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Abstract

We have analyzed the behavior of a colloidal ferromagnetic particle in a rotational 4ow and
found a dynamic transition upon variation of a static applied magnetic 5eld. Beyond the transition
point the force exerted by the 5eld on the particle does not increase, as usual, but decreases
as the strength of the 5eld is increased. Macroscopically, this behavior results in an e8ective
viscosity that decreases as a function of the strength of the 5eld. c© 2001 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Suspensions of colloidal ferromagnetic particles, or ferro4uids, constitute a class of
systems possessing the ability of undergoing signi5cant changes in their properties
upon the in4uence of an external 5eld. In general, they can be viewed as formed of
orientable particles suspended in a 4uid phase, exhibiting a complex dynamics which is
a8ected by the 4ow and by the imposed 5eld [1–6]. These systems have been analyzed
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in many di8erent situations, both theoretically and experimentally. In all of them, a
trait which is always present is the increase of the e8ective viscosity as the strength
of the static applied 5eld is increased [7]. The ubiquity of this result relies in a rather
common feature: the higher the strength of the 5eld, the higher the force acting on
the particle. In a ferromagnetic colloid, the action of a static 5eld is to prevent the
rotational motion of the particle which in turn prevents the motion of the surrounding
4uid, in this way increasing the e8ective viscosity. The results obtained up to now
are all fully supportive of this picture, although a complete analytical solution of the
equations describing the dynamics of the system is far from being possible and only
several approximations have been obtained.

In this paper, we show the existence of a regime in which the averaged force exerted
on the particle does not increase with the strength of the applied 5eld. This new regime
emerges at suIciently high vorticity and 5eld, when the axis of the particle follows
the rotation imposed by the vorticity, moving apart from the magnetic moment which
remains oscillating around the 5eld. The nonlinear interplay between the orientation
and magnetic moment dynamics results in an e8ective viscosity, which decreases with
the 5eld.

The paper has been organized as follows. In Section 2 we present the model for a
single ferromagnetic colloidal particle under the in4uence of both a rotational 4ow and
a constant external magnetic 5eld. In Section 3 we show analytically that, at suIciently
high vorticity, the viscosity is not a monotonous increasing function of the applied 5eld.
Numerical simulations presented in Section 4 con5rm these results and elucidate the
mechanism involved in the transition. Finally, in Section 5 we summarize our main
results.

2. Model

To illustrate the essentials of the phenomenon we analyze the dynamics of a single
ferromagnetic colloidal particle in a rotational 4ow under the in4uence of a constant
external magnetic 5eld. The energy of the particle is the sum of two contributions,
one coming from the externally imposed 5eld and the other from the anisotropy of the
crystalline structure of the particle. For uniaxial crystals [8] it is given by

U = −m ·H − KaVp(n̂ · R̂)2 ; (1)

where m=m0R̂ is the magnetic moment of the particle, with m0 the magnetic moment
strength and R̂ its unit vector, H is the external magnetic 5eld, Ka is the anisotropy
constant, Vp is the magnetic volume of the particle, and n̂ is the unit vector along the
direction of the axis of easy magnetization. The dynamics of R̂ and n̂ in a 4ow with
vorticity 2!0 is described by [6]

dR̂
dt

=�R × R̂ (2)
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and
dn̂
dt

=�n × n̂ ; (3)

where the angular velocity of the magnetic moment and of the axis of the particle are
given by

�R = hR̂× @U

@R̂
+ !L +�n (4)

and

�n =!0 +
1
�r
m ×H ; (5)

respectively. Here, !L = −g @U=@R̂ is the Larmor frequency, h and g are constants, and
�r = 8��0a3 is the rotational friction coeIcient of the particle, with �0 and a being the
viscosity of the 4uid phase and the hydrodynamic radius of the particles, respectively.
To be explicit, we consider a 5eld applied along the x-direction (H =H0x̂) and a
vorticity perpendicular to it, along the y-direction (!0 =!0ŷ).

