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abstract

This Thesis deals with the development of a Swarm Intelligence algorithm to solve
the classical problem of Graph Coloring. The Gravitational Swarm Intelligence (GSI)
algorithm maps the GCP problem into a collection of autonomous agents that move
in a space following a global gravitational attraction to the color goals and attraction-
repulsion local forces corresponding to the graph topology. The Thesis provides formal
asymptotic convergence proofs showing that the GSI stationary states correspond to
GCP solutions. The Thesis provides also extensive empirical support of the GSI
comparing it with state of the art algorithms.
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Chapter 1

Introduction

This introductory chapter provides the motivation for this Thesis in Section
1.1. Section 1.2 enumerates the objectives of the work. Section 1.3 highlights
the contributions achieved by this Thesis, including the relevant publications in
Section 1.3.1. Section 1.4 comments the structure of this dissertation. Finally,
Section 1.5 summarizes notation used in the dissertation.

1.1 Motivation

The works of the candidate towards this thesis have followed some meanderings
until reaching an stationary focus in the topics covered in this memory. Works
have covered some combinatorial optimization problems, as well as RFID appli-
cations in industry. The actual topic of the thesis comes from the initial works
by members of the research group towards the application of Reynolds’ boids
to a combinatorial optimization problem. Soon it was realized that no general
abstract application was possible, so that a specific problem was to be attacked.
The Graph Coloring Problem (GCP) was selected by its long history, current
approaches and potential applications. One basic approach was to map problem
solutions to boids, so that the boid dynamics would provide some solution, much
like the Particle Swarm Optimization approach. However, a different view, that
of mapping graph nodes to boids and study the aggregation and separation dy-
namics of boids in order to obtain some information on the problem solution,
proved to be fruitful. The basic problem of defining the color compatibility
problem was modeled as some kind of attraction and repulsion between boids.

1



2 CHAPTER 1. INTRODUCTION

Initial works in the group were addressed to show that the approach effectively
provided some kind of solution to the GCP. The main questions then were:

• It is possible to map the GCP to the state of some kind of boid swarm
system?

• It is possible to define some dynamics that lead the boids to reach global
configurations corresponding to feasible solutions of the GCP?

• It is possible to obtain some optimal solution, thus determining the chro-
matic number?

The published results showed that including some attraction/repulsion terms
in the boids equations depending on the adjacency of the corresponding nodes
in the underlying graph it was possible to approach coloring solutions. Im-
provements were introduced by the definition of specific positions in space cor-
responding to color goals. The works of this thesis started in the participation
in computational and formal studies directed to assess the role of the boid per-
ceptual field in system’s convergence. Some percolation results were used as
background trying to stablish some bounds. However the results were incon-
clusive and counterintuitive. Large perceptual fields lead to poor convergence,
and the theoretical results had poor correspondence with the empirical results
obtained from extensive simulations.

At this point the thesis has a paradigm shift introducing the gravitational
metaphor, which allows for local interactions corresponding to graph adjacency
and global attraction corresponding to color goal seeking. Pursuing this has
proven fruitful in theoretical and (computational) empirical results. We have
been able to prove some important results, namely that the system will always
converge to a solution if it is feasible (the hypothesis on the number of colors is
not lower than the graph’s chromatic number). An open question is to ensure
that the system always converges to a stationary state, i.e. that there are no
limit cycles or chaotic (bounded random) behaviors.

Why swarm approaches?: Swarm approaches may lead to problem solving
methods that are knowledge distributed in the sense that the knowledge of the
actual state of the solution is distributed over the collection of individuals. No
single individual possess the knowledge of a complete solution. Observation of
the system as a whole gives the sought answer. It is expected that such kind of
approaches would give benefits in terms of
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• computational economy: the computational cost is distributed among the
agents, no single agent bears the cost of computing the complete solution
of the problem

• robustness against failure and noise: the global system will perform even
if some agents fail or have uncertain/noisy information

• adaptation to non-stationary environments: solutions emerge as a result
of a collective unsupervised interaction, therefore, the system may adapt
to changing circumstances in an unsupervised way, no need for a master
to activate the adaptation mechanism.

Why the GCP?: The GCP is a classical combinatorial problem, extensively
studied, easy to understand an to implement competitive approaches for valida-
tion/evaluation purposes. Therefore is a magnificent test ground for innovative
computational approaches. Mapping other problems into the GCP may provide
practical solutions to other (real-life) problems.

1.2 Objectives

The main objective of the Thesis is the development of innovative nature in-
spired algorithms for the approximate solution of combinatorial problems, specif-
ically the Graph Coloring Problem (GCP).

1.2.1 Fundamental objectives

Fundamental objectives are the main driving research questions that our re-
search tries to answer.

• It is possible to map a combinatorial problem into a swarm, so that its
dynamics provide a solution to the posed problem? Specifically, can the
GCP be mapped into such a system?

• The swarm can evolve to a feasible solution even if all the swarm members
are ignorant of the problem that is being solved? In other words, can be
the problem solution be posed as an emergent collective behavior?

• It is possible to give a formal proof of the convergence of the system to
such kinds of solutions?
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• The proposed method is competitive regarding the current state-of-the-
art?

• How sensitive is the proposed method to the setting of its computational
parameters?

1.2.2 Operational objectives

In order to attain the stated fundamental objectives, we need to develop some
instruments:

• Creation of a collection of benchmark graphs for the replicability of the
computational experiments. Such collection must show some specific fea-
tures that are important for the evaluation of the algorithms

• Implementation of the competing algorithms. Most algorithms reported
in the literature have no public implementations provided by the authors.

• Defining methodological steps for sound comparison of algorithms.

• Managing, analysing and plotting the big quantities of results obtained
from the computational experimentes. Performing the maintenance of the
experiment execution which can span several days.

• Performing the review of the state of the art, searching for competing
algorithms and reference results.

1.3 Contributions of the Thesis

According to the objectives set in the previous section, the achievements of the
Thesis reported in this dissertation, are summarized as follows:

1. A new algorithm for Graph Coloring Problem.

2. An application of the nature inspired Swarm Intelligence to a mathemat-
ical problem.

3. Add the Gravitational theory of Newton the the Swarm approach.

4. A new Graph class called KRG that generates graphs with a known chro-
matic number.
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5. A Graph coloring suite thar includes seven algorithm implementation, in-
cluding our Gravitational Swarm Intelligence algorithm and also a toolbox
for generating graphs:

(a) Aleatory Graphs

(b) Hard 3-coloreable Graphs

(c) Planar graphs

(d) KRG non planar graphs

6. A demostration of the convergence of the algorithm.

1.3.1 Publications

Journal publications:

• Israel Rebollo, Manuel Graña, Carmen Hernández, "Aplicación de algorit-
mos estocasticos de optimización al problema de la disposición de objetos
no-convexos" in Investigación Operacional editada por la Dirección de In-
formación Científico Técnica de la universidad de La Habana, volumen 22,
número 2 de 2001. pags 184-192.

• Israel Rebollo, Manuel Graña, Blanca Cases, “On the effect of spatial per-
colation on the convergence of Graph Coloring Boid Swarm" in Interna-
tional Journal on Artificial Intelligence Tools, DOI No: 10.1142/S0218213012500157
Accepted 2012-01-23.

• Blanca Cases, Israel Rebollo, Manuel Graña, "A Spatial-social-logical
model explaining human behavior in emergency situations" in Logic Jour-
nal of the IGPL (2011) (published on line) DOI No: 10.1093/jigpal/jzr006.

• Manuel Graña, Israel Rebollo, "Gravitational Swarm finds Graph Color-
ings", 2012, submitted.

Conference publications:

• Israel Rebollo, Manuel Graña, "An empirical comparison of some approx-
imate methods for Graph Coloring", in 7th International Conference Hy-
brid Artificial Intelligent Systems, Part 2, pp. 600-609. ISBN 978-3-642-
28930-9
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• Israel Rebollo, Manuel Graña. "Gravitational Swarm Approach for Graph
Coloring" in Studies in Computational Intelligence, 2011, Volume 387,
159-168, DOI: 10.1007/978-3-642-24094-2 D.A. Pelta, N. Krasnogor, D.
Dumitrescu, Camelia Chira and R. Lung (eds) Publisher: Springer-Verlag
Berlin / Heidelberg ISBN 978-3-642-24093-5

• Israel Rebollo, Manuel Graña,"Further results of Gravitational Swarm
Intelligence for Graph Coloring" in Nature and Biologically Inspired Com-
puting (NaBIC), 2011 Third World Congress on, pp. 183 - 188. DOI No:
10.1109/NaBIC.2011.6089456 ISBN 978-1-4577-1122-0.

• Israel Rebollo, Manuel Graña, “Dynamic Tabu Search for Non Stationary
Social Network identification based on Graph Coloring” in 7th Interna-
tional Conference on Soft Computing Models in Industrial and Environ-
mental Applications, (submitted)

1.4 Structure of the dissertation

The PhD dissertation report has the following structure.

Chapter 2 contains a detailed description of the state of the art for the Graph
Coloring Problem and the Reynolds’ boids approach to Swarm Intelligence.

Chapter 3 show the algorithms for GCP implemented in the suite except ours
that will be more exahustive explained in the next section. This implementation
are not exactly the same that appear in the literature so we need to explain the
special features.

Chapter 4 provides a deep description of our Gravitational Swarm Intelli-
gence algorithm, with the flowchart that describes the model. In this secction
we show formaly the convergence of our algorithm to a stable state.

Chapter 5 discusses the parameter that need the model. If there are necce-
sary or not, and we use non parametrical test to estract the best parameter for
testing our new method.
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Chapter 6 discusses the computational experiment results obtained over all
the graph families shown in chapter 5. We plot the accuracy of our method
against the other implemented methods and the result that appear in the bib-
liography. We also plot the computational time in steps and seconds.

Chapter 7 gives the conclusions of the Thesis and some ideas for future
research.

Appendix A A describes the graph instances used for test. We also describe
the graph generator program embeded in the suite of coloring. The new graph
class KRG that has been developed in this thesis is explained.

1.5 Selected notation

V Set of nodes of a graph

E ⊆ V × V Set of edges of a graph

G = {V,E} Graph with V nodes and E edges

B A group of agents B = {b1, ..., bn}

−→vi The speed vector of the agent i

pi(t) = (xi, yi) The position in Cartesian coordinates x, y of the agent i in the
instant t

k A color

C A group of colors C = {1, ..., k}

CG The colors of each goal CG = {g1, . . . , gK}

nearenough The goal radius, inside which the agents get the goal color

N (gk) The neighborhood in the goal k, the number of agents inside the
goal influence

enemy A pair of agents that have a link and the same color

R (bi, gk) Repulsive forced exerted between the agent bi and it’s enemies in
the neighborhood of the goal gk
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{−→ai,k}Are the attraction forces of the color goals exerted on the agents

d The Euclidean distance between the position of an agent and the
nearest color goal

Comfort is the numer if cicles were an agents has a color without having
enemies in it’s neighborhood

λ Represent the probability of an agent to be expelled from a goal

maxconfort Is the maximum confort that an agent can reach

M The chromatic number of a graph

S The search space

µiIs the charge of the agents, represent repulsion for linked nodes

δAij Is the attraction forze between the objetcs i and j

δRij Is the repulsion forze between the objects i and j

θA A threshold where the attraction forze has effect

θR A threshold where the repulsion forze has effect
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Chapter 2

State of the art

This chapter provides some background information on the Graph Coloring
Problem (GCP) and the Swarm Intelligence (SI) approach. We give formal
definitions of the GCP to be solved and a intuitive description of the essential
SI. The chapter contains a review of current approaches to solve the GCP,
including some SI methods.

The content of the chapter is as follows: Section 2.1 introduces the GCP.
Section 2.2 introduces the Swarm Intelligence direct precedent to the algorithm
proposed in this thesis. Section 2.3 provides an state of the art of current
approaches to solve GCP. Section 2.4 comments on some applications of GCP
to real life problems found in the literature.

2.1 Graph Coloring Problem

An undirected graph is a collection of nodes linked by edges G = (V,E), such
that V = {v1, . . . , vN} and E ⊆ V × V , and (v, w) ∈ E ⇒ (w, v) ∈ E. The
neighborhood of a node in the graph is the set of nodes linked to it: N (v) =

{w ∈ V |(v, w) ∈ E }.
The Graph Coloring Problem (GCP), aka Graph Labeling and Node Color-

ing in graph theory, is an assignment of colors to nodes of a graph subject to
certain constraints:

1. Two adjacent nodes connected by an edge don’t share the same color.

2. The number of colors is greater than the chromatic number χ(G) which
is the minimum number of colors that can be used to color the graph.

11
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Similarly, an edge coloring assigns a color to each edge so that no two adjacent
edges1 share the same color, and a face coloring of a planar graph assigns a
color to each face or region so that no two faces that share a boundary have
the same color. But all these problems can be summarized in the node coloring.
The coloring of a graph can have multiple solutions.

Definition 1. Graph coloring. Let C = {c1, . . . , cM} denote a set of colors.
Given a graph G = (V,E), a graph coloring is a mapping of graph nodes to
colors C : V → C such that no two neighboring nodes have the same color, i.e.
w ∈ N (v)⇒ C (v) 6= C (w).

Definition 2. Minimal graph coloring. A set of colors C∗ is minimal relative
to graph G = (V,E) if (1) there is a graph coloring C∗ : V → C∗ , and (2) for
any smaller set of colors there is no graph coloring using it: |C| < |C∗| ⇒ ¬∃C :

V → C. Alternative definition: any graph coloring on this graph has a greater
or equal set of colors C : V → C ⇒ |C| ≥ |C∗|.

Definition 3. Chromatic number: The chromatic number χ(G) is the number
of colors of the minimal graph coloring C∗.

Definition 4. Chromatic polynomial is the number of possible coloring solu-
tions using a given number of colors. P (G, k) being G the graph and k the
number of colors.

