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Noise and periodic modulations in neural excitable media
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We have analyzed the interplay between noise and periodic modulations in a mean field model of a neural
excitable medium. For this purpose, we have considered two types of modulations, namely, variations of the
resistance and oscillations of the threshold. In both cases, stochastic resonance is present, irrespective of
whether the system is monostable or bistable.@S1063-651X~99!13403-2#
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I. INTRODUCTION

When a nonlinear system is driven by a periodic force
a noisy environment, its response may be enhanced by
presence of noise. This constructive role played by noise
be characterized by the appearance of a maximum in th
called signal-to-noise ratio~SNR! at a nonzero noise level. In
essence, the SNR is a quantity that reflects the quality of
output signal, in such a way that for large values of t
quantity the output signal looks more ordered. This pheno
enon, named stochastic resonance~SR!, has been found in
many situations pertaining to different scientific are
@1–20#.

In regards to neural systems, many examples of SR h
been found theoretically in single neurons@21,22# and neural
networks @23–25#, and experimentally in single neuron
@26,27#. In contrast, an aspect which has only been con
ered recently is the appearance of SR in neural excita
media @28#. In a set of experiments with mammalian bra
slices corresponding to the hippocampal center@29#, it was
demonstrated that an electric field can either suppress o
hance coherent activity in real networks. It was later sho
by using a time-varying electric field, that as the magnitu
of the stochastic component of the field was increased,
was observed in the response of the neural network to a w
periodic signal @28#. These and other recent results@30#
clearly show that neural noise could play a relevant role
the information processing of the brain.

In this context, both key ingredients for SR, i.e., a we
defined coherent and time-periodic modulation and intrin
noise, are present at several scales in neural tissues. W
consider a coarse-grained characterization of brain dynam
by means of the analysis of the electroencephalogram, w
is an averaged measure of the spatiotemporal activity of
lions of neurons. These neurons, in turn, are part of a
work receiving inputs from various parts of the nervous s
tem called nuclei. Among these, the thalamus plays a v
important role in controlling the behavioral states of t
brain @31#. In fact, the thalamus is known to display auton
mous oscillations@31#, i.e., it works as some kind of pace
maker to the brain cortex. The thalamus is massively c
nected with the cortex, and produces autonomous peri
oscillations, even when disconnected from the cortex. He
PRE 591063-651X/99/59~5!/5920~8!/$15.00
he
an
so

e
s
-

s

ve

-
le

n-
,

e
R
ak

n

c
can
cs
ch
il-
t-
-
ry

-
ic
e

the cortex can be, to some extent, viewed as a highly c
nected network which is periodically stimulated by the th
lamic pacemaker. Several experimental results give sup
to the idea that the behavioral states of the brain~alpha
rhythm, slow delta waves, sleep, and REM! are somehow
related to an oscillatory input into the cortical tissue@32#.
These facts indicate that a realistic model of cortical dyna
ics should consider the effects of the thalamocortical pa
maker, which can be simulated in different ways, but it c
always be considered as a periodic external signal.

Another aspect to be emphasized is the fact that sin
neurons of the cortex exhibit some degree of variability, i
the response to a stimulus depends on the particular t
which is observed in single-neuron experiments and also
measurements of single neurons inside the brain. Suc
variability comes from both complex deterministic dynami
and the noise implicit in the random nature of the incomi
signals. Additionally, single neurons manifest intrinsic nois
In this sense, there have been numerous experimental stu
about the stochastic activity of nerve cells. Noise has b
observed in nerve-cell preparations and involves both syn
tic noise, which is due to randomly occurring synaptic p
tentials @33#, and membrane noise. In the last case, sm
fluctuations in the electric potential across the nerve-c
membrane are observed, even when apparently steady
ditions prevail. These fluctuations are linked with condu
tance changes induced by random closing and opening o
channels.

The aim of this paper is to study a simple model which
able to capture the main traits of the actual neural media
concerns the interplay between noise and periodic mod
tion in neural dynamics. To this purpose, we present a
tailed analysis of a standard mean field model of neural
citable medium which was introduced in a preliminary for
in Ref. @18#.

