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Noise and periodic modulations in neural excitable media
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We have analyzed the interplay between noise and periodic modulations in a mean field model of a neural
excitable medium. For this purpose, we have considered two types of modulations, namely, variations of the
resistance and oscillations of the threshold. In both cases, stochastic resonance is present, irrespective of
whether the system is monostable or bistapB.063-651X99)13403-2

PACS numbsgs): 87.19.La, 05.40-a

[. INTRODUCTION the cortex can be, to some extent, viewed as a highly con-
nected network which is periodically stimulated by the tha-
When a nonlinear system is driven by a periodic force inlamic pacemaker. Several experimental results give support
a noisy environment, its response may be enhanced by the the idea that the behavioral states of the bralpha
presence of noise. This constructive role played by noise carhythm, slow delta waves, sleep, and RERre somehow
be characterized by the appearance of a maximum in the gelated to an oscillatory input into the cortical tissi&2].
called signal-to-noise ratitSNR) at a nonzero noise level. In  These facts indicate that a realistic model of cortical dynam-
essence, the SNR is a quantity that reflects the quality of thigs should consider the effects of the thalamocortical pace-
output signal, in such a way that for large values of thismaker, which can be simulated in different ways, but it can
quantity the output signal looks more ordered. This phenomalways be considered as a periodic external signal.
enon, named stochastic resonai6®), has been found in  Another aspect to be emphasized is the fact that single
many situations pertaining to different scientific areaspeyrons of the cortex exhibit some degree of variability, i.e.,

[1-20. the response to a stimulus depends on the particular trial,

In regards to neural systems, many examples of SR havghich is observed in single-neuron experiments and also in
been found theoretically in single neurdi24,22 and neural o2\ rements of single neurons inside the brain. Such a

networks [23-23, and experimentally in single neurons variability comes from both complex deterministic dynamics

[26,27. In contrast, an aspect which has _onIy been CO.nSIdénd the noise implicit in the random nature of the incoming
ered recently is the appearance of SR in neural excitable.

media[28]. In a set of experiments with mammalian brain IS'gtr;]‘?‘lS' Add|t|;)hnallyhsmg:3e neurons manifest |n'tr|n5|i: Ino;sz.'
slices corresponding to the hippocampal cef@st, it was n this sense, there have been numerous experimental studies

demonstrated that an electric field can either suppress or efPeut the stochastic activity of nerve cells. Noise has been

hance coherent activity in real networks. It was later shown©PServed in nerve-cell preparations and involves both synap-

by using a time-varying electric field, that as the magnituddiC Noise, which is due to randomly occurring synaptic po-
of the stochastic component of the field was increased, St€ntials [33], and membrane noise. In the last case, small
was observed in the response of the neural network to a wedliCtuations in the electric potential across the nerve-cell
periodic signal[28]. These and other recent resu[t30] Membrane are observed, even when apparently steady con-
clearly show that neural noise could play a relevant role irditions prevail. These fluctuations are linked with conduc-
the information processing of the brain. tance changes induced by random closing and opening of ion
In this context, both key ingredients for SR, i.e., a well- channels.
defined coherent and time-periodic modulation and intrinsic The aim of this paper is to study a simple model which is
noise, are present at several scales in neural tissues. We calple to capture the main traits of the actual neural media, as
consider a coarse-grained characterization of brain dynamiasoncerns the interplay between noise and periodic modula-
by means of the analysis of the electroencephalogram, whiction in neural dynamics. To this purpose, we present a de-
is an averaged measure of the spatiotemporal activity of miltailed analysis of a standard mean field model of neural ex-
lions of neurons. These neurons, in turn, are part of a neteitable medium which was introduced in a preliminary form
work receiving inputs from various parts of the nervous sys4in Ref.[18].
tem called nuclei. Among these, the thalamus plays a very The paper has been organized as follows: In Sec. Il we
important role in controlling the behavioral states of thepresent the mean field model. In Secs. Il and IV, we analyze
brain[31]. In fact, the thalamus is known to display autono-the appearance of SR in two different situations concerning
mous oscillationg31], i.e., it works as some kind of pace- oscillations of the resistance of the neural tissue and varia-
maker to the brain cortex. The thalamus is massively contion of the threshold. Finally, in Sec. V we summarize our
nected with the cortex, and produces autonomous periodimain results and discuss possible implications in neural sys-
oscillations, even when disconnected from the cortex. Henctems.
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Il. MEAN FIELD MODEL

CaV(F,t) _ V(r,t)

Let us consider a slab of neural tissue comprising a very at R

large number of closely packed and coupled nerve cells, - . N
where connections are only excitatory. Different parts of the +b¢oJ I il s T
neocortex can fit this description with more or less success.