Definition 5. Edge Coloring is a proper coloring of the edges, meaning an
assignment of colors to edges so that no node is incident to two edges of the
same color. Changing edges by nodes and nodes by edges the problem can be
transformed into node coloring.

Definition 6. Total Coloring is coloring edges and nodes at the same time,
keeping the constraints of the GCP. Two adjacent nodes can’t have the same
color but neither can an edge and a end-node of the edge.

2.1.1 Properties

We present some properties related to the GCP.

Definition 7. A complete graph is a graph that has edges between all it’s
nodes.

1Two edges are adjacent if they share one end node.
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Remark 8. The bounds on the chromatic number are 1 ≤ χ(G) ≤ n. All nodes
can be colored with a single color, i.e. χ(G) = 1 only if the graph has no edges.
If the graph is complete then we need a different color for each edge χ(G) = n.

Definition 9. A Clique is a sub-graph of a graph that is complete.

Remark 10. The chromatic number of a graph is at least equal to the size of
the graph’s biggest clique.

Remark 11. Graphs with large cliques will have high chromatic number, but
the opposite is not true.

Theorem 12. Mycielski: There are triangle-free graphs with arbitrarily high
chromatic number.

The Mycielski graphs are constructed following a precise procedure giving a
constructive proof of this theorem. The Grötzsch graph shown in figure 2.1 is
the Mycielski M4 graph. We have used this kind of graphs for testing the GCP
solving algorithms because the chromatic number is known and it can be made
as large as needed.

2.2 Swarm Intelligence

Swarm Intelligence (SI) is the emergence of meaningful configurations from the
collective behavior of decentralized and self organized systems, whose dynamics
are inspired in the nature. Therefore, SI proposes a distributed computational
model to solve combinatorial problems by multi-agent systems. A definition
extracted from [3] reads “SI is a model where the emergent collective behavior
is the outcome of a process of self-organization, in which agents are engaged
through their repeated actions and interaction with their evolving environment”.

2.2.1 Flocking behaviors

The inspiration in flocking birds appears in [4], where we first find the applica-
tion of the behavior of a group of animals, in this case birds, to the solution of
mathematical problems. The application of flocking behavior appears in [5, 6]
to guide a flock of self organized mobile robots. El-abd [7] created a Particle
Swarm Optimization (that we explain latter) based in flocking behavior. We
will recall the
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Figure 2.1: The Grötzsch Graph

Reynolds studied the behavior of the birds and define three rules, that can
be translate into mathematical formulas, and then applied to mathematical
problems. The formalization of the problem starts with a group of bird B =

{b1, ..., bn} placed in the position pi. Let define ∂i as the group of birds in the
neighborhood of radius z of the bird bi . Each bird moves through the space
with a speed vi . The Reynolds rules for the behavior of flocking birds are:

1. Separation: avoid crowding neighbors (short range repulsion). Steer to
avoid crowding local flock-mates inside a private zone of radius z.

vsi = −
∑

bj∈∂i:d(bj ,bi)<z

(pj − pi) (2.1)

2. Alignment: steer in the direction of the average heading of local flock-
mates.

vai =
1

| ∂i |
∑
bj∈∂i

vj − vi (2.2)

3. Cohesion: steer to move toward the average position of local flock-mates
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Figure 2.2: Flocking Birds

(long range attraction).

vci = ci − pi where ci =
1

| ∂i |
∑
bj∈∂i

pj (2.3)

With these three rules we can compute the movement speed of each bird it the
time t+ 1 like

v(t+ 1) = fmaxN(α0v(t) + αsvs(t) + αava(t) + αcvc(t) + αnvn). (2.4)

Where the αx are modification parameters. The vn is noise and fmaxN is a
normalization value.

2.2.2 Ant Colonies

Besides birds, other living creatures have been considered for computational
inspiration. Works like [8, 9] have found inspiration in the ant colonies. Briefly,
ants move from the ant colony towards food sources leaving a trail of pheromones
behind them. Using this pheromone trail, ants manage to find the optimal
path between the ant colony and the food source. A more detailed explanation
of the trails of the ants is shown in [10]. The first problem where the ant
colony optimization (ACO) has been shown to provide feasible solutions was
the classical Travel Salesman Problem (TSP) [9]. There are a lot of versions of
ACO soving this problem, and ensuing applications, i.e. tracing the route of a
vehicle [11]. Balaprakash [12] presents an ACO probabilistic TSP.

ACO can solve more problems, not only the TSP. Franks in [13] show ants
deciding how to get to moving targets. The ligand of proteins using the PLANTS
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Figure 2.3: Ants using pheromones to find the shortest path

(Protein Ligand ANT System) algorithm of Korb [14]. More about robots with
ants in [15]. Ant clustering with locally weighted where the ants has some
memory in Peterson [16]. A reinforcement learning algorithm based algorithm
can be found in [17]. More about trail formation and TSP in Shah [18]. The
list is endless, and continue growing as this nature inspired approach remains
in fashion nowadays.

2.2.3 Particle Swarms

The other big area of research in the SI field is the Particle Swarm Optimization
(PSO), with increasing applications and results. Here the agents are particles
moving in the solution space searching for the optimal solution to the problem.
But agents have a particular feature: memory. This is the main difference
with other forms of SI. The PSO particles know the global objective function
of the system, keeping in their memory the best global solution found by the
Swarm and also their own best local solution found so far. Particles move in the
surroundings of their global and local best position found. This way the systems
moves towards the global optimum, but this heuristic doesn’t guarantee finding
the best solution. Moreover, this algorithm can solve ill-posed problems, noisy
and changing along time, even those modeled discontinuous functions because
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PSO does not use the objective function’s gradient.
Convergence of the standard PSO algorithm is proven in [19], additional

convergence is discussed in [20]. The essential PSO is introduced in [21], but
there are a lot of variants with specific convergence properties, such as [22],
or the ensemble PSO [23]. Applications are not restricted to combinatorial
problems, for instance [24] applies PSO in steganographic JPEG images .

2.2.4 Gravitational swarm

The Swarm computing natural inspiration is not necessarily coming from living
beings. Rashedi [25] present a work where the nature inspiration comes from
the gravitational Law of Newton. In this work, the algorithm is built using the
gravitational law in a very strict way, using masses, velocities and distances. We
have also been inspired in the gravitational theory in our main contribution, but
without going into the detail of the physical laws of the real world. We have
assumed that the masses are not relevant. That only the goals has an attraction
force. And the speed of the agent is inversely proportional to the distance to
the goals. Near the goals the attraction disappear, breaking Newton’s laws.

2.3 Graph Coloring Algorithms

We give a brief survey of different GCP solving algorithms, from classical algo-
rithm up to recent Swarm Intelligence approaches. There are a lot of reference
books like [26] where we can find information about this problem, and more
about graph theory. In figure 2.4 we can see an example of a colored graph.

We are going to introduce the most famous algorithms starting from classical
algorithm, recalling some relevant theorems from graph coloring theory. We are
going also to present some graph families with special features, that will help to
better understand the different approaches for this problem. Then we are going
to show algorithm based in SI approach, although we are going to explain the
SI more detailed. Finally we are going to show that that GCP is applied in real
life with a bunch of application using the GCP.

2.3.1 Classical algorithms

The GCP is a classical problem in mathematics. A well known instance of
the problem appears when trying to distinguish states or regions in England
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Figure 2.4: An instance of a Graph Coloring Problem solution.

by colors in political maps, thus the Francis Guthrie four color conjecture in
the 17th century. At the time, all the graphs considered were planar graphs
representing pieces of land, and there wasn’t a restriction of the number of
colors to use, even though four was enough. But in the 20th century, more
complex instances of GCP were considered. We are going to lay aside the
history and go to the mathematical problem. In the year 1949 the Russian
scientific Alexander Zykov stated a theorem which gives the bases for a lot
of GCP solving algorithm. Specifically, the contraction algorithm is based on
Zykov’s theorem of contraction [27], aims to reduce the complexity of a graph
reducing the computational time need to solve it.

Theorem 13. Zykov: x(G) = mı́n {x(G/x, y), x(G+ xy)} for non adjacent
nodes x and y.

We can see how this algorithm works in recent Odaira’s paper [28]. Be-
fore, Corneil in [29] developed an algorithm that searches through the Zykov
tree in a depth-first manner. Dutton [30] searches non-adjacent nodes with a
maximal number of common neighbors to contracted until a complete graph is
achieved. The algorithm Recursive-Largest-First (RLF) of Leighton is presented
in [31] where the contraction affects the largest path between nodes, Palubeckis
present a more actual version of this algorithm in [32]. A modified LF-algorithm
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(Largest First) presented by Hansen in[33] is an optimization of RLF where the
recursive technique is changed to a sequential way.

The most famous algorithm was developed by Brelaz [34] in 1979. This
algorithm was called DSATUR because it is based in the degree of saturation of
a graph. It is an approximate algorithm, that does not perform an exhaustive
search. We will explain it in detail in chapter 3. Although, this algorithm
sometimes fails finding the optimum [35], it is still a reference algorithm. Turner
[36] said that almost all k-colorable graphs are easy to color with his heuristic,
and also proposed a new implementation of Brelaz algorithm to enhance it’s
draw falls. Wood in 1997 [37] and more recently Mendez-Diaz [38] presented
another optimized version of the DSATUR improving that of Turned.

2.3.2 Approximate algorithms

Sometimes the computational effort to find the exact minimal coloring of a
graph is too huge. So that there are some algorithms that don’t report the exact
solution to the problem, as it has been said in zykov’s based algorithms. These
algorithms basically give a upper bound on the chromatic number providing a
quick solution to the problem. Then, other techniques must be applied to find
the exact solution of the problem. The theorems of Vizing [39] and Shanon [40]
are used to achieve this.

Theorem 14. Vizings: In a graph or multigraph G, let denote Γ(v) the valency
of node V , and let denote Γ(G) the largest valency in G. Let the multiplicity
µ(v, w) of nodes V and W be the number of parallel edges that link them. Let
µ(G) be the largest multiplicity in G. A graph is a multigraph for which µ(G) =

1. An edge coloring of a (multi)graph G is a mapping from the set of its edges
E to a set of items K called colors, in such a way that at any node V, the Γ(v)

edges there all have a different color. An edge-κ-coloring is an edge-coloring
where | K |= κ. The chromatic index χ(G) is the smallest number κ for which
an edge-κ-coloring of exists.

Theorem 15. Shanon: For any multigraph G, χ(G)≤
⌊
3
2Γ(G)

⌋
.

The COSINE algorithm by Hertz [41] and the Clique Covers (CC) algo-
rithm of Klotz [42] are two examples of this kind of approaches. The authors
of COSINE have published an updated work in[43]. The COSINE algorithm
first tries to find an upped bound of the chromatic number in a quick manner,
and second uses a more sophisticated coloring procedure based on Tabu search
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techniques. This algorithm gets a good relation between accuracy and time.
The CC uses the Vizing and Shanon theorems to find an upper bound of the
chromatic number and eventually find it.

The Backtracking Sequential Coloring was discovered by Brown [44], whose
work was improved by Brelaz to make his DSATUR, Wilf [45] showed that if
the number of color approaches infinity the order of Backtracking is O(1), and
Park [46] presented a new version and an application to network security.

The simulated annealing has been applied to GCP recently by Titiloye [47]
using the Monte-Carlo path-integral. Simulated annealing method has been also
used by Johnson [48] showing empirical result to the GCP. Nolte [49] focus the
use of Simulated Annealing to 3-colouring problem. Bonomo [50] make a map-
ping of the Bounded coloring problem to the classical Travel Salesman Problem
TSP and solve it using the simulated annealing.. Other probabilistic methods
have been used such as hill-climbing used by Rhyd [51] for order independent
minimum grouping problems, and applied to GCP.

Tabu search algorithm has been widely used for GCP solving. The Tabucol
algorithm presented by Galinier and Hertz [52] proposed in 1987 that today
is still present in a lot of evolutionary and hybrid algorithm by it’s perfor-
mance in local search. Blochliger [53] used a partial solutions method based in
a Tabu Scheme for local search. The hybridization mention before can be seen
in Mabrouk [54] presenting a parallel Genetic-Tabu algorithm for the GCP. Qu
[55] present a hyper-heuristic based in heuristic for coloring graphs, where the
Tabu Search is also presented.

It is possible to built optimized heuristics for graphs with special features.
Nakayama [56] proposed an heuristic for interval graphs, permutation graphs
and trapezoid graphs, the interval graph is also presented in Yu [57] who develops
a parallel algorithm. Gaun [58] works over weighted graphs a particular problem
that needs different approaches to solve it like the first-fit algorithm. Vredeveld
[59] also works over weighted graphs focused in local search. Bouchard [60] is
interested in a mix of interval graphs as we have seen in Yu and Nakayama and
weighted graphs studied by Gaun and Vredeveld, but solved this more complex
problem. (p,k)-coloring problem is studied by Demange [61] that generalizes
the GCP by replacing stable set by cliques and stable sets. Complexity of two
coloring problems in cubic planar bipartite mixed graphs presented by Ries [62].
The P’4 graphs where a P4 is an induced path with four nodes and P’4 is any P4-
free graph is studied by Campos [63]. Daniel [64] works in chordal graphs where
a graph is chordal if each of its cycles of four or more nodes has a chord, which is
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an edge joining two nodes that are not adjacent in the cycle. Comfessore worked
previously in more explicit chordal graphs [65]. The Paley graph P q which is
the graph with nodes the elements of the finite field Fq and an edge between
x and y if and only if x-y is a non-zero square in Fq is solved by Maistrelli in
[66]. Yadav reduced the problem to acyclic node coloring of graphs of maximum
degree 5[67]. Galinier and Hertz [68] present a more general algorithm for GCP
using a memory based algorithm different from theirs famous Tabucol algorithm.
Costa [69], that we will see later, here study graphs with cardinality constraints
on the neighborhoods, other variant in the GCP problem.

