

On the recording and measurements of social robotics experiments in education

M. Graña

Computational Intelligence Group

University of the Basque Country

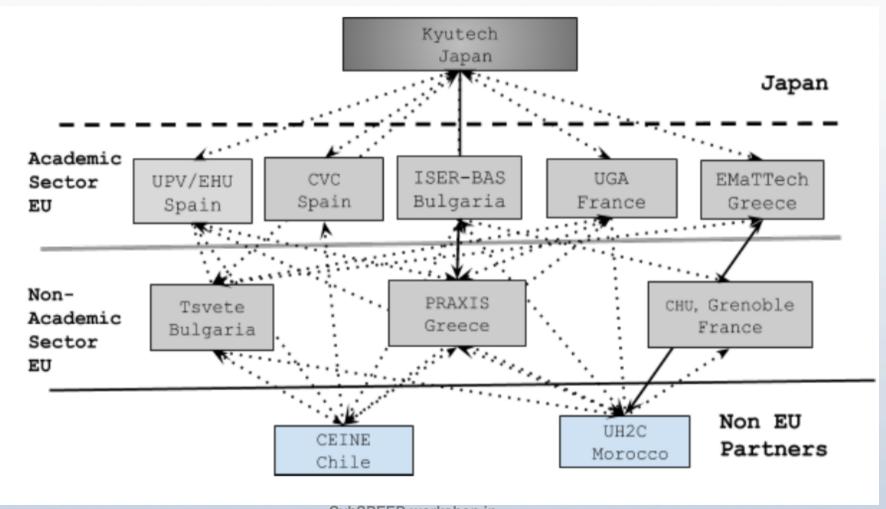
Index

- Short overview of CybSPEED project
- Classes of observation measures:
 - Remote sensing
 - Contact sensing
 - Indirect observations
- Some examples from the literature
- Conclusions and discussion

CybSPEED

Project proposal

CybSPEED proposal


- Research on three levels
 - analysis of cognitive biometrics signals,

 - modeling of the learner-robot interaction and
 - development of novel instruments
 - towards an optimal design of Cyber-Physical Systems
 - for improved pedagogical rehabilitation in education

Consortium

Topology of the project

Artificial perception

Robot soft-adaptation IR-BAS

Advanced humanrobot interfaces

UPV/Games and storytelling RAXIS
Tsevete

Student progression measurement

Kyutech

activity correlation with beh Behavior measuremen

CHU

UGA

UH2C

Legal framework

Ethics requirements

- There is an increased concern about ethics in research related to humans
- Screening is increasingly stringent requiring
 - Clear hypothesis formulation
 - Trade-off between intervention and benefits
 - Protection of the subject well-being
 - For children with special needs safety and absence of negative effects
 - Strict experimental control: when to stop it.

Ethics requirements

- Ethics refer mostly to experiment definition quality regarding
 - intervention carried out
 - Experimental control
 - When it will be stopped
 - Information given to the experimental subjects
 - Informed consent
 - With drawal from the experiment

Data protection

- The EU has made effective a new regulation that increases the control of people over its personal data.
- For the experimental research point of view it requires stronger controls on the data processing quality
- Data must be anonymized for processing
- Subjects have complete control on when and how the data will be deleted

Data protection

 Institutions require now a data protection officer that ensures correct data management policies and corrections.

Scientific requirements

- From the scientific point of view we need
 - Exhaustive information
 - Repeatable experiments
 - Instrument calibration experiments
 - Precise and complete experimental designs
 - Identification of causes (interventions) and expected effects (measures)
 - Good definition of observable measures
 - With little error risk
 - As complete as possible
 - Good statistical properties

Trade off

- There is an intrinsic conflict between scientific and ethical/data protection interests
- The definition of good observation measures is at the core of the problem
 - They must effectively quantify the expected effect
 - Minimally invasive and harmless
 - They must not interfere with the measured process
 - They must minimize data protection and ethical issues
 - They must be reliably obtained

Kinds of observation measures

Remote sensing

- Sensors that do not touch the subject
 - Cameras
 - Visible spectrum
 - Infrared spectrum
 - depth sensors (i.e. kinect),
 - position sensors (i.e. wireless localization)
- Analysis can be carried out by human observer or automatically

Remote sensors

Pro	os	Cons
	reat quantity of information	 Usually are data protection
	low repeatability of analysis	critical
•Ne	ew measures can be applied	 People can be easily identified
mu	ch later than the actual	 Images are very sensitive to
exp	periment	evolving ethical standards
•Th	ney provide quite intuitive	
der	monstration of effects of	
inte	ervention	
•Th	ney provide quantitative	
info	ormation	