In general, most of the real networks formed in the brain +1(r,1). (4)

cortex are constituted by both excitatory and inhibitory neu-

rons. The frequency and relevance of each type of cell, how- We will consider the case of all-to-all connectivity, i.e.,

ever, vary depending on the place considered. In this sensg>L, wherelL is the characteristic length scale. Under this

the overall activity of some brain regions, like the thalamus,assumption, the model of neural excitable medium consti-

is largely dominated by the excitatory compong®], usu-  tutes a mean field approximation, and is formulated by the

ally identified, at the microscopic level, with the piramidal equation[37]

cells. This excitatory behavior is particularly relevant in the

hippocampus, when stimulation of a singlg excitatory neuron Cd_V __ Rflv+;(1+ e V=l (5)

can generate a burst of synchronous acti{&9]. These re- dt

sults make a consideration of the behavior of cortical nets in

terms of purely excitable dynamics reasonable, as a first agiccounting for the dynamics of the spatial averagef the

proximation. In addition, the lack of a microscopic structuretransmembrane potential. Heeeis a constant that arises

is not an important problem when neurons and connectionsom that approximation. This model is referred to as the

are not explicitly considered as discrete entities, as done @&@owan-Ermentrout modglCEM). Its dynamics can be de-

our level of description. In this regard, previous studies rescribed through a potential functian(V),

veal that the mean-field approach is able to reproduce the

detailed macroscopic descriptif86]. av_ 1
The situation we consider involves one of the simplest dt  dv C°

models of aggregates of nerve cells. At a given spatial point

f, the quantity of interest is the mean local potentigf) '™ Our case,

which is the result of a local integration of incoming signals,

ie., u)=

(6)

ZVC[vR’lvz—22In(1+e”(v’”))]. )

A remarkable fact is that for some values of the parameters,
V(F,t)zf o(r—r’,t)p(rHdr’, (1) the CEM exhibits bistability. Therefore, small changes in the
r parameter values can lead to sudden shifts from one stable
branch to the oth€ef37].

To render our analysis of the mean field model complete,
over a given neighborhodd. Herep(r) is the local packing Wwe need to specify the nature of the noise. It is worth point-
density of neurons, and(r,t) is the transmenbrane poten- ing out that its origin, its characterization, and its effects in
tial. actual neural media inside the brain are far from being clear.
Here, in order to account for the noise effects, we will con-
sider a simplified situation that can be described by a fluctu-
ating current applied to the net. Moreover, we assume that
this current may be approximated by a Gaussian white noise

- - [{I1(t))=0 and{I(t)I(t+ 7)) =205(7)].
C‘?V(r’t) — v,y +B(F)*<I>(V(F D)+1(F.1). (2 Another remarkable fact is that periodic modulations may
dat R ’ o affect the system in different ways, for instance, by periodi-
cally changing the value of one of the parameters. Thus
small changes in the permeability of a suitable ion give rise
HereC is the capacitance the resistancd/(r,t) a stimulus, ~ to variations of the membrane resistariRe Electric fields
B(r) the mean number of synaptic connections, and the aghdy cause shifts in the effective threshdldor an action

terisk indicates convolution. The functional form df is  Potential initiation. The paramet@rcould also change when
defined through the sigmoidal relation stimuli are sent to the medium from other regions, e.g., when

two networks interact. Here we will explicitly consider these
two cases, i.e., oscillations of the resistance and variations of

The time evolution of\/(F,t) can be obtained from the
following integrodifferential equation:

D(V)=Dg[1+e V071 3) the threshold, although other possibilities could also be ana-
lyzed.
where®, and v are given constants, antllis a threshold. lll. OSCILLATIONS OF THE RESISTANCE
Many possible functional forms fg8(r) can be considered,  Ag a source of periodic modulation, we will first focus on

as for example an exponential decﬁyf)zbexp(—lfl/y), the oscillations of the membrane resistance. In order to pro-
which leads to the equation ceed with our analysis, we will consider the Fokker-Planck
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equation giving the probability density of the spatial aver- P, 9 PPy
aged transmenbrane potential. For the sake of simplicity, we —=——(FyPy)+D—, 9
introduce the set of variablesx=V, x,=6, Kk(t) at X ax?
=R(t)"'C™ !, D=0¢/C, ande=¢/C. In these variables, the
Fokker-Planck equation reads aP, 9 . Da2p1 0
P 5 2p ot ox (FoP1tF1Po)+ 2 (10
E——ﬁ—x[(Fo+8F1)P]+Dy, 8
P, ] 9?P,
whereF = —Kk(t)x, with k(t) = k[ 1+ a cos(wgt)], is the lin- o 5(F0P2+ F.P,)+D 5 (12
ear force, and=;=[1+e "%~ ! accounts for the non- 28
linear contribution.x, @, andw, are constant parameters.
The probability density can be expanded in powers of thelo proceed further, we will define the quantities
strength of the nonlinear term, namelp=Py+ePy
+&2P,+---. Here P, corresponds to the linearized equa- %
tion, whereas the remaining terms account for corrections (Xt)i=J xPi(x,t)dx, (12
due to the nonlinearity. Substituting this expansion in 4. o
we obtain the evolution equations for the different contribu-
tions: with i=0,1,2, and
|
<Xt+rxt>i,j:f X dXJ wyPi(y,t+ 71X, 1) Pj(x,t)dy, (13

with i,j=0,1,2. From Eqs(9)—(11) one can easily see th@t;)o=0, whereagx;);# 0 and(x;),# 0. Moreover, the correlation
function can be expanded in the form

(xtﬂxt):f xdxj yP(y,t+ 7/x,t) P(x,t)dy

=Xty X 0,0 E(Xt+ X0 1,0T 8(Xer Kot e (X4 X1t e (X4 Xp)2,0t e (X4 Xt)0,2- (14
To analyze the interplay between noise and input signal, we will consider the SNR, symbolizgd dsfined as usual by

_ S(wo)
I'snR= m, (15)

where the output noise is in first approximation given by
21 ((wol2m (o
N((l))z _J' f <Xt+TXt>010C01(,0’T)det, (16)
wopJo —
and the output signéd(wy) comes from

21 ((wol2m (o )
S(wo)[é(wo—w)-l—&(wo-i-w)]:w—ofo f_ms (Xi+ »1{X)1 cOf wT)d 7 dt. 17

Since for larger the quantitiex, , , andx, become uncorre- glected the linear system constitutes an Ornstein-Uhlenbeck
lated, in the previous equation we have repladed ,X); process, the noise term can be readily computed from
by (X¢+)i{X;); due to the fact that to compute the signal it is
sufficient to know the behavior of the correlation function for B
larger times. Therefore, to obtain the SNR it is sufficient to <Xt+r><t>o,o:;e . (18
consider onlyPy(y,t+ 7Xx,t), Po(x,t) andP(x,t).

With the purpose of obtaining the equation for the prob-therefore, the spectral density of the output noise is
ability density, we will assume that the resistance varies
slowly, and that the amplitude of the oscillations is small. By D
using these approximations and by taking into account the N(w)= —, (19)
fact that when the contribution proportional docan be ne- 2
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provided thatw<< k. The previous integral cannot be performed explicitly; how-
Moreover, we will also assume that the sigmoidal func-ever, its behavior for high and low noise levels can be ob-

tion [Eq. (3)], giving the mean firing rate, may be approxi- tained easily.