The evolutionary strategy have been use in a large number of works. Marino
[70] made a mapping into a graphs and then solve the GCP to show a theoretical
framework to break the symmetry of the search space in a partitioning problem
using a Genetic Algorithm. Shen [71] present a Genetic Algorithm for GCP. Bi-
man develop a genetic algorithm with a new operator called Multipoint Guided
Mutation and Biman’s work [72] is a brief example. Porumbel [73] present a
search space analysis for improving local search is GCP and solve it with a Ge-
netic algorithm that appears in [74]. A parallel technique in genetic algorithm
is also common like Sivanandam [75] who present a hybrid parallel genetic algo-
rithm approach, Kokosiski [76] present a parallel genetic approach for the sum
coloring problem which asks to find a node coloring of a given graph G, using
natural numbers, such that the total sum of the colors is minimized and Yu [77]
who applies the Parallel genetic approach in VLSI Channel Routing. Finally
there are hybridization of Genetic Algorithm with other methods like artificial
neural networks ANN presented by Maitra[78, 79].

There are different strategies like Abasian’s[80] that uses a non-systematic
method based on a cultural algorithm to solve the GCP. Dukanovic[81] indicates
a way to find the lower bound of a chromatic number. Mehrotra [82] propose
a column generation method for implicit optimization of the linear program at
each node of the branch-and-bound tree to solve the GCP. The fuzzy approach
can’t be missed in the survey and Gomez[83] present a algorithm for fuzzy
graphs.

2.3.2.1 Graph Families

Not all the graphs have the same complexity to be solved. Some times we
can observe special features that helps in the process of finding the chromatic
number, as we have saw in the previous section. The was a challenge in 1993,
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the second DIMACS challenge [84, 85] where a lot of graph were shown to test
them. The researches were focused in these particular graphs because it becomes
very easy to compare with the rest of the scientific community. More detailed
explanations are given in Appendix A.

A big problem is to know a priori the chromatic number of a graph. Some
theorems can give precious information in this regard, and also can be used to
build graphs in a way that fill the requirements of the theorems and be more
easy to solve. A example is the planar graphs, that are 4 colorable [86, 87]. In
Appendix A we recall the Kuratowki’s theorem. Luzar [88] works over planar
graphs. More complex planar graphs appears in Werra [89].

A famous family of graphs is Mycielski graphs [90], already mentioned before.
The Mycielski graphs M i are triangle-free, with chromatic number i , Ni =

3 ∗ 2i−2 − 1 nodes and 3 ∗ Ni−1 + Ni edges. The M4 is also called Grötzsch
graph. These graphs are been solved in [91, 92]. But even though are a good
starting point in the GCP, they are very easy graphs. Caramia [93] shows that
sometimes is not feasible to solve the GCP with any heuristic. More works
based in Mycielski graphs can be found in Lam and Larsen[94, 95].

Other classic problem is the queens’ graphs, based in the chessboard and
chess rules. A more exhaustive explanation is given in appendix A. We find a
solution of these graphs in [96].

Mizuno [1, 97] have generated 3 colorable graphs that are hard to solve. Us-
ing Mizuno’s method we can build graphs that although their chromatic number
is only 3 are very hard to solve.

Other graph type can be found in Chang [98] describing outer-planar graphs
and trees and in Petrosyan [99, 100]. A tree is an undirected graph in which
any two nodes are connected by exactly one simple path. More graphs with
the geometrical special feature in Kang and Klotz [101, 42]. Less tested graph
families found in the literature are also important as the one reported in [102]
inspired in the DNA.The GCP is usually focused in non directed graphs, but
directed graph can be colored as well [103].

Permutation graphs in [104] and [105]. Graphs with long paths are solved in
[106], but it can be problems solving these graphs as noted in [107]. Furmanczyk
[108] used mixed graphs with directed and non directed edges. Herrmann in
[109] speak about critical graphs.
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2.3.3 Swarm Intelligence for Graph Coloring

As we have mentioned, the SI has been used for a lot of mathematical problems,
and also for GCP solution. The ACO and PSO approaches are the most used,
relegating other SI algorithms, such as the flocking behaviors, to the background.

The first work that we find using ants to GCP solving is [110] where the
ants are used to perform the coloring of a graph. We can see a survey of
ACO applications in [111]. An algorithm using a chaotic ant colony is proposed
in [112]. Borkar[17] introduces an incremental learning component. Lu[113]
introduces a memetic algorithm for graph coloring also using ants. Dowsland
[114] have improve the classical ACO algorithm. Another ant based algorithm
appears in Bui [115].

The PSO has been used in Cui [116] where a modified PSO using distur-
bances is used, obtaining better results than standard PSO in planar graphs.
Hsu [117] adding a modified turbulence to previous PSO, obtained better results
in 4 colorable graphs solving them efficiently and accurately.

The use of basic SI have been forgotten, but SI is enough to solve the GCP.
We demonstrate in Graña [118] that SI can color graphs. Adding the gravita-
tional law and a method for escaping from local optimum we build a competitive
algorithm based in SI [119, 120].

Into the SI category we can present agent based algorithm like Xie[121], but
there are no more references.

2.4 GCP Applications

The GCP can be applied to a wide number of areas. In Demange [122] is applied
in robotics. Clustering dynamics of nonlinear oscillator network using graph
coloring in Wu [123]. A monthly crew scheduling problem with preferential
bidding in the airline industry is solved in Gamache [124]. Communication
protocols in Buck [125].

The GCP is a particular case of an optimization problem with quadratic
constraints. The mapping procedure and an appropriate parameter-setting pro-
cedure are detailed by Talavan [126] to solve it.

Experiments with graphs are shown in Lewandowski [127] applied to schedul-
ing. Lewis [128] applied GCP solution in round-robin sports scheduling.
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Chapter 3

GCP Algorithms

This chapter gives a description of the algorithms that have been applied to solve
the GCP, focusing on the state-of-the-art algorithms used as competitors to the
Gravitational Swarm wich will be explained in detail in forthcoming chapters.

The structure of the chapter is as follows: Section 3.1 gives an introductory
view of the algorithms. Algorithms are described in deail as follows: Back-
tracking in Section 3.2, DSATUR in Section 3.3, Tabu Search in Section 3.4,
Simulated Annealing in Section 3.5, Ant Colony Optimization in Section 3.6,
Particle Swarm Optimization in Section 3.7, and finally Gravitational Swarm in
Section 3.8.

3.1 Graph Coloring Problem methods

We have implemented 6 GCP solving methods as described in the literature:
Backtracking, DSATUR, Tabu Search, Simulated Annealing, Ant Colony Opti-
mization and Particle Swarm Optimization. These methods have been proved
individually to solve the GCP, but there is no reported direct comparison be-
tween them. We have developed a new algorithm called Gravitational Swarm
Intelligence that is included in this comparison, after proving that our algorithm
works with the GCP. A description of each algorithm follows:

1. Backtracking is an exhaustive deterministic algorithm that explores all
the search space and always returns the optimal solution if it exists. As
the GCP is a NP-complete problem we can use backtracking only in small
size problems or special types of graphs like the Mycielsky graphs. This

25
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algorithm always return the same solution for the same graph instance.
Backtracking is no useful with medium size or big graphs, because it needs
a huge computational time.

2. DSATUR (Degree of Saturation): this algorithm developed by Brèlaz [34]
is a greedy backtracking algorithm which does not explore exhaustively
all the search space. It looks for the biggest clique in the graph fixing
the initial number of colors needed to color it. Then starts the search to
determine the coloring of the remaining nodes of the graph. The clique
of a graph [129] is a subset of its nodes such that every two nodes in the
subset are connected by an edge. It will be necessary at least the same
number of colors k as the clique degree to color the graph, which is the
reason for the algorithm’s name “degree of saturation”.

3. Tabu Search (TS): it is a random local search with some memory of the
previous steps, so the best solution is always retained while exploring
the environment [73]. TS needs a great amount of memory to keep the
solutions visited, and if the Tabu list is big, it will need so much time to
search in the Tabu list indeed.

4. Simulated Annealing [130]: inspired in the annealing performed in metal-
lurgy, this probabilistic algorithm finds solutions randomly. If a solution
is worse than the previous solution it can nevertheless be accepted as the
new solution with a certain probability that decreases with a global pa-
rameter called temperature. Initially, the temperature is big and almost
all the solutions are accepted, but as the temperature cools down, only
the best solutions are selected. This process allows the algorithm to avoid
being trapped in local optima. This algorithm has a big handicap when
applied to solve the GCP, because there are a lot of neighboring states that
have the same energy value. Despite this handicap, Simulated Annealing
algorithm provides state-of-the-art results for this problem[49].

5. Ant Colony Optimization (ACO): we have build an implementation fol-
lowing [112] where we have nxn ants making clusters around the colors.
We have n ants in each of the n nodes. Each ant is labeled with a ran-
domly selected color, and the color of a node is equal to the color of the
maximum size group of ants of the same color in this node, i.e. is decided
by majority voting. In each step, the ants that have a color different from
the node’s color move through the edges to the neighbor nodes. With the
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exiting ants and the new incoming ants, the color of each node is again
evaluated until the problem is solved.

6. Particle Swarm Optimization (PSO): we have built a PSO version of [117]
for graph coloring. The PSO algorithm uses the knowledge of the agents on
the problem solution. After each step the agents know if they improve their
last state and also if the overall system has found an improved solution.
With a given probability value the bad colored agents try first to go back
to their own best known position. Then with other probability value the
bad colored agents try to go back to the system’s best position. We have
added a parameter that alter the probabilities, making easy to escape from
poor local minima in the first stages of the algorithm, but more difficult
as the time goes on. We also have added a random probability to change
good agents color using the local and global probabilities.

7. Gravitational Swarm for Graph Coloring (GSGC): this algorithm is in-
spired in the Gravitation physic law of Newton, and the Boids swarm of
Reynolds [4]. The gravitation law has been previously used in Swarm
Intelligence for function minimization [25], unrelated to the GSGC for-
mulated as GSI in [119]. This algorithm does not try to mimic exactly a
physical system obeying Newton’s law. The GSGC consist in a group of
agents representing the graph nodes navigating in a world where the colors
are represented as goal locations that exert an attraction to the agents.
When an agent arrives to a goal it can get corresponding color and stop
moving if there are no other agents that can’t have the same color for the
GCP solution, called enemies. Initially a random position is selected for
each agent. Depending on its position relative to the color goals, the agent
moves toward the nearest color goal until reaching it. If there are enemies
settled in that goal, been a enemy a node that can’t have the same color,
then the agent tries to expel the enemies outside the goal to a random
position before going itself inside. If it is no able to expel the enemies
then the agent is expelled to a random position and starts again looking
for a stable color goal. Otherwise the agent holds the goal color position
and stops moving. If all the agents are stopped then the algorithm has
solved the GCP.

All the algorithm implementations allow for a sequential search of the graph’s
chromatic number. Starting from an upper bound, the GCP is solved for de-
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creasing numbers of colors, until reaching a number when the algorithm does
not reach a feasible solution. The previous number is assumed as the chromatic
number.

3.2 Backtracking (BT)

The BT algorithm orders the nodes of the graph, assigning a color to the first
nodes and then starts coloring the next nodes. The colors of the nodes linked
with it can’t be used so that the algorithm uses the remaining colors. If the
group of available colors is empty, at least one of the previous colored nodes is
wrong. The algorithm doesn’t known which node is wrong. It only knows the
order of the nodes. The Algorithm goes back and change the color of the node.
The algorithm go on with this new configuration. If the problem appears again,
(the group of colors is empty) then it goes back again, but each previous colored
node has a smaller color list to avoid using a color that has been proven to be
wrong.

Moving forward and backward, the BT algorithm explores the whole search
space and it is guaranteed to find the optimal solution if the number of colors
given as input is greater or equal to the graph’s chromatic number.

If the problem is solved, the algorithm stops. If we allow the algorithm a
bounded computational time, and the algorithm can’t solve the problem is such
time then the algorithm doesn’t return any kind of solution.

If the order of the nodes don’t change, the algorithm always return the same
coloring solution. We can see the algorithm in Algorithm 3.1. Where V is the
set of nodes, Vlist the list of used color for each node, and k ∈ {1, 2, ..., C} the
set of colors.

3.3 DSATUR

The DSATUR algorithm can be seen as a improvement of the BT. The base
of this algorithm is the degree of each node, that is the number of edges that
has the node. The algorithm order the nodes by the degree and start coloring
from these nodes. As this nodes has more links with other nodes, if they are
well colored, the probability of backtrack is small. But this probability exists
and even this algorithm is faster than the BT, can be still too slow if the degree
of the nodes is small, the graph is very big or the degree of the nodes is very
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Algorithm 3.1 Backtracking
1. Arrange the V nodes ramdomly.

2. Color the first node with color 1.

3. Go to next node

if last node

then stop

4. Color node V i with color k /∈ V listi.

if k = Ø

then clear V listi
go back to previous node
go to 4

else keep k color is V Listi

4. If there is a conflict

then go to 4

else go to 3
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Algorithm 3.2 DSATUR
1. Find the biggest clique BC and arrange the nodes of the clique firstV BC

then the V − V BC nodes ramdomly.

2. Color the V BC with the first card(V BC) colors.

3. Go to next node

if last node

then stop

4. Color node V i with color k /∈ V listi.

if k = Ø

then clear V listi
go back to previous node
go to 4

else keep k color is V Listi

4. If there is a conflict

then go to 4

else go to 3

similar, because in this cases it is equivalent to a BT.

Our implementation of the DSATUR uses cliques instead of degrees. Finding
the biggest clique, we can assign colors to the clique so the algorithm needs less
backtracks than the BT. It is important to order the nodes according to the
clique nodes. This way the algorithm start with fixed colored nodes. Finding
the biggest clique of a graph can be a hard job, so we look for the first biggest
clique and then we apply the standard BT algorithm as specified in Algorithm
3.2, where BC is the biggest clique, V the number of nodes, V BC the nodes of
the clique, card(V BC) the cardinality of V BC and k ∈ {1, 2, ..., C}set of colors,
where C must be C > card(V BC).