The paper has been organized as follows: In Sec. II
present the mean field model. In Secs. III and IV, we anal
the appearance of SR in two different situations concern
oscillations of the resistance of the neural tissue and va
tion of the threshold. Finally, in Sec. V we summarize o
main results and discuss possible implications in neural s
tems.
5920 ©1999 The American Physical Society
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II. MEAN FIELD MODEL

Let us consider a slab of neural tissue comprising a v
large number of closely packed and coupled nerve ce
where connections are only excitatory. Different parts of
neocortex can fit this description with more or less succe
In general, most of the real networks formed in the br
cortex are constituted by both excitatory and inhibitory ne
rons. The frequency and relevance of each type of cell, h
ever, vary depending on the place considered. In this se
the overall activity of some brain regions, like the thalam
is largely dominated by the excitatory component@34#, usu-
ally identified, at the microscopic level, with the piramid
cells. This excitatory behavior is particularly relevant in t
hippocampus, when stimulation of a single excitatory neu
can generate a burst of synchronous activity@35#. These re-
sults make a consideration of the behavior of cortical net
terms of purely excitable dynamics reasonable, as a first
proximation. In addition, the lack of a microscopic structu
is not an important problem when neurons and connect
are not explicitly considered as discrete entities, as don
our level of description. In this regard, previous studies
veal that the mean-field approach is able to reproduce
detailed macroscopic description@36#.

The situation we consider involves one of the simpl
models of aggregates of nerve cells. At a given spatial p
rW, the quantity of interest is the mean local potentialV(rW)
which is the result of a local integration of incoming signa
i.e.,

V~rW,t !5E
G
v~rW2rW8,t !r~rW8!drW8, ~1!

over a given neighborhoodG. Herer(rW) is the local packing
density of neurons, andv(rW,t) is the transmenbrane poten
tial.

The time evolution ofV(rW,t) can be obtained from the
following integrodifferential equation:

C
]V~rW,t !

]t
52

V~rW,t !

R
1b~rW !* F„V~rW,t !…1I ~rW,t !. ~2!

HereC is the capacitance,R the resistance,I (rW,t) a stimulus,
b(rW) the mean number of synaptic connections, and the
terisk indicates convolution. The functional form ofF is
defined through the sigmoidal relation

F~V!5F0@11e2n~V2u!#21, ~3!

whereF0 and n are given constants, andu is a threshold.
Many possible functional forms forb(rW) can be considered
as for example an exponential decayb(rW)5b exp(2urWu/g),
which leads to the equation
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]V~rW,t !

]t
52

V~rW,t !

R

1bF0E e2urW2rW8u/g@11e2n~V~rW8,t !2u!#21drW8

1I ~rW,t !. ~4!

We will consider the case of all-to-all connectivity, i.e
g@L, whereL is the characteristic length scale. Under th
assumption, the model of neural excitable medium con
tutes a mean field approximation, and is formulated by
equation@37#

C
dV

dt
52R21V1 «̃~11e2n~V2u!!211I , ~5!

accounting for the dynamics of the spatial averageV of the
transmembrane potential. Here«̃ is a constant that arise
from that approximation. This model is referred to as t
Cowan-Ermentrout model~CEM!. Its dynamics can be de
scribed through a potential functionU(V),

dV

dt
52

]U

]V
1

I

C
. ~6!

In our case,

U~V!5
1

2nC
@nR21V222«̃ ln~11en~V2u!!#. ~7!

A remarkable fact is that for some values of the paramet
the CEM exhibits bistability. Therefore, small changes in t
parameter values can lead to sudden shifts from one st
branch to the other@37#.

To render our analysis of the mean field model comple
we need to specify the nature of the noise. It is worth poi
ing out that its origin, its characterization, and its effects
actual neural media inside the brain are far from being cle
Here, in order to account for the noise effects, we will co
sider a simplified situation that can be described by a fluc
ating current applied to the net. Moreover, we assume
this current may be approximated by a Gaussian white n
@^I (t)&50 and^I (t)I (t1t)&52sd(t)].