mated by a step function. This fact occurs when the gain of The high noise level case can be performed by replacing

the neurorv is sufficiently large. In such a case, the potentialthe lower limit of the integralx, by 0, provided thaixé

function is given by <D/k. We then obtain
1 1 K ® K 1
U(V)===[R 1V2=2e(x—X%0)®(x—Xg)]. (20 = J —x?12D| g2 4| gy= — =
V)=5¢cl e(X—=Xp)O(x—=Xg)]. (20 A 2D\/27TD ,© x2— oxt fdx=——.
. 30
Under these circumstances, 30
Therefore,
pP= %e—k(t)x2/2Des(x—xo)(~)(x—XO)/D' (21) ol we 2
S(wo)= 5| = (39
whereZ is the normalization factor. Up to order Eq. (21)
yields and
P=Py+&Py, 22 1
0T e (22 | snr=m(a€)’ 5 (32
where
In the same way, for a low noise level we can perform an
b k(t) o k(212D 23 asymptotic expansion by using the formula
" N 27D a?
o0 —ax —
and f u"e a’du= EX'H'l 1+ ]£+O i :
X 2 axz 2ax a2
P1=—=Pg| (X—Xg)O(X—Xg) — —Xg) PodX]. .
1= Po| (X7 %0) O (x=Xo) LO(X Xo)Po X} In this case the susceptibility is given by
(24)
[ 1 o2
Noti<_:e that by using the fact that is small P, can be ap- A=—Xo me X/ (34
proximated by
L Therefore, the signal and the SNR are
K
Po=\/=——€ 2| 14 Z(1—x2k/D)a cod wqt) |. 1
27D 2 _ 2 *KXS/D 35
(25) S(wo) = 75 (Xoxe)%e (39
In order to obtain the output signal, we will take into and
account the expression
1 ae ? —KX2/D
(X¢)1= B+ Aa cog wt), (26) |SNR:§ Xoy | K& 7O (36)

which holds whenx and w, are sufficiently small. Herd8 At a low noise level the SNR increases, whereas it decreases

and theA do not depend on time. By using this expression infor |arge values of the noise; therefore, the SNR has a maxi-

Eq. (17) we obtain the signal as a function of the suscepti-mum which indicates the presence of SR.

bility A, In order to analyze the case in which the oscillations and
the nonlinear term are small, but not infinitesimal, we have

S(wg) = g(aeA)Z. (27) _numerically integrated the corresponding equations follow-
ing a standard second order Runge-Kutta method for sto-
) ) chastic differential equatio88,39. The Langevin equation
This quantity can be computed from E85) and(24), and  \ye have integrated is the one that corresponds to the Fokker-
one obtains: Plank equatioriEq. (8)], and is given by

fh=fwj;\/ “e~0x(x—xo)(1-x«/D)dx B Kt e[1he ] Lhg(h),  (37)
x02D 27D 0 ’ dt - 8[ ] g ’

28

29 where &(t) is Gaussian white noise with zero mean, and
The SNR then reads correlation function(&(t)€(t'))=2D8(t—t’). Here small
means that the effects of the nonlinear term are not large
enough in order for the system to become bistable. The po-
tential function giving the dynamics of the system is depicted

2
IsmzwuwAy%n 29
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vu) 41
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(I) 1 2 2
logyo(D)

FIG. 1. (a) Representation of the potential functibi(V) [Eq.
(7)] for R"1=2 (continuous ling R~*=3 (dotted ling, andR™* FIG. 2. (a) SNR corresponding to Eq37) as a function of the
=1 (dashed ling The values of the remaining parameters @re noise level forwe/27=0.1 (circles and wy/27=0.01 (triangles.
=1, v=10, #=2, ande=2. (b) Representation dfj (V) for §=2 The values of the remaining parameters are2, «=0.5, e=2,
(continuous ling 6=1.5 (dotted ling, and #=2.5 (dashed ling ~ xo=2, andv=10. (b) SNR corresponding to E¢45) as a function
The values of the remaining parameters &e1, v=10, R™* of the noise level forwy/277=0.1 (circles and wq/27=0.01 (tri-
=2, ande=2. angle$. The values of the remaining parameters are?2, a

=0.5, e=2, xo=2, andv=10. In both cases the solid line is a
in Fig. 1(a), for different values of the resistance. In Figag guide for the eye.
we show the behavior of the SNR as a function of the noise
level D for two frequencies. The values of the remaining
parameters are the same as the corresponding ones to the
potential function of Fig. @a). This figure clearly exhibits a s
maximum in the SNR.