Theorem 16. The Dsatur algorithm is exact for bipartite graphs.
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3.4 Tabu Search (TS)

We have implemented a basic version of the Tabu Search. In the literature we
found the TabuCol algorithm [53, 52] were each node has a Tabu list of color
transitions. This implementation of the Tabu Search looks quite similar to other
implementations, so we have use a standard Tabu Search instead of TabuCol,
using a Tabu tenure for a full solution. The algorithm flow is as follows:

• In the Initialization phase, we assign colors aleatory to the node. We set
a iteration counter t = 0.

• Increase the time counter t + 1 and generate a new solution C ′ between
all the posible solution in the previos iteration t. This new solution can
be inside the tabu list TL and then we generate a new solution until the
new solution is not in TL.

• If the cost function of the new solution C ′ is better than previous

• If we have success assigning colors then we have finished, if not we execute
the Tabu_check( ) procedure until we find a solution of the problem or we
have try more than a given number of iteration (maxiter).

The TabuCheck() procedure saves the new configuration in the Tabu tenure.
Choose the node with bad colors and change their colors in a way that the
new configuration is not in the Tabu tenure. If the new configuration is not in
the Tabu tenure the we go on with the algorithm, if not, we change the colors
assigned to the bad until the new configuration is not in the Tabu tenure.

If the new configuration solves the problem then we finish. If not we add the
configuration into the Tabu list and we call again the TabuCheck() procedure.
The Tabu list has a limit. If we exceed the Tabu tenure limit, then we delete
the old instances of the Tabu tenure. The size of the Tabu tenure is directly
related with the number of iterations (maxiter) so it’s quite difficult to exceed
the size of the list, but is possible.

We don’t assign values to the register in the Tabu list, because we only
change the bad colored node. We don’t fall in local minimum because we can’t
repeat a color that has been previously used and also we change dynamically
the bad colored node. The description of the algorithm is given in Algorithm
3.3.

We must say that this algorithm can be slow if the Tabu tenure is big, and
also the number of edges is also big, because we will need a lot of memory to
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Algorithm 3.3 Tabu Search
1. Choose an initial solution C(0). Set t = 0.

2. Set t = t+ 1

if t = maxiter

then stop

3. Generate C ′ a new solution from C(t)

if C ′ ∈ TL
then go to 3

4. If f(C) < f(C ′) then

set C ← C ′.

5. Update tabu and aspiration conditions.

6. If a stopping condition is met then stop.

Else go to 2.

keep the list, and a lot of time to travel through the list in each step of the
algorithm.

3.5 Simulated Annealing (SA)

We have developed a version of the Simulated Annealing algorithm [130] adapted
to use in the GCP. The temperature parameter is the number of steps, and the
algorithm stops when the temperature reaches to zero if it hasn’t find a solution
before. We can see this algorithm in Algorithm 3.4, but the reader can find a
better explanation of the algorithm in our previous work [130].

E(t) is the energy function calculated in the instant t. This function evalu-
ates the number of bad colored nodes in the graph. p(t) is a random probability
between 0 and 1.
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Algorithm 3.4 Simulated Annealing
1. Choose an initial solution C and E(0)

2. C ′ ← C

C”← C’

3. calculate p(t+ 1) and E(t+ 1)

4. if e−
E(t)−E(t+1)

∆temp > p(t)

then C”← C ′

decrease temp

5. C ← C”

6. If a stopping condition is met or temp = 0

then stop

else go to Step 2.

3.6 Ant Colony Optimization (ACO)

We have implemented the ACO algorithm in a particular way. Ants have an
assigned color. The ants move if their color is no acceptable for the actual node
where they are, staying if the color is acceptable. The ACO algorithm start
with N ants for each one of the N nodes. Color assignement to ants is random.
We order the ants of each vertice by their colors and the color with the biggest
number of ants becomes the color of the vertice. We evaluate if the configuration
solves the problem or not. If not, then the ants that hasn’t the color of their
vertice moves towards other nodes that are connected with their vertice. The
movement of the ants follows an order. If there is any vertice connected with
their vertice that has their color, then the ants move towards that vertice, if not
they move randomly. All the ties are solved randomly.

If a node gets empty of ants, then the algorithm generate new N ants with
random colors for that vertice. The algorithm stops after maxiter iterations.
The detailed specification of the algorithm can be seen in Algorithm 3.5.

• t is the number of iterations.

• ”a” is an ant. C(x) is the color C ={1, ..., k} of x, ant of node.
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Algorithm 3.5 Ant Colony Optimization
1. set t = 0 and set random colors to n ∗ n ants.

2. place n ants in each node V n

3. set t = t+ 1

3. Evaluate the color k of each node

4. for each ant a in a node V i

if C(a) = C(Vi)

then stay
else Move(a)→ Vj | ∃E(i, j)

5. if problem solved or t = maxiter

then stop

else go to 3

• Move(a) is a function to traslade ant from current node to a new node.

• E(i, j) represente an edge between the nodes V i and V j .

This algorithm has some problems. First of all is that the number of agents
or ants that must be checked is n times bigger than other algorithms, because
we have n ants for each vertice, and this number can grow during the execution
of the algorithm. The amount of memory and the computational time of this
algorithm can be very big, and the parellelization wouldn’t help because we will
need too many processes, and the communication between process will be too
much expensive.

3.7 Particle Swarm Optimization (PSO)

The PSO is a fashionable algorithm that is been used for a lot of problems.
The GCP doesn’t escape to this trend and there are a lot of algorithm based in
Swarm Intelligence for this problem.

We have implemented a basic version of a PSO algorithm for GCP. The
algorithm keeps the best solution found for each agent of the swarm and also
the best solution that all that agent have achieved for the GCP. If a node has a
bad coloring, it means that breaks the rule of the coloring of a graph, then with
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a certain probability the agent gets the color of their best local position. If the
agent fails getting it’s bet local position, then with another certain probability
try to get to color of the global best position. If the agent fails again then a
random color is assigned to the agent. The new color assigned can be the local
best, or the global best but must be different from the current color.

Then with another certain probability, much lower than the local and global
probabilities we try to change the color of good colored nodes. The good nodes
try to get their best local position or best global position in the same way as
the bad nodes. Here the current color can be the local or the global position so
we can choose it. This is to escape from local minimum.

After each iteration of the algorithm the probability of bad nodes to get
theirs local or global best increases, and the probability of the good nodes
of changing their color’s decreases. The algorithm is presented in Algorithm
3.6. Lb is the Local best solution. Gb is the global best solution. pl is the
acceptance probability of the local best solution for a bad colored node V i. pg
is the acceptance probability of the global best solution for a bad colored node
V i. pn is the probability to change the color of the a good colored node V i. U(t)

is the acceptance threshold of the probabilities in the instant t. This threshol
increases each time until reaches to 1 and only local best solutions are selected.

3.8 Gravitational Swarm Intelligence (GSI)

For completeness, a pseudo-code of the Gravitational Swarm Intelligence (GSI)
algorithm for GCP is presented in Algorithm 3.7. Chapter 4 is devoted to a
detailed description of the algorithm, as well as some convergence theoretical
results.
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Algorithm 3.6 Particle Swarm Optimization
1. Set C a random coloring and t=0

2. Set Lb = Gb = f(C)

3. set t = t+ 1, choose randompl(t), pg(t) and pn(t) and a threshold U(t+ 1)≥
U(t)

4. Choose a new solution C ′ where

4.1 for each bad colored node Vbad
if pl(t) > U

then C ′(Vi) = Lbi

go to 4.1
if pg(t) > U

then C ′(Vi) = Gbi

go to 4.1
C ′(V i) = Random(C)

for each good colored node V good
if pn(t) > U

then C ′(Vi) = Random(C)

5. if problem solved of t=maxiter

then stop

else go to 3

Algorithm 3.7 Gravitational Swarm for Graph Coloring
1. deploy goal colors GC and agents V randomly in the space.

2. asign a random position to enemies V e

2. Move(V i)→ GC

3. if V i ⊂ GCk

then C(V i) = k

4. if ∀V ∃E(i, j) | C(Vi) = C(Vj)

then randomly V e ← i ∨ j
go to 2



Chapter 4

Gravitational Swarm
Intelligence

This chapter contains the central contribution of the thesis from the formal and
theorical point of view. Later chapters report the empirical support for the
GCP solving approach. We give an intuitive description of the Gravitational
Swarm Intelligence (GSI) algorithm, and some theoretical results in the limit
case under some simplifications. The natural inspiration of our algorithm does
not come from living beings, such as ants, bees or birds, but from a basic physics
law: the gravitational atraction between objects. We construct a world where
agents navigate through the space attracted by the gravitational pull of specific
objects, the color goals, and may suffer specific repulsion forces, activated by
the friend-or-foe nature of the relation between agents induced by the adjacency
relation in the underlying graph.

The chapter is organized as follows: Section 4.1 gives an intuitive descrip-
tion of the algorithm as it is currently implemented. Section 4.2 recalls the
definition of the GCP. Section 4.3 formalizes the most general Gravitational
Swarm giving some basic asymptotic convergence results. Section 4.4 speficies
the Gravitational Swarm for the GCP solving, giving asymptotic convergence
results.

37
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4.1 Gravitational Swarm for

Initial definitions: Let be G = (V,E) a graph defined on a set of nodes
V = {v1, . . . , vN} and edges E ⊆ V × V . We define a group of GSI agents
B = {b1, b2, ..., bN} each corresponding to a graph node. Each agent navigates
inside a square planar toric world according to a speed vector −→vi . At any
moment in time we know the position attribute of each agent pi(t) = (xi, yi)

where xi and yi are the cartesian coordenades in the space. When t = 0 we
have the initial position of the agents pi(0) = (x0i, y0i). Supposse that we want
to color the graph with K colors, denoting C = {1, 2, ...,K} the set of colors,
where K must not be lower than the chromatic number of the graph for the
GSI to converge. We assign to these colors, K fixed points in space, the color
goals CG = {g1, . . . , gK}, endowed with a gravitational attraction resulting in a
velocity component −→vgc afecting the agents. The attraction force decreases with
the distance, but affects all the agents in the space.

GSI definition: We can model the system as a tuple F = (B,CG, {−→vi} ,K, {−→ai,k} , R)

where B is the set of GSI agents, {−→vi} the set of agent velocity vectors at time
instant t, K the hypothesized chromatic number of the graph, and {−→ai,k} are
the attraction forces of the color goals exerted on the agents. R denotes the
repulsion forces in the neighbourhoord of color goals.

Dynamics: When the euclidean distance between an agent and the color goal
is below a threshold nearenough, the agent stops moving and the corresponding
graph node is assigned to this color. We denote the set of agents whose position
is in the region of the space near enough to a color neighbourhood of the color
as

N (gk) = {bi s.t. ‖pi − gk‖ < nearenough} . (4.1)

We denote the fact that the node has been assigned to the corresponding color
assigning value to a the agent color attribute

bi ∈ N (gk)⇒ ci = k. (4.2)

The initial value of the agent color attribute ci is zero or null. Inside the
spatial neighbourhood of a color goal there is no further gravitational atraction.
However, there may be a repulsion force between agents that are conected with
an edge in the graph G. This repulsion is only effective for agents inside the
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same color goal neighbourhood. To model this effect, we define function enemy
which has value 1 if a pair of GSI agents have an edge between them, and 0
otherwise. The repulsive forces experimented by agent bi from the agents in the
color goal gk are computed as follows:

R (bi, gk) =
∑
N(gk)

enemy (bi, bj) . (4.3)

Agent velocity: The dynamics of each GSI agent in the world is specified by
the iteration:

−→vi (t+ 1) =


0

d · −−→ai,k∗
−→vr · (pr − pi)

ci ∈ C& (λi = 1)

ci /∈ C

(ci ∈ C) & (λi = 0)

, (4.4)

where d is the vector difference of the agent’s position pi and the position of
the nearest color goal gk∗ , −−→ai,k∗ represents the attraction force to approach the
nearest goal, and −→vr is a random vector to avoid being stuck in spurious unstable
equilibrium, towards a random position pr. Parameter λi represents the effect
of the degree of Comfort of the GSI agent. When a GSI agent bi reaches to a
goal in an instant t, its velocity becomes 0.

Comfort dynamics: Every time step that the GSI agent stays in that goal
without been disturbed, its Comfort increases, until reaching a maximum value
maxconfort. When an GSI agent bi outside the color goal gk∗ tries to go inside
the neighborhood of that color goal, the repulsion force R (bi, gk∗) is evaluated.
If the repulsion force is greater than zero then the incoming agent is challenging
the stability of the color neighbourhood and at least one agent must leave the
goal, which can be the incoming agent itself. The repulsion force is only applied
between conected agents. If the Confort values of the challenged agents are
bigger than 0 then their Comfort decreases. If the Confort reaches 0, then one
conected agent is expelled from the color goal to a random position in the space
pr with velocity vr. In equation (4.4) when Comfort is positive the parameter
has value λi = 0. If the Repulsion force is greater than zero and the Comfort of
a GSI agent bi inside that goal is equal to 0 thenλi = 1 and bi is expelled from
the goal. When all the GSI agents stop, i.e. ∀i,−→vi = 0; therefore f (B,CG) = n

and the GCP of assigning K colors to graph G is solved.
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Intuitive convergence discussion: The cost function defined on the global
system spatial configuration is:

f (B,CG) = |{bi s.t. ci ∈ C & R (bi, gci) = 0}| . (4.5)

This cost funciton is the count of number of graph nodes which have a color
assigned and no conflict inside the color goal. The agents outside the neighbour-
hood of any color goal can’t be evaluated, so it can be a part of the solution of
the problem. The dimension of the world and the definition of the nearenough
threshold allows controlling the speed of convergence of the algorithm. If the
world is big and the near enough variable is small the algorithm converges slowly
but monotonically to the solution, if the world is small and the nearenough
variable is big the algorithm is faster but convergence is jumpy because the
algorithm falls in local minima and needs transitory energy increases to escape
them. The reason of this behaviour is that the world is not normalizad and
the magnitude of the velocity vector can be bigger than the color goal spatial
influence and can cross a goal without falling in it.