Another remarkable fact is that periodic modulations m
affect the system in different ways, for instance, by perio
cally changing the value of one of the parameters. Th
small changes in the permeability of a suitable ion give r
to variations of the membrane resistanceR. Electric fields
may cause shifts in the effective thresholdu for an action
potential initiation. The parameteru could also change when
stimuli are sent to the medium from other regions, e.g., wh
two networks interact. Here we will explicitly consider the
two cases, i.e., oscillations of the resistance and variation
the threshold, although other possibilities could also be a
lyzed.

III. OSCILLATIONS OF THE RESISTANCE

As a source of periodic modulation, we will first focus o
the oscillations of the membrane resistance. In order to p
ceed with our analysis, we will consider the Fokker-Plan
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equation giving the probability density of the spatial av
aged transmenbrane potential. For the sake of simplicity,
introduce the set of variablesx[V, x0[u, k(t)
[R(t)21C21, D[s/C, and«[«̃/C. In these variables, the
Fokker-Planck equation reads

]P

]t
52

]

]x
@~F01«F1!P#1D

]2P

]x2
, ~8!

whereF052k(t)x, with k(t)5k@11a cos(v0t)#, is the lin-
ear force, andF15@11e2n(x2x0)#21 accounts for the non
linear contribution.k, a, andv0 are constant parameters.

The probability density can be expanded in powers of
strength of the nonlinear term, namely,P5P01«P1
1«2P21¯ . Here P0 corresponds to the linearized equ
tion, whereas the remaining terms account for correcti
due to the nonlinearity. Substituting this expansion in Eq.~8!
we obtain the evolution equations for the different contrib
tions:
is
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-
e
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]P0

]t
52

]

]x
~F0P0!1D

]2P0

]x2
, ~9!

]P1

]t
52

]

]x
~F0P11F1P0!1D

]2P1

]x2
, ~10!

]P2

]t
52

]

]x
~F0P21F1P1!1D

]2P2

]x2
. ~11!

To proceed further, we will define the quantities

^xt& i5E
2`

`

xPi~x,t !dx, ~12!

with i 50,1,2, and
^xt1txt& i , j5E
2`

`

x dxE
2`

`

yPi~y,t1tux,t !Pj~x,t !dy, ~13!

with i , j 50,1,2. From Eqs.~9!–~11! one can easily see that^xt&050, whereaŝxt&1Þ0 and^xt&2Þ0. Moreover, the correlation
function can be expanded in the form

^xt1txt&5E
2`

`

x dxE
2`

`

yP~y,t1tux,t !P~x,t !dy

5^xt1txt&0,01«^xt1txt&1,01«^xt1txt&0,11«2^xt1txt&1,11«2^xt1txt&2,01«2^xt1txt&0,2. ~14!

To analyze the interplay between noise and input signal, we will consider the SNR, symbolized asI SNR defined as usual by

I SNR5
S~v0!

N~v0!
, ~15!

where the output noise is in first approximation given by

N~v!5
2p

v0
E

0

v0/2pE
2`

`

^xt1txt&0,0cos~vt!dt dt, ~16!

and the output signalS(v0) comes from

S~v0!@d~v02v!1d~v01v!#5
2p

v0
E

0

v0/2pE
2`

`

«2^xt1t&1^xt&1 cos~vt!dt dt. ~17!
eck
Since for larget the quantitiesxt1t andxt become uncorre-
lated, in the previous equation we have replaced^xt1txt& i , j
by ^xt1t& i^xt& j due to the fact that to compute the signal it
sufficient to know the behavior of the correlation function f
larger times. Therefore, to obtain the SNR it is sufficient
consider onlyP0(y,t1tux,t), P0(x,t) andP1(x,t).

With the purpose of obtaining the equation for the pro
ability density, we will assume that the resistance var
slowly, and that the amplitude of the oscillations is small.
using these approximations and by taking into account
fact that when the contribution proportional toa can be ne-
-
s

e

glected the linear system constitutes an Ornstein-Uhlenb
process, the noise term can be readily computed from

^xt1txt&0,05
D

k
e2kt. ~18!

Therefore, the spectral density of the output noise is

N~v!5
D

2k2
, ~19!
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provided thatv!k.
Moreover, we will also assume that the sigmoidal fun

tion @Eq. ~3!#, giving the mean firing rate, may be approx
mated by a step function. This fact occurs when the gain
the neuronn is sufficiently large. In such a case, the potent
function is given by

U~V!5
1

2C
@R21V222«~x2x0!Q~x2x0!#. ~20!