When the nonlinear term is large enough, the system may
display bistability. One state corresponds to all neurons at
rest and the other to active neurons.

In Fig. 3(@ we display the potential function associated
with Eq. (37), when the resistance varies for values of the
parameters corresponding to the bistable situation. Note that
when the resistance depends on time, the position of the
minimum corresponding to the active state also changes pe-
riodically in time.

In order to analyze this situation, we have numerically
integrated the corresponding equations as in the previous
situation where the potential function is monostable. Figure
4(a) displays the SNR which exhibits a maximum at a non-
zero noise level.

In view to illustrate how the system behaves, in Fip)5
we show three time series for different noise levels. This
figure clearly manifests the presence of an optimum noise
level, at which the response of the system is enhanced, and -4t ~—
the displacement of the minima corresponding to active neu-
rons. -2 0

1
[=2]

N
o
@

IV. VARIATION OF THE THRESHOLD ] ] ]
FIG. 3. (a) Representation of the potential functibi(V) [Eqg.

In the previous analysis we have studied the case in whicli)]. Same situation as in Fig(d), bute=8. (b) Representation of
the resistance of the neuron undergoes oscillations. Another(V). Same situation as in Fig(ld), bute=8.
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4 0 1 2 3
log;o(D)

FIG. 4. (a) Same situation as in Fig.(®, but=8. (b) Same
situation as in Fig. @), bute=38.

possibility of temporal variation are oscillations in the pa-
rameter . Explicitly, the dynamics corresponding to this

situation is described again by E(), but now Fy= — xx
andF,=[1+e "* X0~ acoskg)]~1 By ysing the same as-
sumptions about the parameterse, andwg, and the gain
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(1)

1000

z(t) 2

FIG. 5. (a) Time series corresponding to E@7) for D=0.56

v introduced previously, we will now proceed in a similar (top), D=5.6 (middle), and D= 100 (bottom). The values of the

fashion.
It is easy to see that in this cagg does not depend on

time:
[ K 2
— — kXx“/2D
Po 271'De ’

(38)

remaining parameters am@y/27=0.01, k=2, «=0.5, ¢=8, X,
=2, andv=10. (b) Time series corresponding to E@5) for D
=0.56(top), D=3.3(middle), andD = 100 (bottom). The values of
the remaining parameters a/27=0.01, k=2, «=0.5, £¢=8,
Xo=2, andv=10.

The noise term is the same as in the previous case, then

and the correction to the probability density due to the nonWwe obtain the following expressions for the signal, noise, and
SNR

linear term is given by

1
PFEPo{ [X—Xo— a@ cog wot) ]O (X—Xg— a cog wgt))

—foo [x—xo—acos{wot)]Po(x)dx}. (39
Xo+ @ cog wqt)

The averaged value ofis then

- 1
(x>1=J X 5= Po(X)[X—Xp— a coq wyt) Jdx.
Xg+ a cog wgt) 2D
(40)

Note that for symmetry reasons, the integral in 89) gives
a null contribution tox), . By expanding in the parameter
around its zero value, we then obtain Eg6). In this case
the susceptibility reads

e KXS/ZD. (41)

X

» 1
A=—f0xﬁPo(x)dx=—

1
V8mkD

S(w ):z(aEA)zz (ae)Ze—Kxng (42
o2 16w«D ’
N(wo) = Pyrl (43)
2 2
lSNR: ’7T(CY€A)2 « = K(aE) e KXS/D. (44)

D gnD?
This last expression clearly shows that the SNR has a maxi-
mum at a nonzero noise level then making the presence of
SR manifest.