Each color goal has an attraction well spanning the entire space, therefore
the gravitational analogy. But in our approach the magnitude of the attraction
drops proportionally with the Euclidean distance d between the goal and the
GSI agent, but it never disappears. If ‖d‖ < nearenough then we make d = 0,
and the agent’s velocity becomes 0 stopping it.

Flow diagram specification: The flowchart of figure 4.1 shows the internal
logic working of each GSI agent. This flowchart is defined for each agent, and
can happend that two agents arrives at the same state at the same time. To
break such ties, we decided to choose an aleatory order for the agents in order
to avoid cicles in the behaviour of the algorithm.

When all the agents are in a color goal without enemies then they move
to Finish state and the problem solution is reported. If there are agents still
without a proper color then the proper colored agents must wait in the “Stand
By” state.

If an agent’s confort reaches maxconfort value, then the “Increases Confort”
state is only a transition to the “Stand By” state, without increasing the confort
and witout affecting the overall behavior of the algorithm.

A simpler version of this flowchar is given in figure 4.2. The simplified
flowchart start in the green transitory state. Then select a ramdom position for
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Figure 4.1: GSI agent behavior flowchart for GCP
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the agent. The agent goes toward the nearest goal attracted by the gravity of
the goal, until get inside a goal. In that moment the agent get the color of the
goal and check for enemies. If there are no enemies the agent stop, if not the
agent or it’s enemies is selected for expulsion of the goal and the system start
again. In this simplification, we haven’t mention the friend-or-foe relation, nor
the optimization to avoid goal with enemies.

4.2 Graph coloring problem

An undirected graph is a collection of vertices linked by edges G = (V,E),
such that V = {v1, . . . , vN} and E ⊆ V × V , and (v, w) ∈ E ⇒ (w, v) ∈ E.
The neighborhood of a vertex in the graph is the set of vertices linked to it:
N (v) = {w ∈ V |(v, w) ∈ E }.

Definition 17. Graph coloring. Let C = {c1, . . . , cM} denote a set of colors.
Given a graph G = (V,E), a graph coloring is a mapping of graph vertices to
colors C : V → C such that no two neighboring vertices have the same color,
i.e. w ∈ N (v)⇒ C (v) 6= C (w).

Definition 18. Minimal graph coloring. A set of colors C∗ is minimal relative
to graph G = (V,E) if (1) there is a graph coloring C∗ : V → C∗ , and (2) for
any smaller set of colors there is no graph coloring using it: |C| < |C∗| ⇒ ¬∃C :

V → C. Alternative definition: any graph coloring on this graph has a greater
or equal set of colors C : V → C ⇒ |C| ≥ |C∗|.

Definition 19. Chromatic number: The chromatic number M∗ is the number
of colors of the minimal graph coloring C∗.

4.3 Gravitational Swarm

Definition 20. A Gravitational Swarm (GS) is a collection of particles P =

{p1, . . . , pL} moving in an space S subjected to atraction and repulsion forces.
Attraction correspond to long range gravitational interactions. Repulsions cor-
respond to short range electrical interactions. Particle attributes are: spatial
localization si ∈ S, mass mi ∈ R, charge µi ∈ R, set of repelled particles ri ⊆ P .
The motion of the particle in the space is governed by equation:

ṡi (t) = −mi (t)Ai (t) + µi (t)Ri (t) + η (t) , (4.6)
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Figure 4.2: Simplified Flowchart



44 CHAPTER 4. GRAVITATIONAL SWARM INTELLIGENCE

where Ai (t) and Ri (t) are the result of the attractive and repulsive forces, and
η (t) is a random (small) noise term. The attractive motion term is of the form:

Ai (t) =
∑

pj∈P−ri

mj (t) (si − sj) δAij , (4.7)

where

δAij =

{
‖si − sj‖−2 ‖si − sj‖2 > θA

0 ‖si − sj‖2 ≤ θA
. (4.8)

The repulsive term is of the form

Ri (t) =
∑
pj∈ri

µj (t) (si − sj) δRij .

where

δRij =

{
‖si − sj‖−2 ‖si − sj‖2 ≥ θR

0 ‖si − sj‖2 > θR
. (4.9)

Remark 21. The two delta functions have different roles in the definition of
the GS. The attractive δAij corresponds to the inverse to the distance strength
of attraction. To avoids singular values when two particles are close to zero
distance we set a threshold θA which determines the region around the particles
where the motion due to attraction forces disappear. The repulsive δRij defines
the maximum extension of the repulsive forces, which are short range forces.
The threshold θR determines the region around the particles where the repulsive
forces are active.

Remark 22. We allow both mass and charge to be time varying. In exploratory
computational experimental works [119, 120] we have found that manipulating
them can be useful to enhance convergence, however we will not need them to
be time varying in the ensuing formal proofs.

Lemma 23. A particle pi reaches zero velocity when it is clustered with all
non repulsive particles and all repulsive particles are at distance greater than
the specified threshold. Formally, when ‖si − sj‖2 ≤ θA for all pj ∈ P − ri, and
‖si − sj‖2 > θR for all pj ∈ ri.

Proof. From the definition of particle velocity.

Lemma 24. A necessary and sufficient condition for all particles to reach zero
velocity, thus GS reaching an stationary state, is that for all pi, pl, pk if pl ∈
P − ri and pk ∈ P − rl , then pk ∈ P − ri. Equivalently, if pl ∈ ri and pk ∈ rl ,
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then pk ∈ ri. In other words, the GS can reach an stationary state if only if the
attractive relation between particles forms an equivalence relation .

Proof. We prove necessary and sufficient conditions

• If: For each particle pi, the distance between pi and all particles in P −
ri will converge to zero. Particle positions will converge to an average
position s̄i = s̄j for al pj in P − ri . Particles in ri will be pushed to
a distance θR from s̄i. Thus both attractive and repulsive terms of the
particle speed will converge to zero.

– Only if: proven by contradiction. Assume that pk /∈ P − ri and
still we have stationary states. We have pk ∈ ri. Then pk will be
attracted to s̄i because pl ∈ P − ri and pk ∈ P − rl , i.e. pl is
attracted to pi and pk follows pl. However, when pk is below θR

distance of s̄i then the repulsive forces will be in effect. Therefore,
when attractive forces become zero because particles are inside a θA
distance, repulsive forces will be non zero for at least one of the
particles.

Lemma 25. Global convergence of GS. If the conditions of Lemma 24 hold,
any non stationary state of a GS leads to a stationary state.

Proof. For all particles in P − ri will be attracted to pi whatever the distance,
while all particles in ri will be moving away from pi until both distance terms
will be zero. For any P (t) and P (t+ 1), we have that the following holds:

‖si (t)− sj (t)‖ > ‖si (t+ 1)− sj (t+ 1)‖ ; pj ∈ P − ri,

until ‖si (t)− sj (t)‖ ≤ θA, and

‖si (t)− sk (t)‖ < ‖si (t+ 1)− sk (t+ 1)‖ ; pk ∈ ri,

until ‖si (t)− sk (t)‖ ≥ θR.

Remark 26. The condition of Lemma 24 implies that the GS can only reach
an stationary state if the graph defined by the repulsive relations consists of a
collection of disjoint cliques. For this the reason the GS applied to GCP needs
some additional stationary particles, and the attractive factor of equation 4.8 is
changed to equation 4.10.
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Remark 27. The Lemma 25 means that the GS has robust global convergence,
any initial state will lead to a stationary state, if there is any one. This is a
highly desirable result, but limited even in the case of the basic GS.

4.4 Gravitational Swarm for GCP

Definition 28. A GS P for the coloring of graph G = (V,E) with M colors is
constructed as follows. The set of particles consists of two subsets P = PC∪PV :
the vertex particles corresponding to the graph vertices PV = {p1, . . . , pN} and
static color particles PC = {pN+1, . . . , pN+M}. There is a bijective mapping of
graph vertices to particles φ : V → PV . The repulsive particles for each particle
are determined by the neighboring vertices in the graph:

ri =
{
p ∈ PV

∣∣φ−1 (p) ∈ N
(
φ−1 (pi)

)}
.

There is similar bijective map φC : C → PC from colors to color particles. The
mass of color particles may be much greater than the charge of vertex particles
mi � µj for pi ∈ PC , pj ∈ PV . Moreover, they are considered as static particles:

ṡi = 0; pi ∈ PC .

Besides, the velocity attraction term of the particles specified by equation
4.7 is changed to

Ai (t) =
∑
pj∈PC

{
mj (si − sj) δAij

}
. (4.10)

Remark 29. Each vertex particle is attracted to its closest color particle accord-
ing to the different color particle masses. The noise term in equation 4.6 has
the effect of breaking any compensation between forces that would cancel them.
It might be required to show that the configuration of the particle positions
that lead to such cancelations are in a manifold of measure zero, so that the
system will never be stuck in an instable stationary state, but we believe that
such mathematical depth is beyond the scope of the letter.

Lemma 30. A vertex particle of a GS-GC reaches zero velocity if and only if
it is at distance below θA of a color particle and no repulsive particle is in θR

range.

Proof. We prove the necessary and sufficient conditions.
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• If: by definition of particle velocity in equations4.6 and 4.10 all terms of
the equation will be zero.

• Only if: by contradiction. Assume that the particle has zero velocity and
it is either out of range of a color particle or within range of a repulsive
particle. Then, either the attractive or the repulsive terms will be different
from zero. Therefore the particle velocity will be non-zero unless there is
some cancelation effect. The mass of the color particles can be made big
enough to avoid any cancelation between attractive and repulsive forces.
Cancelation of attractive forces has an arbitrarily small probability and the
noise term in equation 4.6 moves the GS-GC from such unstable stationary
states.

Remark 31. The noise term in equation 4.6 has to be small enough not to push
a vertex particle outside of a color particle region of influence.

Corollary 32. Distances between color particles must be above the repulsive
range ‖si − sj‖2 > θR for pi, pj ∈ PC , pi 6= pj to ensure that colored particles
can reach zero velocity, avoiding repulsive interaction between colored particles.

Remark 33. When a vertex particle reaches a zero velocity it has attained a
locally correct coloring of its corresponding vertex in the graph.

Definition 34. The neighborhood of a color particle pi ∈ PC is the set of vertex
particles inside its threshold of attractionN (pi) =

{
pj ∈ PV

∣∣∣‖si − sj‖2 ≤ θA∣∣∣}.
Color particle neighborhoods are disjoint N (pi) ∩N (pi′) = Ø for any pi 6= pi′ ,
because a particle can not be in two places simultaneously.

Definition 35. A global state of the GS-GC is the vector composed of all vertex
particles positions s = {si; pi ∈ PV }.

Definition 36. A global state of the GS-GC is stationary if all the particle
velocities are simultaneously zero: ∀pi ∈ P ; ṡi = 0. Color particles are station-
ary by definition, therefore the stationary is a property required of the vertex
particles.

Theorem 37. A global state of the GS-GC is stationary if and only if all
vertex particles are placed in the neighborhood of some color particle without
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any repulsive particles located at the same color particle neighborhood:⋃
pj

N (pj) = PV , (4.11)

pi ∈ N (pj)⇒ N (pj) ∩ ri = Ø. (4.12)

Proof. We prove the necessary and sufficient conditions:

• If: Let pj , pj′ ∈ PC , pj 6= pj′ . Each vertex particle in a color particle neigh-
borhood has a zero attraction velocity term pi ∈ N (pj) ⇒ Ai (t) = 0.
Moreover, all particles are in some color particle neighborhood, therefore
all attraction terms will be zero. Furthermore, all mutually repulsive par-
ticles are in different color particle neighborhoods: pk ∈ ri ⇒ pk ∈ N (pj′)

being outside repulsive range ‖si − sk‖2 > θR, therefore the vertex particle
repulsive term is also zero Ri (t) = 0.

• Only if: by contradiction. Assume that the GS-GC is in a stationary state,
but the theorem conditions do not hold.

– If equation 4.11 does not hold, then there is at least one particle
which is outside all color particles whose attraction term is non-zero
∀pj ∈ PC ; pi /∈ N (pj) ⇒ Ai (t) 6= 0. Thefore, the GS-GC is not in
an stationary state.

– If equation 4.12 does not hold, then two mutually repulsive particles
are in the same color particle, therefore their repulsive term is non-
zero,

pi ∈ N (pj) ∧N (pj) ∩ ri 6= Ø⇒ Ri (t) 6= 0,

consequently the GS-GC state is not stationary.

Remark 38. Theorem 37 implies that we need that the number of color particles
has to be in relation with the graph chromatic number. Next theorems establish
this relation.

Theorem 39. If the graph’s chromatic number M∗ is smaller than or equal
to the number of color particles M∗ ≤ M , there will be a non-empty set of
stationary states of the GS-GC.
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Proof. By construction. There is at least one optimal graph coloring C∗ : V →
C∗, from which we can construct one stationary state of the GS-GC as follows:

• Assign M∗ color particles to the colors in C∗, i.e. φC (ci) = pN+i, the last
M −M∗ color particles will remain without color assignment.

• Translate the coloring map into a partition of vertex particles in color
particle neighborhoods:

C∗ (v) = c⇒ φ (v) ∈ N (φC (c)) .