Wearable sensors

- Motion sensors
- Physiological sensors
 - EEG
 - MEG
 - Body physiology (heart rate, sweat and conductivity, others)

Wearable sensors

Pros	Cons
 Provide quantitative information They do not raise data protection issues 	 They are difficult to interpret in terms of behavioral units Their signals are very noisy There can be strong inter-subject variabilities Their statistical analysis is difficult

Indirect measures

- Questionaires
 - The subject
 - The experiment controller/observer
- Observations made during the experiment

Indirect

Pros	Cons
 They do not pose big data protection issues They are the last resort to gather information in very unstructured conditions 	They are very subjectiveNot easily quantifiable (Likert scales)

Some examples

Myrthe Tielman TNO / Utrecht University m.l.tielman@gmail.com

Mark Neerincx TNO / Delft University of Technology

John-Jules Meyer Utrecht University mark.neerincx@tno.nl J.J.C.Meyer@uu.nl

Rosemarijn Looije TNO Human Factors rosemarijn.looije@tno.nl

2014

HRI'14, March 3-6, 2014, Bielefeld, Germany. Copyright is held by the owner/author(s). Publication rights licensed to ACM. ACM 978-1-4503-2658-2/14/03 ...\$15.00. http://dx.doi.org/10.1145/2559636.2559663.

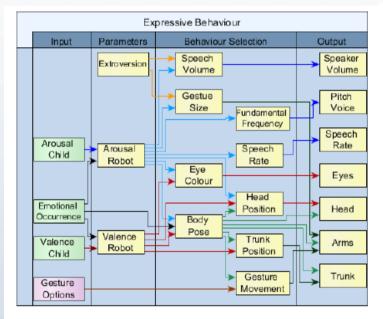


Figure 1: Model for expressive behaviour of the Nao robot

Figure 2: A child playing the quiz with the robot using the tablet and seesaw

Task: quiz answering in alternating roles using a tablet

Table 1: Expressions and their definitions

Expression	Properties
Smiles	All instances where the mouth of the child an-
	gles upwards. As we only count instances and
	not duration, this was only counted when there
	was a change. So only when the mouth angles
	rose upwards.
Laughter	All cases in which the child laughed. Laughter
	is here classified as those smiles which are ac-
	companied by sound or movement of the chest
	related to the happy feelings.
Excited	All cases in which the child either bounced
bouncing	up and down out of obvious excitement, or in
	which the child made a large excited gesture.
	An example of the latter is raising both arms,
	and other such gestures of success.
Positive	Every positive exclamation not directly related
vocalization	to the dialogue. Common words are yay or yes.
Frowns	All facial expressions obviously related to
	thinking, concentrating or misunderstanding.
	Also all facial expressions where the eyebrows
G1	are lowered.
Shrugging &	Raising the shoulders and dropping them
Sighing	again, or audibly letting out air. These two
G: 1	expressions are seen as signs of boredom
Startle	All signs of involuntary fright from the child,
37	such as it being startled by sudden movement.
Negative vo-	All negative exclamations not directly related
calization	to the dialogue, such as nou zeg or jammer.

Goal: to assess whether emotional reactions by the robot increase social bonding

Measurement of child reaction: via video labeling by a human using a scoring system

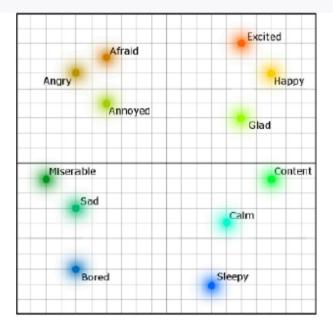


Figure 3: The interface via which the experimenter provided information about the arousal and valence of the child. The horizontal axis represents the valence of the child, the vertical axis the arousal. The coloured dots reference specific emotions as context.

Emotional feedback to the robot about the child emotional state
Carried out by a human

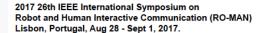


Table 2: Topics of questions in questionnaires

Subject	Nr. of questions individual robot	Nr. of questions forced choice
Fun	9	1
Acceptance	3	1
Empathy	3	1
Trust	3	1
Emotions	3	1
Preference	0	1

Questionary to the child about the robot preferences (with vs. without emotion) x

Functional Imitation Task in the Context of Robot-assisted Autism Spectrum Disorder Diagnostics: Preliminary Investigations

Frano Petric¹ and Damjan Miklić¹ and Maja Cepanec² and Petra Cvitanović² and Zdenko Kovačić¹

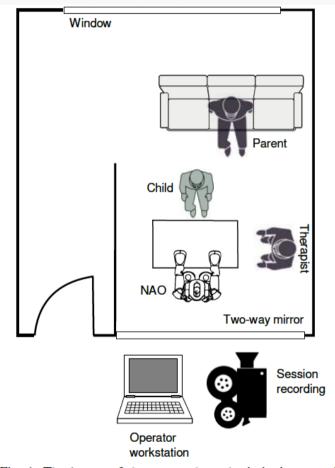


Fig. 1: The layout of the room where the imitation experiments were taking place.