As we did in the previous situation, to study the case in
which the oscillations and the nonlinear term are not infini-
tesimal, we have numerically solved the corresponding
Langevin equation by using the procedure outlined above. In
this case it reads
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dx values must be changed accordingly. For instance, a typical
qio X e[1+e X Xomacoswo) =1y £(t)  (45)  experimental value for the inverse of the time constant of the
membrane is 0.25 ms [31]. The value we have used is 0.5
where£(t) is the same noise as the one defined previously(arbitrary unitg. If our time units are fixed to 2 ms, then the
The explicit situation we have considered is given througHiime constant of the membrane is the same as the experimen-
the potential function displayed in Fig(H. In Fig. 2b) we  tal one. This fact implies that the frequencies used here
show the behavior of the SNR as a function of the noise levethange from 0.1 and 0.01 to 0.05 g =50 H2) and 0.005
D for two frequencies. The values of the remaining paramms * (=5 H2), respectively, which are close to those of the
eters are the same as those corresponding to the potentfirlamic pacemarkeg20—40 Hz [31]. The threshold poten-
function of Fig. 1b). In this case the SNR also exhibits a tial is about 50 mV in actual neurons; in our paper it is 2
maximum for the two frequencies. (arbitrary unit3. The amplitude of the oscillations in our pa-
Bistability may also be present in this case. In Figp)3 per ranges from 1 to arbitrary small values, which in that
we represent the potential function when periodic modulacase are rescaled to 25—-0 mV. As regards the pararaeter
tions act through the threshold, for values of the parametergur model, which accounts for the firing rate and connectiv-
corresponding to the bistable situation. In contrast to the cagéy of the neurons, the results we present range from small
of oscillations of the resistance, in which the minimum cor-values to those giving a bistable regime; both situations can
responding to the active state varies its position, when thée found experimentally depending on the firing rate and
threshold oscillates, the two minima always remain at theconnectivity of the neurons. The value of the gain of the
same transmenbrane potential. neuron is unimportant, provided that the neuron keeps the
This situation can also be analyzed through numerical inthreshold. Therefore, the numerical values attributed to the
tegration. Figure &) displays the SNR for the periodic parameters of the model in order to obtain SR represent rea-
modulation we are considering. This quantity exhibits asonable values possibly attainable in actual neural systems.
maximum for the two frequencies. Finally, in Fighp, we The mean field model we have proposed, although consti-
also show three time series for different noise levels. It istuting an oversimplified picture of a thalamocortical net-
worth emphasizing that, for noise levels close to the optiwork, might be a first step in our understanding of how noise
mum value, the time series look as those corresponding tand nonlinearities can generate interesting macroscopic out-

the usual bistable guartic potent{&,5]. comes. Further developments must include spatial effects as
well as a consideration of activatory and inhibitory popula-
V. DISCUSSION tions of neurons.

On what concerns the phenomenon of SR itself, an im-
In this paper we have analyzed how noise affects the beportant aspect that should be emphasized is the fact that the
havior of a neural medium when it is periodically modulated.model we have presented exhibits SR in both monostable
We have found that the occurrence of noise may play a corand bistable situations, depending on the values of the pa-
structive role since an optimized amount of it may contributerameters. This remarkable feature contrasts with previous
to enhancing the response of the system. Under some Ccigtudies, for which SR has been found only for monostable or
cumstances, the presence of noise is responsible for the apistable systems. Moreover, some bistable systems undergo-
pearance of oscillations which otherwise would not be maniing SR may become monostable, but under this circumstance
fested. In this regard, the analysis of macroscopic neuraR does not take place. In fact, the model under consider-
dynamics obtained from electroencephalograms has beenggion describes a system with a threshold, accounting for the
matter of debate over the last decdd8]. It is accepted that  firing of neurons, that may behave as a monostable or a
the activity of the brain cortex shows low-dimensional traits, bistable system. Therefore, we have envisaged a model that

though the exact nature of the phenomenon itself is far froninay exhibit three different situatior(snonostable, bistable,
being clear. Here we have shown that noise, sometimes neid thresholgwhere the phenomenon occurs.

considered, could give rise to a coherent behavior of the
system, then playing an important role in neural dynamics.

A significant issue for our results to be relevant to real
systems concerns the values of the parameters that have beenThis work was supported by DGICYT of the Spanish
used. In our case, they are similar to those frequently founé@overnment under Grants Nos. PB95-0881 and PB94-1195.
in this kind of model and are given in arbitrary unf37].  J.M.G.V. wishes to thank Generalitat de Catalunya for finan-
When a particular experimental value is chosen, the othetial support.
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