Remark 40. Theorem 39 builds the stationary state corresponding to the op-
timal graph coloring. However, a graph coloring obtained by the GS-GC may
be sub-optimal if the number of color particles is greater than the chromatic
number. Nevertheless, we need to be sure that any stationary state corresponds
to a graph coloring, i.e. there are no spurious stationary states that can not be
translated into a graph coloring.

Theorem 41. Any stationary state of the GS-GC corresponds to a graph col-
oring.

Proof. Given an stationary state we can build a graph coloring as follows:

• Each graph vertex is colored. By Theorem 37 in a stationary state each
vertex particle pi ∈ PV belongs to a color particle neighborhood pi ∈
N (pj), pj ∈ PC , therefore it is colored accordingly:

pi ∈ N (pj)⇒ C
(
φ−1 (pi)

)
= φ−1C (pj) .

• The coloring is correct: By Theorem 37 in a stationary state pi ∈ N (pj)⇒
N (pj) ∩ ri = Ø, therefore neighboring graph vertices will have different
colors:

vk ∈ N (vi)⇒ pk ∈ ri ⇒ C
(
φ−1 (pi)

)
6= C

(
φ−1 (pk)

)
⇒ C (vi) 6= C (vk)

Remark 42. Any stationary state of the GS-GC corresponds to a graph color-
ing. Any graph coloring corresponds to a GS-GC stationary state. There are
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no spurious stationary states. Finally, what happens if we underestimate the
number of color particles needed to represent the graph coloring?

Theorem 43. If the graph’s chromatic number is greater than the number of
color particles, there are no stationary states in the GS-GC.

Proof. By contradiction. M∗ is the chromatic number. Assume that an GS-GC
with M < M∗ has any stationary state. This stationary state can be translated
into a graph coloring with M colors by Theorem 41, therefore the chromatic
number is M contrary to the initial assumption.

Remark 44. Theorem 43 implies that the GS-GC will not converge to an station-
ary state if the number of color particles is lower than the chromatic number.
However, lack of convergence does not allow us to give any conclusion about the
chromatic number of the graph because it may be due to the dynamics of the
GS-GC. We need to establish the existence of global convergence conditions,
and the relation of the GS-GC parameters to the speed of convergence. In our
preliminary results we have introduced mechanisms in the GS-GC dynamics
which equivalent to manipulation of the charge of the vertex particles. We are
working on the formalization of such process for its analysis.

Remark 45. The problem of determining the chromatic number can be related
to the GS-GC dynamics. We have been considering bottom-up and top-down
approaches. In the bottom-up approach, the system is initialized with a low
number of color particles. Lack of convergence is interpreted as the need to
add some color particle to reach the chromatic number. Top down approaches
start with a large number of color particles. After finding a stationary state,
the number of color particles is reduced and the search restarted, until lack
of convergence. A third line of research is to establish some conditions on the
color particles masses that would induce some order on the convergence of vertex
particles to color particle neighborhoods, so that the chromatic number might
be obtained as a by-product of the GS-GC system dynamics.



Chapter 5

Parameter tuning

In this chapter we deal with the sensitivity of the GSI to the fine tuning of its
parameters. We try to determine both its robustness against poor settings of
parameters, and the optimal range of values for sensitive parameters.

The chapter structure is as follows: Section 5.1 gives the introductory de-
scription of the parameters. Section 5.2 reports sensitivity results on the color
goal radius. Section 5.3 reports sensitivity results on the comfort parameter.
Section 5.4 reports the results of non-parametric statistical tests assessing the
statistical significance of the results. Section 5.5 gathers the concluding remarks
explaining the paramter settings for following computational experiments.

5.1 GSI model parameters

In the proposed GSI algorithm we have three parameters that must be tuned
to get the best result. These parameters are:

• The chromatic number,

• the goal radius or influence region and

• the Comfort or Stress.

Also we have the world size as an additional parameter, but this parameter is
irrelevant for our model, because the agents’ speed adapts to the world size. If
the world is bigger, the agents go faster. The goal radius also limits the influence
of the world size. We have experimented over a toric world of 100x100 units of
length to simplify the arithmetical calculus. Finally we have a number of steps

51
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Comfort 1 10 20 30 40 50 60 70 80

0 0 0 8.35 118.15 178.05 147.7 74.9 36.1 8.1
1 0.05 248.4 712.1 880.35 837 738.8 607.6 357.8 95.8
5 0 197.05 688 816.15 787 725.1 640 379.55 99
10 0 153.45 686.8 787.5 778.1 721.6 646.25 386.1 104.4
15 0.1 141.6 684.25 787.75 772.55 720.15 644.55 383.2 100.05
20 0.05 135.9 689.15 782.7 773.8 721.7 644.35 389.3 100.35

Table 5.1: Average results of KRG graph of 30 nodes, 50 edges and 6 colors

limit to avoid enormous execution times of days, weeks of months. Obviously
this parameter doesn’t affect the accuracy of the algorithm, it is only a stopping
criterion. We have run computational experiments testing our model for tuning
the goal radius and the comfort. We have built ten families of 20 instances each
families of KRG graphs.

1. 6-colorable graphs of 30 nodes and 50 edges.

2. 4-colorable graphs of 45 nodes and 90 edges.

3. 5-colorable graphs of 60 nodes and 150 edges.

4. 7-colorable graphs of 75 nodes and 180 edges.

5. 8-colorable graphs of 90 nodes and 200 edges.

6. 9-colorable graphs of 105 nodes and 230 edges.

7. 10-colorable graphs of 120 nodes and 250 edges.

8. 11-colorable graphs of 135 nodes and 270 edges.

9. 12-colorable graphs of 150 nodes and 330 edges.

10. 13-colorable graphs of 165 nodes and 360 edges.

We have a total of 200 graph instances. We have launched our algorithm chang-
ing the parameters as we show in the table 5.1, where we also sow average results
for the first graph family.

We have repeated each experiment 1,000 times, and we limit the number of
steps in each execution to 100. The stop condition is small because we wanted
to make a large number of experiments to extract conclusions on the effect of the
parameter, no abut the accuracy of the algorithm. We have run the algorithm
10,800,000 times.
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5.1.1 Chromatic number

This parameter doesn’t need to be tuned because, like the graph, is an input
parameter related with the graph. If we know the chromatic number this is true
but if not we must guess the chromatic number. Some theorems help to know
a priory this number but not always we can apply these theorems.

We have implement a waterfall approach, where an upper bound and a
lower bound are given to the algorithm. The upper bound must be big enough
to solve the problem. If the algorithm can solve the GCP with this number
then decreases the upper bound one unit and try to solve the problem again
with this new chromatic number. The algorithm repeats this behavior until the
chromatic number reaches the lower bound or after a fixed amount of time the
algorithm is unable to find a solution, been the chromatic number the previous
tested number.

In this work we always have used graphs with a known chromatic number
so we never have need to used the waterfall approach. We let the upper bound
equal to lower bound equal to the chromatic number.

5.2 Goal Radius

The goal radius is a very important parameter because this parameter deter-
mines the color of the agents. In our approach there is an attraction over the
search space center in the goals. When an agent in near enough to a goal then
we assume that the agents color must be the color of the goal. But when we
can say that an agent is near enough?. The goal radius determine this distance.
When the euclidean distance of an agent to the nearest goal is less than this
radius then we assign that color to the agent.

dist(a, b) =
√

(ax − bx)2 + (ay − by)2. (5.1)

If an agent goes towards a goal and when the agent enter inside the goal
radius it is going to take the goal color, why don’t we assign that color to the
agent?. The agents trajectory doesn’t change until get inside a goal. The reason
is that that agent get the color goal if there are no enemies inside the goal, and
that information change along the time. If two enemies moves towards the same
goal and we assign that color to the agents, as they are enemies one must change
it’s trajectory towards another color, but immediately the system assign the new
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Figure 5.1: Average success ratio vs Goal Radius

color to the agent and in the same time that agent can find enemies with it’s
color. The result is that the system is jumpy because there is no transition
between states. The system doesn’t converge.

The experimental results show that the goal radius is very important in the
accuracy of the algorithm. As we can see in figure 5.1 when the goal radius is
small (1 or 10) the algorithm performance is very low. The same happen with
big radius (70 or 80). When the goal radius is between 30 and 50, we get the
best results. The families with small number of nodes get the best result in the
surroundings of radius 30. When the number of nodes grow, the best radius
moves towards a bigger radius. The biggest graph families achieve the best
result in radius of about 50 units. The Goal radius change with the number of
nodes until a critical point where the performance of the algorithm falls. We
have plot the results in 3D to have another point of view in figure 5.2.

In figure 5.3 we have plot the average number of steps need to find a solution.
If the algorithm don’t manage to find a solution then the number of steps is
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Figure 5.2: Average success ratio vs Goal Radius in 3D
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Figure 5.3: Average Steps ratio vs Goal Radius

100. The graphic is very similar to the average success graphic. This is logical
because failing finding a solution implies 100 steps, so if in the goal radius tested
are a lot of fails, then the number of steps must be big. We can see that not
always this is true. The graph family 60x150 and 75x180 are very fast with
small radius even though they didn’t get the best result with that radius. So
small radius looks faster than big radius. We can observe that the tuning of
the parameters can be made very quickly, although we have make a loot of
experiment. We also have seen that average radius is the best choice. We have
use this result for the accuracy experiments in the next chapter.

5.3 Comfort

The comfort is a special parameter that allow the algorithm escape from local
minimum, and also contributes to the stability of the system. When an agent
gets inside a goal it stops moving and according to it’s comfort wait until the
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Figure 5.4: Average success ratio vs Comfort

system stops or other agent try to expel it from it’s color. Without this pa-
rameter, the system would have the same problem as assigning the color before
reaching to a goal, the system behavior would be unstable because the agents
will be jumping form one goal to another. The problem of the local minimum
is that an agent reaching a colorgoal stops inside it. If this color is incorrect for
the agent, we need a mechanism to expel the agent towards another goal. That
mechanism is Comfort.

In figure 5.4 we can see that the comfort is necessary for the system to get
good results. Without if the algorithm fails. But which values is the best?. The
system behavior is more or less stable from comfort value equal to 5 to comfort
value equal to 20. That means that the comfort value is necessary to be bigger
than zero, but is independent to the exact value. We have plot again the results
in 3D to have another point of view in figure 5.5.

In figure 5.6 we can see average number of steps need to find a solution. As
in the goal radius case, when the algorithm don’t manage to find a solution the
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Figure 5.5: Average success ratio vs Comfort in 3D
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Figure 5.6: Average steps ratio vs Comfort

number of steps is 100. It is clear that if the comfort is zero, then the number
of steps is almost 100. We can see that the number of steps with comfort equal
to one are best, but it is not clear, because sometime, this is not true as we
can see in graph families 45x90 and 60x150. When the comfort is five of above
five, then the systems behavior is more stable. We have assume that the best
comfort is five, and we have use it in our experiments. As we have said before,
setting this parameter is done very quickly, and with this results, it worthless
to worry about it.

5.4 Nom Parametric Tests

We want to show in a formal way that the qualitative conclusions obtained on
visual inspection of the results plots are statistically significant. For that reason
we apply some non parametric test to the result obtained. We are going to use
the Friedman test [131, 132]. If the null hypothesis of this test is not comply
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then we can use a post-hoc test like Nemenyi’s [133].

5.4.1 Friedman test

The Friedman test is a non parametric test that was originally developed by
the economist Milton Friedman. This test can be applied when we have n
groups and k treatments to these groups. We order the results of applying the
k treatment to each group in a table of n rows and k columns. Then we assign
ranking to the k treatments to each row rn,k where the best result is assigned
1 and the worst result is assigned k. If there are ties then we assign an average
value.

Then we have to calculate the average rankings of each treatment as:

Rk =

n∑
i=1

ri,k

n
(5.2)

The null hypothesis indicates that all the treatments behavior. Under the
null-hypothesis, which states that all the algorithms are equivalent and so their
ranks Rk should be equal, the Friedman statistic is:

χF =
12n

k(k + 1)

[∑
k

Rk −
k(k + 1)2

4

]
(5.3)

This statistic follows a χ2stochastic distribution of Pearson [134] of k − 1

degrees of freedom. If the Friedman values is bigger than the null hypothesis
then we can say that the treatment are statistically different so now we can make
a post-hoc test of the treatments. If the Friedman values if smaller than the
null hypothesis then we can’t say that the treatments are statistically different,
so all the treatments behavior are similar.

As the Friedman test sometimes if quite conservative, Iman and Davenport
[135] introduce an improvement to the Frieman stochastic value.

χID =
(n− 1)χF

n(k − 1)− χF
(5.4)

That follows a F of Fisher-Snedecor [136, 137] stochastic distribution with
k − 1 and (k − 1)(n− 1) degrees of freedom.
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Graph\Radius 1 10 20 30 40 50 60 70 80
Graph 30x50 9 7 4 2 1 3 5 6 8
Graph 45x90 9 8 3 1 2 4 5 6 7
Graph 60x150 9 7 2 1 3 4 5 6 8
Graph 75x180 9 7 3 2 1 4 5 6 8
Graph 90x200 9 7 4 1 2 3 5 6 8
Graph 105x230 9 7 5 4 1 2 3 6 8
Graph 120x250 9 7 5 4 2 1 3 6 8
Graph 135x270 9 7 5 4 2 1 3 6 8
Graph 150x330 9 7 5 4 2 1 3 6 8
Graph 165x360 9 7 5 4 3 1 2 6 8

Rk 9 7.1 4.1 2.7 1.9 2.4 3.9 6 7.9

Table 5.2: Friedman ranking for Goal Radius

Graph\Radius 0 1 5 10 15 20
Graph 30x50 6 1 2 3 5 4
Graph 45x90 6 5 4 3 2 1
Graph 60x150 6 5 4 3 2 1
Graph 75x180 6 3 1 2 4 5
Graph 90x200 6 1 2 4 5 3
Graph 105x230 6 1 2 5 4 3
Graph 120x250 6 1 2 5 4 3
Graph 135x270 6 1 2 3 5 4
Graph 150x330 6 1 2 5 3 4
Graph 165x360 6 5 4 3 1 4

Rk 6 2.4 2.5 3.6 3.5 3.2

Table 5.3: Friedman ranking for Comfort

5.4.2 Friedman test to GSI

We have applied the Friedman test over the two parameters that we are testing.
The Goal Radius and Comfort. In tables 5.2 and 5.3 we can see the ranking for
each graph and value o goal radius and comfort and the average rankings Rk

5.4.2.1 Goal Radius

The Friedman value for goal radius is χF = 71.333. The value of the square-chi
with eight degrees of freedom and a probability of accepting the null hypothesis
with 0.9 is χ2 = 13.4, with 0.95 χ2 = 15.5 is and with 0.99 is χ2 = 20.1. We can
see that in the tree cases, the Friedman value is bigger than the null hypothesis
so we can say that the goal radius values are statistically different and now we
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can practice a post-hoc test.