At a macroscopic level, the presence of the particles in the host 4uid changes
the e8ective viscosity, which in the diluted regime is expressed as �e8 = �0 + �p + �r .
Here, �0 is the viscosity of the host 4uid, �p = 5=2��0 is the contribution due to the
mere presence of the particles, with volume fraction �, and �r is the rotational viscos-
ity, arising from the di8erence between the mean angular velocity of the particles and
that of the 4uid: explicitly [6],

�r =
3
2
�0�

(
1 − 〈�n〉

!0

)
: (6)

Notice that Eq. (5) expresses the balance between the hydrodynamic [�r(!0−�n)] and
magnetic [m ×H ] torques. Thereby, Eqs. (5) and (6) make the relationship between
force and viscosity explicit, showing that the e8ective viscosity is an increasing func-
tion of the strength of the magnetic torque. The typical form in which the viscosity
increases with the 5eld is exempli5ed by the limiting case of rigid dipole (R̂ ≡ n̂),
where the rotational viscosity is given by �r = 3

2�0�(m0H0=�r!0)2; for �r!0 ¿m0H0,
and by �r = 3

2�0�; for �r!06m0H0 [6]. Similar results are also obtained beyond this
approximation for the case of low vorticity [9,10], where the rotational viscosity in-
creases with the 5eld reaching a saturation value, as in the case of rigid dipole.

The form of the energy of the particle, however, suggests that the behavior described
by Eqs. (1)–(5) can be richer than the ones analyzed up to now. Figs. 1(a) and (b)
show the typical form of this energy for low and high intensity of the applied 5eld,
respectively. Since under most experimental conditions (for constant applied 5eld) the
relaxation of the magnetic moment is much faster than any other time scale entering the
system [10,11], the magnetic moment remains always in its energy minimum, follow-
ing the e8ective 5eld, He8 = − @U=@R̂. Therefore, for low 5eld, the magnetic moment
and the easy axis of magnetization have both the same direction. For high 5eld,
in contrast, the magnetic moment points around the applied 5eld, irrespective of the
direction of the easy axis of magnetization.
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Fig. 1. Energy of the particle [Eq. (1)] as a function of the angle � between the applied 5eld and the
magnetic moment [cos(�) = Ĥ · R̂] and the angle  between the magnetic moment and the easy axis of
magnetization [cos( ) = R̂ · n̂] for (a) H0 = 2 and (b) H0 = 10. The values of the remaining parameters are
KaVp = 1 and m0 = 1.

3. Analytical results

For suIciently high vorticity, the dynamics still remains unexplored; we now con-
sider explicitly the situation in which the magnetic energy is much higher than the
energy of anisotropy. Under these circumstances, the motion of the particle, except
perhaps an initial transient, takes place in the plane perpendicular to the vorticity. This
enables us to study the dynamics in terms of the angle � between the applied 5eld and
the axis of the particle [cos(�) = Ĥ · n̂]:

d�
dt

=!0

(
1 − m0H0

�r!0
Rz

)
: (7)

Since the magnetic moment relaxes fast to the e8ective 5eld, as explained previously,
its orientation is given by the minimum of Eq. (1), which for high 5eld leads to

Rz =
KaVp
m0H0

sin(2�) : (8)
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The mean angular velocity then follows from integration of Eq. (7) with (8). For
�r!06KaVp the angular velocity is zero and the viscosity has the same value as the
saturation one obtained for the case of rigid dipole. For �r!0 ¿KaVp the mean angular
velocity is given by

1
〈�n〉 =

1
2�!0

∫ 2�

0

(
1 − m0H0

�r!0
Rz

)−1

d� ; (9)

which leads to

�r = 3
2�0�(1 −

√
1 − �2) ; (10)

where �=KaVp=�r!0 Therefore, for high 5eld the rotational viscosity reaches a constant
value. How this constant value is approached indicates whether the viscosity decreases
or not as the applied 5eld is increased. In this regard, it is worth studying the case for
m0H0 =KaVp when the motion of the particle takes place in the plane perpendicular to
the vorticity. The minimum of Eq. (1) is then given by