Under these circumstances,

P5
1

Z
e2k~ t !x2/2De«~x2x0!Q~x2x0!/D, ~21!

whereZ is the normalization factor. Up to order«, Eq. ~21!
yields

P5P01«P1 , ~22!

where

P05A k~ t !

2pD
e2k~ t !x2/2D ~23!

and

P15
1

D
P0F ~x2x0!Q~x2x0!2E

x0

`

~x2x0!P0dxG .
~24!

Notice that by using the fact thata is small P0 can be ap-
proximated by

P05A k

2pD
e2kx2/2DF11

1

2
~12x2k/D !a cos~v0t !G .

~25!

In order to obtain the output signal, we will take in
account the expression

^xt&15B1Aa cos~v0t !, ~26!

which holds whena and v0 are sufficiently small. HereB
and theA do not depend on time. By using this expression
Eq. ~17! we obtain the signal as a function of the suscep
bility A,

S~v0!5
p

2
~aeA!2. ~27!

This quantity can be computed from Eqs.~25! and~24!, and
one obtains:

A5E
x0

` 1

2D
A k

2pD
e2kx2/2Dx~x2x0!~12x2k/D !dx.

~28!

The SNR then reads

I SNR5p~aeA!2
k2

D
. ~29!
-

f
l

-

The previous integral cannot be performed explicitly; ho
ever, its behavior for high and low noise levels can be o
tained easily.

The high noise level case can be performed by replac
the lower limit of the integralx0 by 0, provided thatx0

2

!D/k. We then obtain

A5
1

2D
A k

2pDE
0

`

e2kx2/2DS x22
k

D
x4Ddx52

1

k
.

~30!

Therefore,

S~v0!5
p

2 S ae

k D 2

~31!

and

I SNR5p~ae!2
1

D
. ~32!

In the same way, for a low noise level we can perform
asymptotic expansion by using the formula

E
x

`

une2au2
du5

1

2
xn11

e2ax2

ax2 F11
n21

2ax2 1OS 1

a2D G .

~33!

In this case the susceptibility is given by

A52x0A 1

2pkD
e2kx0

2/2D. ~34!

Therefore, the signal and the SNR are

S~v0!5
1

4kD
~x0ae!2e2kx0

2/D ~35!

and

I SNR5
1

2S x0

ae

D D 2

ke2kx0
2/D. ~36!

At a low noise level the SNR increases, whereas it decrea
for large values of the noise; therefore, the SNR has a m
mum which indicates the presence of SR.

In order to analyze the case in which the oscillations a
the nonlinear term are small, but not infinitesimal, we ha
numerically integrated the corresponding equations follo
ing a standard second order Runge-Kutta method for
chastic differential equations@38,39#. The Langevin equation
we have integrated is the one that corresponds to the Fok
Plank equation@Eq. ~8!#, and is given by

dx

dt
52k~ t !x1«@11e2n~x2x0!#211j~ t !, ~37!

where j(t) is Gaussian white noise with zero mean, a
correlation function^j(t)j(t8)&52Dd(t2t8). Here small
means that the effects of the nonlinear term are not la
enough in order for the system to become bistable. The
tential function giving the dynamics of the system is depic
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in Fig. 1~a!, for different values of the resistance. In Fig. 2~a!
we show the behavior of the SNR as a function of the no
level D for two frequencies. The values of the remaini
parameters are the same as the corresponding ones t
potential function of Fig. 1~a!. This figure clearly exhibits a
maximum in the SNR.

When the nonlinear term is large enough, the system m
display bistability. One state corresponds to all neurons
rest and the other to active neurons.

In Fig. 3~a! we display the potential function associat
with Eq. ~37!, when the resistance varies for values of t
parameters corresponding to the bistable situation. Note
when the resistance depends on time, the position of
minimum corresponding to the active state also changes
riodically in time.

In order to analyze this situation, we have numerica
integrated the corresponding equations as in the prev
situation where the potential function is monostable. Fig
4~a! displays the SNR which exhibits a maximum at a no
zero noise level.