But we are going to use the Iman-Davenport improvement. So new value is
χID = 74.077. The new null hypothesis with 8 and 72 degrees of freedom and an
accepting probability of 0.9, 0.95 and 0.99 are F (8, 72) = 1.757, F (8, 72) = 2.07

and F (8, 72) = 2.769. We can see that in the tree cases, the Iman-Davenport
value is bigger than the null hypothesis so we can say that the goal radius values
are statistically different

We can see that the goal radius equal to one is always get the worst behavior.
The goal radius 80 is the second worst, and also the goal radius 10 and 70.
These four rows have a stable behavior with all the data sets, so we don’t
need a parametric test to state that these values don’t affect to the overall
behavior of the system, so we have repeated the Friedman test without taking
into account these columns. The new values for Friedman and Iman-Davenport
are χF = 14.72 and χID = 5.241. The null hypothesis for Friedman with 5
degrees of freedom and acceptance probability of 0.9, 0.95 and 0.99 are χ2 =

9.24.4,χ2 = 11.8, and χ2 = 12.8, and for Iman-Davenport with 5 and 45 degrees
of freedom are F (5, 45) = 1.98, F (5, 45) = 2.422, and F (5, 45) = 3.454. In this
case, the Friedman value and the Iman-Davenport value are next to chi square
and F values but are still bigger so the goal radius parameter is statistically
different even in this special scene.

5.4.2.2 Comfort

The Friedman value for comfort is χF = 28.457. The value of the square-chi
with five degrees of freedom and a probability of accepting the null hypothesis
with 0.9 is χ2 = 9.24, with 0.95 χ2 = 11.1 is and with 0.99 is χ2 = 12.8. We can
see that in the tree cases, the Friedman value is bigger than the null hypothesis
so we can say that the comfort values are statistically different and now we can
practice a post-hoc test.

Again, we are going to use the Iman-Davenport improvement. So new value
is χID = 11.889. The new null hypothesis with 5 and 45 degrees of freedom and
an accepting probability of 0.9, 0.95 and 0.99 are F (5, 45) = 1.98, F (5, 45) =

2.422 and F (5, 45) = 3.454. We can see that in the tree cases, the Iman-
Davenport value is bigger than the null hypothesis so we can say that the comfort
values are statistically different

We can see that the comfort equal to zero is always get the worst behav-
ior. This row has a stable behavior with all the data sets, so we don’t need a
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parametric test to state that this value don’t affect to the overall behavior of
the system, so we have repeated the Friedman test without taking into account
this column. The new values for Friedman and Iman-Davenport are χF = 9.84

and χID = 2.936. The null hypothesis for Friedman with 4 degrees of free-
dom and acceptance probability of 0.9, 0.95 and 0.99 are χ2 = 7.78,χ2 = 9.49,
and χ2 = 11.1, and for Iman-Davenport with 4 and 36 degrees of freedom are
F (4, 36) = 2.12, F (4, 36) = 2.65, and F (4, 36) = 3.95. In this case, the Fried-
man with a probability of 0.9 states that this values are statistically independent,
but with a probability bigger than 0.95, the null hypothesis is accepted so the
comfort values are not statistically independent, so being different from zero is
enough for this parameter. Applying the Iman-Davenport test, only when the
probability of acceptance is bigger than 0.99 the null hypothesis is accepted and
can conclude that the parameters are not statistically independent.

5.4.3 Post-Hoc test: Nemenyi’s test

As we can proof that that goal radius and comfort values are statistically in-
dependent, we are going to pass a Post-hoc test. This test consist of looking
at the data when all the experiments have concluded, and try to find patterns
that were not specified a priory. We use the Nemenyi’s test [133]. This test is
similar to the Tukey’s test [138] and is used when all classifiers are compared
to each other. The performance of two classifiers is significantly different if the
corresponding average ranks differ by at least the critical difference CD:

CD = qα

√
k(k + 1)

6n
(5.5)

where critical values qα are based on the Studentized range statistic divided by√
2.

In figure 5.7 we can see the result of applying the Nemenyi’s test to the
goal radius, using all the nine values and with an acceptance of the 90%. The
CD values is 3.497. There are four groups that join different values of the goal
radius. In figure 5.8 using all the nine values and an acceptance of 95%, the CD
value is 3.802, bigger. We have now five groups, and the diagram is a big mess.
The information that we can extract from this diagram is very small. In figure
5.9 using all nine values and an acceptance of 99%, the CD value is 4.399, the
biggest. Here we come back to the four groups, but still this result doesn’t help
to much.
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Figure 5.7: Nemenyi’s diagram for 9 goal radius and 90% of acceptance

Figure 5.8: Nemenyi’s diagram for 9 goal radius and 95% of acceptance

Figure 5.9: Nemenyi’s diagram for 9 goal radius and 99% of acceptance
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Figure 5.10: Nemenyi’s diagram for 5 goal radius and 95% of acceptance

Figure 5.11: Nemenyi’s diagram for 5 goal radius and 99% of acceptance

In figure 5.10 we can see the Nemenyi’s test result on the goal radius, but
now without taking into account the goal radius equal to 1, 80, 70 and 10, in
the same way that we have made with the Friedman test. We have now only
five radius and with an acceptance of 95% the CD values is 1.93. There are two
groups, but all the values of the goal radius are more of less linked. In figure 5.11
using five values and an acceptance of 99%, with a CD values equal to 2.3, it is
more clear that the goal radius between the values 20 and 60 don’t affect too
much to the behavior of the algorithm. We have only one group. Although the
Friedman test tell us that the goal radius values are statistically independent,
the Nemenyi’s test shows that it’s not true, at least for the central values, but
even including the outliers, the Nemenyi’s test is different respect to Friedman.

In figure 5.12 we can see the Nemenyi’s test result on the Comfort values,
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Figure 5.12: Nemenyi’s diagram for 6 comfort values and 95% of acceptance

Figure 5.13: Nemenyi’s diagram for 6 comfort values and 99% of acceptance

using the six values and with an acceptance of 95%, the CD values is 2.384. It
is very clear that the value of comfort zero, and all the values above zero, are
disconnected in the diagram. We can say that the comfort must be different to
zero, but if doesn’t matter the exact value. In figure 5.13 using six values and
an acceptance of 99%, the CD value is 2.816. The CD values is bigger but the
result don’t change respect to the 95% acceptance.

In figure 5.14 we have made an quick experiment. As long as the Friedman
test has said that the comfort value, without taking into account the zero value,
are statistically dependent. We don’t need to use a Post-hoc test as Nemenyi’s,
but we have applied the test to the five values and an acceptance of only 90%.
The CD values is 1.739. The diagram shows that there is only one group for all
the values, so the Friedman test was right, the comfort values bigger than zero
are statistically dependent.
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Figure 5.14: Nemenyi’s diagram for 5 comfort values and 90% of acceptance

5.5 Concluding remarks

In conclusion, we can use a color goal radius between 30 and 60, because the
non parametric test results said that the results after setting goal radius in this
range are statistically independent, we are going to fix the goal radius equal
to 30 for the additional computational experiments. The value 30 is because
the algorithm works very fast with this value in small graphs, and we are going
to work over small graphs to compare our results with slow methods as Tabu
Search or ACO methods. The comfort value must be bigger that zero. We are
going to fix the comfort value equal to 5, because when the comfort is 5, the
behavior of our algorithm looks more stable.
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Chapter 6

Graph Coloring Results

In tis chapter we report an exhaustive comparison of perfomance results between
the proposed algorithm and state of the art algorithms. We run the algorithms
on the experimental benchmark graph families described in Appendix A follow-
ing two basic strategies. (a) the chromatic number is set to the already known
chromatic number, and (b) applying a sequential strategy to find the chromatic
number.

The structure of the chapter is as follows: Section 6.1 decribes the basic ele-
ments of the experimental design. Afterwards the results on the specific graph
families are reported: trees and bipartite graphs in Section 6.2, Kuratowski
graphs in Section 6.3, Mizuno graphs in Section 6.4, KRG graphs in section 6.6,
DIMACS graphs in section 6.6. Section 6.7 reports experiments on the sequen-
tial determination of the chromatic number. Finally, section 6.8 summarizes the
results giving some conclusions.

6.1 Experimental design

We have prepared a big bank test to assess that our GSI algorithm get good
results is a wide range of problems. We start testing on the Mycielski graphs [90].
These graphs are easy to solve, but they are a good start point. With Mycielski
we have accurately tuned the most critical parameters of our algorithms, the
goal radius and comfort maximum value. With the parameters obtained with
previous test we have applied seven GCP solving algorithms:

1. A Backtracking greedy algorithm (BT).

69
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2. Brelaz [34] famous DSATUR algorithm (DS)

3. An stochastic simulated annealing (SA) [130].

4. A Tabu search (TS) [54].

5. And three Swarm Intelligence based algorithms:

(a) Ant Colony Optimization (ACO) [139]

(b) Particle Swarm Optimization (PSO) [20]

(c) Gravitational Swarm Intelligence (GSI) [119]

The first two algorithms are deterministic so they run only once on eahc graph.
For the rest five heuristics we have repeated the algoritm execution 30 times
for each method and graph. As the GCP is NP-Complete, for some graphs we
would need a lot of time (perhaps years) to solve them so we have limit them
to an amount of step depending on the complexity of each algorithm.

• The BT and DS single steps are computationally light, therefore we have
allowed them 10.000.000 steps.

• The SA with a medium complexity step, we have allowed 100.000 steps.

• The TS, PSO and our GSI have a maximum of 10.000 steps, because each
iteration of PSO and GSI are complex algorithm that need a lot of time
for each step and TS because it needs a lot of memory to allocate the
Tabu list and it is also quite slow.

• For the ACO we only allow it 1.000 steps because, even though it has the
same complexity of Swarm algorithms, the number is agents (ants) grows
very fast with the size of the graphs making this algorithm the slowest
because needs more mathematical calculus than any other.

We have obtained results on the benchmark graph familis describe in Appendix
A: tree and bipartite graphs, kuratowski based planar graphs, Mizuno’s method
3-colorable graphs, new developed graphs called KRG and finally well-known
DIMACS graphs. Sucess is measured as the number of times that an algorithm
obtains a valid coloration of the graph.
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Figure 6.1: Trees and bipartite success ratio

6.2 Trees and bipartite graphs

A tree is a connected graph without cycles. A bipartite graph is a graph that
does not contain any odd-length cycles. We have test over these graphs because
their chromatic number is 2 and we assume that this graphs are easy to color.
We have use 30 different trees and 30 different bipartite graphs of 100 nodes.

As we can see in figure 6.1 the trees are more difficult as we expected.
The deterministic algorithms rarely can find the solution and the stochastic
algorithm except the Simulated Annealing, all of them fail solving these graphs.
The SA reached a 100% success ratio for these graphs.

The bipartite graphs meet better our assumptions. The PSO is the only
algorithm that fails in all the experiments. The behavior of the SA is strange
for its poor performance compared with previous results. The TS also gets poor
results. The other four algorithms including our GSI give 100% of success (GSI
only 90%). These results show that even the simplest graphs can be hard to
solve, and that our algorithm, as we will show later, is not always the best.

In figures 6.2 and 6.3 we can see the average time and number of steps for
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Figure 6.2: Trees and bipartite average time in seconds

each algorithm. The number of steps is normalized to 1.000. We can see the
big difference between the time and the steps. The DSATUR time for trees is
almost 70 seconds and for the PSO is only a pair of seconds, but both algorithm
used almost the same number of steps. This is one of the reason of using steps
instead of seconds, besides abstracting from the computer architecture.

6.3 Kuratowski based planar graphs

We have generated planar graphs using the Kuratowski theorem because we
have an upper bound of the chromatic number, that is 4. We have built our own
graph generator. We have generated 25 families of 10 graph each family. This
families are grouped by the number of nodes, starting from 10 and increasing
the number of nodes adding 10 more nodes until reaching to a family with 250
nodes. The number of edges have been calculated E = n ∗ 2.

In figures 6.4 we can see that instances with few nodes are easy to solve
and all the algorithms can cope with them, but when the number of nodes
grows, only our GSI algorithm is robust against the size of the graph. Again
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Figure 6.3: Trees and bipartite average number of steps
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Figure 6.4: Kuratowski based graphs success ratio
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the SA gets good results but it also fails when the number of nodes goes over
180 nodes. A very important feature of the Swarm based algorithms is their
scalability property, because we divide the problem into small tasks that the
agents can carry on with a low effort. The most wealthy part of these algorithm
is to join the information of all the agents and decide if the problem is solved
or not. In the results we can see that our GSI algorithm find the solution of the
problem near 100% in all the cases, but the PSO fails below 20% with graphs
of only 100 nodes. This means that PSO fall into local minimum easily because
the agents have memory about their local best and the global best and with
only four colors there are little variants. In the GSI algorithm the agents only
worried about themselves so is more difficult to fall in local minimum. The
ACO algorithm reduces it’s accuracy near linearly, without big jumps or falls.
As we can say the number of ant or agents grows faster than GSI or PSO so
the size of the problems affects directly to it’s performance, but with a parallel
programing this algorithm can get better results.

