximum
values, respectively.

It is worth pointing out that the phenomenon we have found is even more general
than previously presented, since this kind of spatial ordering may also appear when
advection is not present and even in systems without intrinsic spatial structure. For
instance, by only replacing x by x − vt in Eq. (1) the advective term disappears and
the force A cos(k0x) becomes A cos[k0(x − vt)]. Under these circumstances, Eq. (1)
describes the propagation of a plane traveling wave in a bistable medium. Thereby, the
results we have obtained also apply to this case.
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Fig. 5. Representation of the two-dimensional �eld � for di�erent values of the disorder intensity [D=10−6=3,
10−5=3, 10−4=3, 10−3=3, 10−2=3, and 10−1=3 (from bottom to top)] and di�usion [� = 10−9=6, 10−7=6, and
10−5=6 (from left to right)]. The system size is 100 × 100. The values of the remaining parameters are
v = 0:5, r = 1, g= 1, A= 0:3, and k0=2�= 0:03. Black and white colors stand for minimum and maximum
values, respectively.

4. Discussion

In this paper we have shown how randomness can be responsible for the spatial or-
dering of a system. In this regard, the addition of noise makes the presence of spatial
periodicity manifest, giving rise, for instance, to checkerboard and striped patterns. We
have shown the occurrence of the phenomenon for di�erent types of spatial modula-
tions and di�erent types of randomness, such as white noise and spatial disorder. It is
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worth emphasizing that although our analysis has been explicitly carried out for the
�4 model, similar results could also be obtained for other systems provided that they
exhibit bistability. Our �ndings, then, contribute to a wider understanding of the role
of nonequilibrium 
uctuations in spatially extended systems, indicating that this con-
structive aspect of noise, reported before only for temporal signals, is more universal
than believed.

Acknowledgements

This work has been supported by the DGES of the Spanish Government under grant
PB95-0881. J.M.G.V. acknowledges �nancial support from the Ministerio de Educaci�on
y Cultura (Spain).

References

[1] R. Benzi, A. Sutera, A. Vulpiani, J. Phys. A 14 (1981) L453.
[2] F. Moss, in: G.H. Weiss (Ed.), Some Problems in Statistical Physics, SIAM, Philadelphia, 1994.
[3] B. McNamara, K. Wiesenfeld, R. Roy, Phys. Rev. Lett. 60 (1988) 2626.
[4] B. McNamara, K. Wiesenfeld, Phys. Rev. A 39 (1989) 4854.
[5] Proceedings of the NATO Advanced Research Workshop on Stochastic Resonance, San Diego, 1992

[J. Stat. Phys. 70 (1993) 1].
[6] K. Wiesenfeld, D. Pierson, E. Pantazelou, C. Dames, F. Moss, Phys. Rev. Lett. 72 (1994) 2125.
[7] K. Wiesenfeld, F. Moss, Nature 373 (1995) 33.
[8] Z. Gingl, L.B. Kiss, F. Moss, Europhys. Lett. 29 (1995) 191.
[9] A. Bulsara, L. Gammaitoni, Phys. Today 49 (3) (1996) 39.
[10] J.M.G. Vilar, J.M. Rub��, Phys. Rev. Lett. 77 (1996) 2863.
[11] P. Jung, G. Mayer-Kress, Phys. Rev. Lett. 74 (1995) 2130.
[12] J.F. Lindner, B.K. Meadows, W.L. Ditto, M.E. Inchiosa, A.R. Bulsara, Phys. Rev. Lett. 75 (1995) 3.
[13] F. Marchesoni, L. Gammaitoni, A.R. Bulsara, Phys. Rev. Lett. 76 (1996) 2609.
[14] M. L�ocher, G.A. Johnson, E.R. Hunt, Phys. Rev. Lett. 77 (1996) 4698.
[15] J.M.G. Vilar, J.M. Rub��, Phys. Rev. Lett. 78 (1997) 2886.
[16] W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes, Cambridge University

Press, New York, 1986.
[17] P.E. Kloeden, E. Platen, Numerical Solution of Stochastic Di�erential Equations, Springer, Berlin, 1995.
[18] Y. Braiman, J. Lindner, W. Ditto, Nature 378 (1995) 465.