In view to illustrate how the system behaves, in Fig. 5~a!
we show three time series for different noise levels. T
figure clearly manifests the presence of an optimum no
level, at which the response of the system is enhanced,
the displacement of the minima corresponding to active n
rons.

IV. VARIATION OF THE THRESHOLD

In the previous analysis we have studied the case in wh
the resistance of the neuron undergoes oscillations. Ano

FIG. 1. ~a! Representation of the potential functionU(V) @Eq.
~7!# for R2152 ~continuous line!, R2153 ~dotted line!, andR21

51 ~dashed line!. The values of the remaining parameters areC
51, n510, u52, and«52. ~b! Representation ofU(V) for u52
~continuous line!, u51.5 ~dotted line!, and u52.5 ~dashed line!.
The values of the remaining parameters areC51, n510, R21

52, and«52.
e
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FIG. 2. ~a! SNR corresponding to Eq.~37! as a function of the
noise level forv0/2p50.1 ~circles! and v0/2p50.01 ~triangles!.
The values of the remaining parameters arek52, a50.5, «52,
x052, andn510. ~b! SNR corresponding to Eq.~45! as a function
of the noise level forv0/2p50.1 ~circles! and v0/2p50.01 ~tri-
angles!. The values of the remaining parameters arek52, a
50.5, «52, x052, andn510. In both cases the solid line is
guide for the eye.

FIG. 3. ~a! Representation of the potential functionU(V) @Eq.
~7!#. Same situation as in Fig. 1~a!, but «58. ~b! Representation of
U(V). Same situation as in Fig. 1~b!, but «58.
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possibility of temporal variation are oscillations in the p
rameteru. Explicitly, the dynamics corresponding to th
situation is described again by Eq.~8!, but now F052kx
and F15@11e2n„x2x02a cos(v0t)…#21. By using the same as
sumptions about the parametersa, «, andv0 , and the gain
n introduced previously, we will now proceed in a simil
fashion.

It is easy to see that in this caseP0 does not depend on
time:

P05A k

2pD
e2kx2/2D, ~38!

and the correction to the probability density due to the n
linear term is given by

P15
1

2D
P0H @x2x02a cos~v0t !#Q„x2x02a cos~v0t !…

2E
x01a cos~v0t !

`

@x2x02a cos~v0t !#P0~x!dxJ . ~39!

The averaged value ofx is then

^x&15E
x01a cos~v0t !

`

x
1

2D
P0~x!@x2x02a cos~v0t !#dx.

~40!

Note that for symmetry reasons, the integral in Eq.~39! gives
a null contribution tô x&1 . By expanding in the parametera
around its zero value, we then obtain Eq.~26!. In this case
the susceptibility reads

A52E
x0

`

x
1

2D
P0~x!dx52

1

A8pkD
e2kx0

2/2D. ~41!

FIG. 4. ~a! Same situation as in Fig. 2~a!, but «58. ~b! Same
situation as in Fig. 2~b!, but «58.
-
The noise term is the same as in the previous case, t

we obtain the following expressions for the signal, noise, a
SNR

S~v0!5
p

2
~aeA!25

1

16pkD
~ae!2e2kx0

2/D, ~42!

N~v0!5
D

2k2
, ~43!

I SNR5p~aeA!2
k2

D
5

k~ae!2

8pD2
e2kx0

2/D. ~44!

This last expression clearly shows that the SNR has a ma
mum at a nonzero noise level then making the presence
SR manifest.

As we did in the previous situation, to study the case
which the oscillations and the nonlinear term are not infin
tesimal, we have numerically solved the correspondi
Langevin equation by using the procedure outlined above.
this case it reads

FIG. 5. ~a! Time series corresponding to Eq.~37! for D50.56
~top!, D55.6 ~middle!, and D5100 ~bottom!. The values of the
remaining parameters arev0/2p50.01, k52, a50.5, «58, x0

52, andn510. ~b! Time series corresponding to Eq.~45! for D
50.56~top!, D53.3 ~middle!, andD5100 ~bottom!. The values of
the remaining parameters arev0/2p50.01, k52, a50.5, «58,
x052, andn510.
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dx

dt
52kx1«@11e2n~x2x02a cos~v0t !!#211j~ t !, ~45!

wherej(t) is the same noise as the one defined previou
The explicit situation we have considered is given throu
the potential function displayed in Fig. 1~b!. In Fig. 2~b! we
show the behavior of the SNR as a function of the noise le
D for two frequencies. The values of the remaining para
eters are the same as those corresponding to the pote
function of Fig. 1~b!. In this case the SNR also exhibits
maximum for the two frequencies.