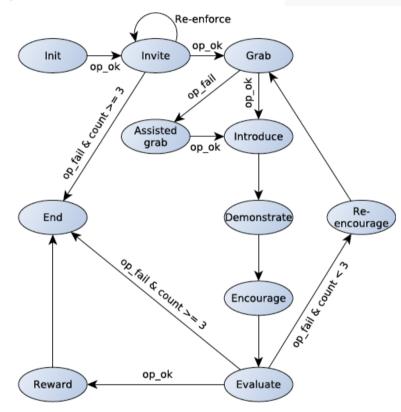


Fig. 2: A state machine model of the imitation task. Transition conditions labelled with op_* indicate that robot operator confirmation is required for completing the transition. Unlabelled transitions imply successful completion of the task associated with the source state.

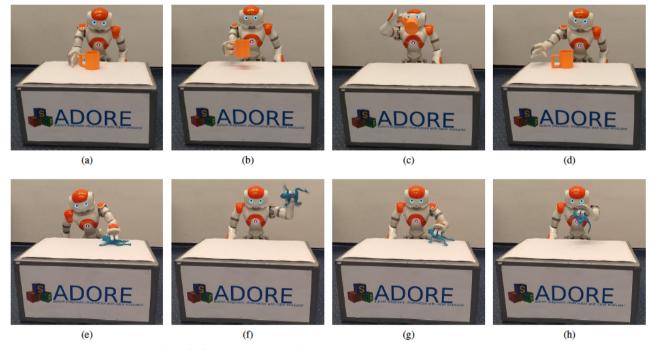


Fig. 5: The drinking and frog gesture demonstration sequences.

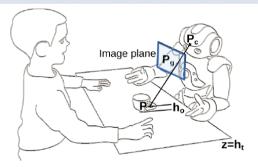


Fig. 4: Grab point calculation using calibrated camera and known height of the grab point with respect to NAO's base coordinate frame.

Measuring the success of the imitation game

Automated child gesture recognition External camera HMM based gesture recognizer

TABLE III: Laboratory evaluation of gesture recogntion algorithm. Values indicate number of true positives (TP), false positives (FP), true negatives (TN) and false negatives (FN). The classifier chooses the gesture with higher likelihood when more than one gesture satisfies the threshold.

TP	TN	FP	FN	accuracy	recall	precision
98	123	27	3	0.88	0.97	0.78

However results during actual experiment with children were very bad

Four Tasks of a Robot-assisted Autism Spectrum Disorder Diagnostic Protocol: First Clinical Tests

Frano Petric, Kruno Hrvatinić, Anja Babić,

Maja Cepanec, Jasmina Stošić and Sanja Šimleša

The robot carrying out the evaluation of child behavior by detection of specific events while performing some tasks

TABLE V.	Session results for child ASD001.							
Task	Succ H	essful R	Vocal H	lization R	Spe H	ech R	Co H	de R
Response to name Joint attention Play request Imitation	× × ✓	✓ × ✓	× × ×	✓ ✓ × ✓	\ \ \ \ \	×	0 3 0 1	1 3 1 1

Results show a strong divergence between human rater on video recording and robot

2013 IEEE RO-MAN: The 22nd IEEE International Symposium on Robot and Human Interactive Communication Gyeongju, Korea, August 26-29, 2013

Comparing two LEGO Robotics-Based Interventions for Social Skills Training with Children with ASD

Jordi Albo-Canals, Marcel Heerink, Marta Diaz, Vanesa Padillo, Marta Maristany, Alex Barco, Cecilio Angulo, Ariana Riccio, Lauren Brodsky, Simone Dufresne, Samuel Heilbron, Elissa Milto, Roula Choueiri, Dan Hannon, and Chris Rogers