Rz =

{
sin(2�=3) if − �=4¡�¡ 3�=4 ;

sin(2�=3 − 2�=3) if 3�=4¡�¡ 7�=4 :
(11)

By substituting this in Eq. (9), we obtain

�r =
3
2
�0�

[
1 − �

√
1 − �2

3 arctan(
√

3(1 + �)=(1 − �))

]
: (12)

The di8erence between the rotational viscosity at H0 =KaVp=m0 and H0 =∞,

O�r =
3
2
�0�

√
1 − �2

[
1 − �

3arctan(
√

3(1 + �)=(1 − �))

]
; (13)

is always positive. Therefore, when �r!0 ¿KaVp, the rotational viscosity is not an
increasing function of the applied 5eld. Notice that the higher the vorticity, the more
pronounced the e8ect is.

4. Numerical simulations

The situations envisaged previously exhibit a markedly di8erent behavior: for low
5eld the viscosity increases as the 5eld is increased, as usual, whereas for high 5eld
the dependence is just the opposite. To elucidate how this change in the behavior of
the system takes place we have numerically integrated the corresponding equations
following a standard procedure [12,13]. In Fig. 2, we display the rotational viscosity
as a function of the intensity of the applied 5eld for di8erent values of the vorticity.
For low vorticity, the rotational viscosity saturates to its maximum value at high 5eld
following a monotonous increase as for a rigid dipole. Increasing the vorticity leads
to the appearance of hysteresis. Two di8erent states exist for intermediate values of
the applied 5eld: one with the magnetic moment close to the easy axis of magnetiza-
tion (rigid-dipole-like) and the other with the magnetic moment oscillating around the
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Fig. 2. Normalized rotational viscosity, �r=( 3
2 �0�), as a function of the intensity of an increasing (upper

branches) and a decreasing (lower branches) applied 5eld for di8erent values of the vorticity. The values
of the remaining parameters are h= 20, g= 1, KaVp = 4, m0 = 1, and �r = 8.

Fig. 3. Same situation as in Fig. 2 but including Brownian motion in the axis of easy magnetization [12].
The rotational di8usion coeIcient is Dr = 1.

magnetic 5eld. Continuously varying the 5eld, the former is reached from low values,
whereas the latter is reached from high values. Notice that for low 5eld the viscosity
increases quadratically as a function of the applied 5eld, as shown by the result for
a rigid dipole. For high 5eld, in contrast, the viscosity saturates to a constant value
as given by Eq. (10). Usually, there is also a stochastic contribution coming from
thermal 4uctuations [10]. In Fig. 3 we show the same situation as in Fig. 2 but now
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Fig. 4. Same situation as in Figs. 2 and 3 but for di8erent values of the vorticity. Symbols and lines stand
for Dr = 1 and Dr = 0, respectively.

with allowance of Brownian motion in the axis of the particle [12]. It can be seen that
a moderate amount of noise does not signi5cantly change the behavior of the particle.
However, hysteresis does not appear; the most stable branch is selected. For higher
values of the vorticity, the decrease of the rotational viscosity as the 5eld increases is
more pronounced, as shown in Fig. 4. This behavior is in agreement with Eq. (13).
Again, hysteresis appears in the noiseless case but fades away when Brownian e8ects
take place.

5. Conclusions

To summarize, we have analyzed the behavior of a colloidal ferromagnetic particle in
a rotational 4ow. Beyond a threshold value of the applied magnetic 5eld, for suIciently
high vorticity, the increase of the strength of the 5eld leads to a decrease of its e8ects:
the increase of the 5eld induces the suppression of the force it is responsible for. At
a macroscopic level, the monotonous character of the viscosity as a function of the
static 5eld reported in the situations analyzed up to now, involving low vorticity, does
not occur. Conversely, upon increasing the 5eld, the system passes from a state in
which the viscosity increases to another in which the behavior of the viscosity is just
the opposite, decreasing and exhibiting hysteresis. These 5ndings indicate that even
in apparently simple situations nonlinearities may lead to unexpected changes in the
response of the system to an applied 5eld. Our results then open new perspectives
about the role played by external 5elds in the control of the properties of colloidal
systems.
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