Bistability may also be present in this case. In Fig. 3~b!
we represent the potential function when periodic modu
tions act through the threshold, for values of the parame
corresponding to the bistable situation. In contrast to the c
of oscillations of the resistance, in which the minimum co
responding to the active state varies its position, when
threshold oscillates, the two minima always remain at
same transmenbrane potential.

This situation can also be analyzed through numerical
tegration. Figure 4~b! displays the SNR for the periodi
modulation we are considering. This quantity exhibits
maximum for the two frequencies. Finally, in Fig 5~b!, we
also show three time series for different noise levels. I
worth emphasizing that, for noise levels close to the o
mum value, the time series look as those correspondin
the usual bistable quartic potential@3,5#.

V. DISCUSSION

In this paper we have analyzed how noise affects the
havior of a neural medium when it is periodically modulate
We have found that the occurrence of noise may play a c
structive role since an optimized amount of it may contrib
to enhancing the response of the system. Under some
cumstances, the presence of noise is responsible for the
pearance of oscillations which otherwise would not be ma
fested. In this regard, the analysis of macroscopic ne
dynamics obtained from electroencephalograms has be
matter of debate over the last decade@40#. It is accepted that
the activity of the brain cortex shows low-dimensional trai
though the exact nature of the phenomenon itself is far fr
being clear. Here we have shown that noise, sometimes
considered, could give rise to a coherent behavior of
system, then playing an important role in neural dynamic

A significant issue for our results to be relevant to re
systems concerns the values of the parameters that have
used. In our case, they are similar to those frequently fo
in this kind of model and are given in arbitrary units@37#.
When a particular experimental value is chosen, the o
tt
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values must be changed accordingly. For instance, a typ
experimental value for the inverse of the time constant of
membrane is 0.25 ms21 @31#. The value we have used is 0.
~arbitrary units!. If our time units are fixed to 2 ms, then th
time constant of the membrane is the same as the experim
tal one. This fact implies that the frequencies used h
change from 0.1 and 0.01 to 0.05 ms21 (550 Hz! and 0.005
ms21 (55 Hz!, respectively, which are close to those of t
thalamic pacemarker~20–40 Hz! @31#. The threshold poten-
tial is about 50 mV in actual neurons; in our paper it is
~arbitrary units!. The amplitude of the oscillations in our pa
per ranges from 1 to arbitrary small values, which in th
case are rescaled to 25–0 mV. As regards the parametere of
our model, which accounts for the firing rate and connec
ity of the neurons, the results we present range from sm
values to those giving a bistable regime; both situations
be found experimentally depending on the firing rate a
connectivity of the neurons. The value of the gain of t
neuron is unimportant, provided that the neuron keeps
threshold. Therefore, the numerical values attributed to
parameters of the model in order to obtain SR represent
sonable values possibly attainable in actual neural syste

The mean field model we have proposed, although con
tuting an oversimplified picture of a thalamocortical ne
work, might be a first step in our understanding of how no
and nonlinearities can generate interesting macroscopic
comes. Further developments must include spatial effect
well as a consideration of activatory and inhibitory popu
tions of neurons.

On what concerns the phenomenon of SR itself, an
portant aspect that should be emphasized is the fact tha
model we have presented exhibits SR in both monosta
and bistable situations, depending on the values of the
rameters. This remarkable feature contrasts with previ
studies, for which SR has been found only for monostable
bistable systems. Moreover, some bistable systems unde
ing SR may become monostable, but under this circumsta
SR does not take place. In fact, the model under consi
ation describes a system with a threshold, accounting for
firing of neurons, that may behave as a monostable o
bistable system. Therefore, we have envisaged a model
may exhibit three different situations~monostable, bistable
and threshold! where the phenomenon occurs.
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