TABLE II. CODE SCHEME FOR BEHAVIOUR ANALYSES BARCELONA

Group	Behavior	Description			
	Ask for Help	How many times the children ask for help from therapist or technician			
	Ask for	How many times the children ask for			
	permission	permission from therapist or technician			
	permission	When groupmates stand within 120 cm,			
	Group	or what is describes as the limit of			
	proxemics	"personal distance" in conversational			
	F	interaction, of each other by [3]			
	Shared	When groupmates look at the same object			
Social	gaze	or at each other [3]			
Interact		Indicating the robots, computers or			
ion		activity material (i.e.: cards, board, etc.)			
	Pointing	to either the experimenter or groupmates			
	Behaviour	(i.e.: during a conversation/explanation			
		even if they don't saying nothing)			
	Shared	through pointing at them [3]			
	Positive Positive	How many times the children would			
	affect	laugh or smile with groupmates [3]			
	Joint				
	attention	Initiation and response			
	No playing	The play it hasn't started or user it isn't			
	Tro playing	doing nothing related with the play			
	Disengage ment	Participant is no focusing to the task or			
		other individuals within the group or the			
		other group (not really interested) [15]			
		Subject works with another person by turn-taking, or discussing play outcomes			
	Co-	but where tasks are distributed Individual			
	operative	works together with somebody e.g. hands			
	activity	on something at same time or discussing			
States		outcome together [15]			
of play		Participant is watching what the other			
	Onlooker	individuals within the own group are			
	Onlooker	doing but does not actively take part or is			
		watching the experimenter [15]			
	Onlooker	Participant is watching what the other			
	of the other	group are doing and isn't playing or are			
	group	speaking with the other group			
	Playing	Subject is playing (with activity material,			
	alone	pc or computer) or focused to the task			
	Dahas	alone (the other user can be onlooker) Direct interaction manipulation with the			
Childre	Robot manipulatio	robot (e.g. holding, connecting,			
1	шашршано	rooot (c.g. nording, connecting,			

Human observer labeling of events and behaviors on video recordings

12	IDLE III.	CODING SCHEME FOR BEHAVIOUR ANALYSES BOSTO	SCHEME FOR BEHAVIOUR ANALYSES BOSTO.
	Group	Behavior	Behavior

Group	Behavior					
		Joint Attention (initiation and				
	Non Verbal	response)				
	Communicati	Gestures/pointing				
	on	Showing				
		Initiation of conversation				
		Response to conversation				
		Conversation turns				
Social	Conversation	Commenting				
Skills	with Partner	Interrupts partner				
		Asks for help				
		Arguing				
		Resolved by themselves or adult intervention				
	Conversation with Adult	Asks for help				
		Teacher interferes to resolve				
		Teacher prompts an interaction between partners				
		Echolalia/Scripting				
		Self-stemming behaviors				
		Hyper/Hypo active (yes/no, duration)				
States		Frustration				
of play	Behaviour	Tusuation				
or play		Sharing positive affect				
		Difficulty turn taking/grabbing				
		from partner/other children				
		Description of other behaviors				
		(ex. personal space, transitions)				

CybSPEED workshop in ROBOMECH03-06-2018

Self assessment questionaire

Figure 1. Session questionaire in Boston

	Questions:	\odot	<u></u>	\odot	Teacher
		No	Neutral	Yes	
1	I listened to my partner's ideas				
2	I worked well together with my partner				
3	I had fun in robotics today				
4	My partner had fun in robotics today				
5	I controlled my anger or frustration well today				
6	I followed the classroom rules				
7	How was today's activity?	Hard	Ok	Easy	

Figure 2. Session questionaire in Barcelona

?5	No	UN POCO	BASTANTE	si
Me ha gustado la actividad de hoy				
He cumplido las reglas del grupo				
He trabajado en equipo				
La actividad de hoy me ha parecido fácil				
Me he divertido trabajando con mis compañeros				
He sido un buen compañero				
He escuchado las ideas de mis compañeros				
Estoy esperando la próxima sesión con el robot				
Me he divertido trabajando con el robot				
He controlado mi enfado				-

A Machine Learning Based WSN System for Autism Activity Recognition

Sami S. Alwakeel^{↑±}, Bassem Alhalabi [±],Hadi Aggoune^{±→}, Mohammad Alwakeel[±]

Figure 1: ACSA wearable Sensor &ACSA Parent Apps

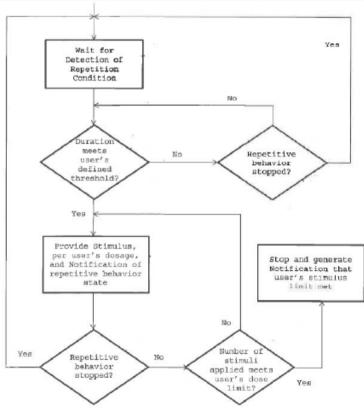


Figure 3; A flowchart representation of the wearable ACSA's logical operations

Conclusions

Conclusions

- Stringent ethics and data protection limit the measurement devices and recordings
- Most aseptic measure is the self evaluation, but it suffers from subjectivity and imprecision
- Most accurate measures are video recordings, but they are very sensitive to data protection issues.
- Wearable sensors provide anonymity but interpretation and analysis is difficult