In figure 6.5 it can be seen that the time grows directly proportional to the
size of the graphs. The values of the TS in green illustrate this very clear. But
not all the algorithms performance grow the same. GSI, PSO and SA time
grow slowly compared with the other algorithms. For the GSI algorithm it has
a simple explanation, with a big success ratio the time is small but this is not
true for PSO or even SA. The relation between success and steps is evident in
figure 6.6. This figure is like the figure 4 invested.

6.4 Mizuno’s 3-colorable

Mizuno had developed a method to built hard 3 colorable instances of graphs.
These instances are a good test because you can try over very difficult graphs
with a known chromatic number. A small chromatic number can made some
algorithm run faster and find the solution in a short time. The process of
building a graphs consist of merging two special graph instances call MUGS
(there are 12 MUGS). And then apply some actions to ensure that the new
graph is 3 colorable. The process can be replied as many times as you wanted
adding different MUGS to the results.

The figure 6.7 show the results over 25 families of 10 graph instances. The
first family is the simples merging two MUGS. The next family is two iterations
of the methods, until applying 25 iterations of the methods. As the MUGS num-
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Figure 6.5: Kuratowski based graphs average time in seconds
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Figure 6.6: Kuratowski based graphs average number of steps



78 CHAPTER 6. GRAPH COLORING RESULTS

Figure 6.7: Mizuno’s graphs success ratio

ber of nodes and nodes is not the same for each MUGS, the resulting instances
are no homogeneous, like Kuratowsky’s graphs.

In the figure we can different two groups of behaviors. PSO, TS and ACO
start with very poor results and very quickly the success ratio fall near zero.
The BT and DS non deterministic algorithm start as the best method for small
instances and fall slowly towards zero. These two algorithms only have differ-
ences is small graphs, with large graph the have the same results. SA has similar
results as BT and DS, and like them it has big jumps with different families.

Our GSI algorithm start with average result under the 60 % of accuracy, but
it’s performance decreases more slowly than all the others, achieving the best
result in medium and large instances. This behavior comes again by the Swarm
approach.

In figure 6.8 we can see the results in seconds. The BT and DS even though
obtain good results, the computational time is very big. The ACO time is also
big as we expected. PSO and TS are very quick and stable, because the perform
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Figure 6.8: Mizuno’s graphs average time in seconds

bad results from the beginning and the success ratio don’t affect them. SA is
again the fastest and GSI this time penalized the dimension of the instances. As
we have said the GSI algorithm has been generated to be a parallel algorithm
and a parallel implementation will show better results in time.

Figure 6.9 show the results in steps. The figure as similar as the success
ratio but changing the y axis. The only remarkable thin is that The number of
steps of the deterministic algorithms is very similar as GSI’s although the GSI
obtain better results.

6.5 KRG graphs

The KRG graphs are a special family of graphs inspired in Kuratowsky’s theo-
rem and developed ad-hoc for this research. The idea is to built planar graphs
in a first step and then add a clique of cardinality N been N >= 4. With this
assumption, we can ensure that the chromatic number of the graph is N. This is
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Figure 6.9: Mizuno’s graphs average number of steps



6.5. KRG GRAPHS 81

true because through the Graph Theory we know that planar graph’s chromatic
number is 4, and also that the lower bound of the chromatic number of a graph
is the graph’s biggest clique. Then our KRG graphs G lower bound is N, and
the upper bound of the gr pah G-c is 4 so the chromatic number if the graph G
is N.

We have prepared two sets of experiments. The first one start with three
families of graphs with 100 nodes and 300 edges, 400 edges and 500 edges. The
maximum number of edges E of a planar graph G={V,E} is E=V*3-3. The
KRG graphs don’t need to fulfills this rule, so we can have a 100 node graph
with more than 297 edges. For each graph family we have apply a N=4, N=5,
N=6 and N=7 so finally we have 12 families of 10 graphs. We have use these
families to show empirically that the KRG graphs are good for testing.

In figure 6.10 we can see three graphics. The first one the four chromatic
number graphs of 300 edges, second with 400 edges and finally with 500 edges.
The first thing we can see is that the complexity of KRG graphs decreases
inversely with the chromatic number. The success ratio of N=7 graphs is bigger
than N=4 graphs. The second thing is that the KRG graphs chromatic number
is equal to N.

The results are quite different from previous experiments. The GSI is almost
always the best algorithm and in most cases near 100% of success. The PSO
algorithm results are the second best results even winning out GSI algorithm in
KRG_100_300_7 family. The ACO results are pretty good in the 300 and 400
edge families, been the Swarm algorithms the best accurate in this experiment.
The results in the 500 edge family are quite different, the ACO and SA can’t
find a solution in any instance. The SA usually a good algorithm, here is the
worst. The TS, BT and DS behavior is similar as other test.

In figure 6.11 we can see that the time in seconds need for TS and ACO is
very big compared with the other methods. The BT, DS and PSO are average in
computational time. SA as we expected is the fastest in almost all the instances,
but our GSI algorithm is very slow with complex graphs with small chromatic
number but near as fast as SA in graphs with a big chromatic number, been
even better is some experiments.

The steps graphics behavior is similar as success graphics, changing the y
axis. The results are in figure 6.12.

With this experiments we have shown that the KRG graphs really complies
with our assumption. Now we are going to test with bigger graphs to extend
the results obtained. We have built 4 new families of 500 nodes and 1400 edges,
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Figure 6.10: KRG success ratio
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Figure 6.11: KRG average time in seconds
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Figure 6.12: KRG average number of steps
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100 nodes and 2800 edges, 1500 nodes and 4200 edges and 2000 nodes ans 5600
edges. We have again applied N=4, N=5, N=6 and N=7 so we have test over
16 graphs families.

The results are significantly different. The results of the ACO and TS are
worst, because now we have big graphs, exactly the scenery where these algo-
rithm have problems. All the algorithms fails solving the N=4 instances, except
our GSI, and even with problems. This is because these instances are very hard.

There is a disappointing result with graphs with N=6 and N=7. Our algo-
rithm is the best with N=4 and N=5, gets good results with N=6 and N=7 but
it is beaten by DS, BT and ACO, and also by the PSO algorithm in the 500
and 100 node’s families. The results are in figure 6.13

In figure 6.14 we have the computational time. Here again we get a surprise.
Our method, that we expected to be very fast appears more slowly. Even the
TS is faster. We have to say that the result obtained is not bad compared with
ACO and DS, but the other four methods have managed to beat it in different
tests.

In figure 6.15 we see more differences with previous experiments. Now the
success graphic and steps graphs are no as similar as before. The results of the
GSI algorithm are better having into account only the steps, with a difference
with the best algorithms in N=6 and N=7. The PSO algorithm needs always
more steps, even thought get better results in some tests.

6.6 DIMACS graphs

The DIMACS challenge in 1993 [84] was a great moment in the GCP community
because:

1. It was presented a format of representing graphs that has become to a
standard.

2. In that challenge appears a group of graphs for testing that cover a wide
range of graph types, that become a point of union in the research of graph
coloring, because that graphs appears as a reference in any paper since
then.

We have test over our own graphs and it is difficult to compare with the litera-
ture, so we are going to go on testing with these graphs.
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Figure 6.13: Big KRG success ratio
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Figure 6.14: Big KRG average time in seconds
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Figure 6.15: Big KRG Average number of steps



6.6. DIMACS GRAPHS 89

The first test has been over the Mycielski graphs because there are small
and easy to test.

Then we have choose the books graphs. These graphs are a group of graphs
from the Stanford GraphBase (SGB). The construction of this graphs is:

Given a work of literature, a graph is created where each node represents a
character. Two nodes are connected by an edge if the corresponding characters
encounter each other in the book. Knuth creates the graphs for five classic works:
Tolstoy’s Anna Karenina (anna), Dicken’s David Copperfield (David), Homer’s
Iliad (homer), Twain’s Huckleberry Finn (Huck), and Hugo’s Les Miserables
(jean).

We have also test the miles graphs, members of the SGB family. These
graphs are similar to geometric graphs in that nodes are placed in space with
two nodes connected if they are close enough. These graphs, however, are not
random. The nodes represent a set of United States cities and the distance
between them is given by by road mileage from 1947.

Another member of SGB family are the Queen Graphs. Given an n by n
chessboard, a queen graph is a graph on n^2 nodes, each corresponding to a
square of the board. Two nodes are connected by an edge if the corresponding
squares are in the same row, column, or diagonal. Unlike some of the other
graphs, the coloring problem on this graph has a natural interpretation: Given
such a chessboard,it is possible to place n sets of n queens on the board so that
no two queens of the same set are in the same row, column, or diagonal if and
only if the graph has coloring number n. Martin Gardner states without proof
that this is the case if and only if n is not divisible by either 2 or 3. In all cases,
the maximum clique in the graph is no more than n, and the coloring value is
no less than n.

Finally, we have test some graphs from CAR family, the fullins graphs. These
graphs are a generalization of myciel graphs with inserted nodes to increase
graph size but not density.

We have test five BOOKS graphs, five miles graph and 6 queens graphs, all of
them of the SGB graph family and fourteen graphs of the CAR graph family. In
the next table we show the basic layout of the test graphs, the number of nodes,
number of edges, the density that is D = 2∗|E|

|V |∗(|V |−1) , and also the chromatic
number. We have shown the results in table 6.1.

The two first columns are the graph name and the chromatic number given
by the authors in DIMACS [84].
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Table 6.1: Layout of the experimental graphs
Graph #Nodes #Edges Density #K
myciel3 11 20 0.363636364 4
myciel4 23 71 0.280632411 5
myciel5 47 236 0.218316374 6
myciel6 95 755 0.169092945 7
myciel7 191 2360 0.130063378 8
anna 138 493 0.052152756 11
david 87 406 0.108527132 11
homer 561 1629 0.010370512 13
huck 74 301 0.111440207 11
jean 80 254 0.080379747 10

miles250 128 387 0.047613189 8
miles500 128 1170 0.14394685 20
miles750 128 2113 0.259965551 31
miles1000 128 3216 0.395669291 42
miles1500 128 5198 0.639517717 73
queen5_5 25 160 0.533333333 5
queen6_6 36 290 0.46031746 7
queen7_7 49 476 0.404761905 7
queen8_8 64 728 0.361111111 9
queen8_12 96 1368 0.3 12
queen9_9 81 2112 0.651851852 10
1-FullIns_3 30 100 0.229885057 3
1-FullIns_4 93 593 0.138616176 4
1-FullIns_5 282 3247 0.08195149 5
2-FullIns_3 52 201 0.15158371 4
2-FullIns_4 212 1621 0.07247608 5
2-FullIns_5 852 12201 0.033655517 6
3-FullIns_3 80 346 0.109493671 5
3-FullIns_4 405 3524 0.043075419 6
3-FullIns_5 2030 33751 0.016388475 7
4-FullIns_3 114 541 0.083993169 6
4-FullIns_4 690 6650 0.027975852 7
4-FullIns_5 4146 77305 0.008996711 8
5-FullIns_3 154 792 0.067226891 7
5-FullIns_4 1085 11395 0.019376945 8
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Table 6.2: Results of SGB graphs
Graph #K BT DS SA TS ACO PSO GSI
anna 11 0 0 3 17 0 0 96
david 11 0 100 3 0 0 0 93
homer 13 0 0 0 0 0 0 100
huck 11 100 100 100 80 0 100 90
jean 10 100 100 100 80 27 96 93

miles250 8 0 0 17 0 0 7 100
miles500 20 0 0 0 0 0 0 66
miles750 31 0 0 0 0 0 0 37
miles1000 42 0 0 0 0 0 0 100
miles1500 73 0 0 0 0 0 0 100
queen5_5 5 100 100 0 97 0 100 100
queen6_6 7 100 100 0 3 0 3 13
queen7_7 7 100 100 0 0 0 0 3
queen8_8 9 0 0 0 0 0 0 0
queen8_12 12 100 100 0 0 0 0 10
queen9_9 10 0 0 0 0 0 0 0

BackTrack and DSATUR results are 0 or 100, because they success of fail
solving the problem.

In table 6.3 we have put the Mycielski graphs, with the CAR graphs, as they
as quite similar. The Myciels result confirm our supposition that these graphs
are very simple to solve. But the fullins graph appear much more difficult.
In almost all the experiments we get very poor result even 0 in a lot of cases,
except our GSI approach that gets good results even in the more complex graphs.
These graphs are particularly difficult, because even some author claim that the
chromatic number is unknown.

The results of SGB graphs are printed in table 6.2. Books graphs are not
particularly difficult except the homer graph. Our algorithm get results over the
90% but it is not the best algorithm. SA appears again as a good approach for
this kind of graphs, as so the PSO, the TS usually a bad approach here get good
results.. The miles graphs are very hard and only our GSI manage the solve
them. Finally the queens graphs show a very hard face. The greedy algorithm
are the best. The results of the GSI, better than the other, are very poor.
The instance queens8_8 and queens9_9 failed to find the optimal chromatic
number. A coloring with 10 and 11 for this graphs have been found instead.

In [70] try to solve anna and homer graphs using a Genetic Algorithm. They
can solve anna graph but no homer graph. As we have said our GSI can solve all
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the books graphs. In [78] and [79] solve the SGB graphs using another genetic
algorithm, but fail finding the optimum solution in the CAR family. The results
are shonw in table 6.3. Here again made a good job in CAR family, and get
good results in the SGB, perhaps they get better results, but the comparison
is very difficult because we don’t know if a spacial tuning for that graph family
has been made. As we have mentioned, our GSI haven’t suffer any modification
for any experiment. In [115] use an ant-based algorithm for coloring graphs.
They perform well in these graphs, finding the best known solution in all the
instances, but here we have to compare the computational time. Our ACO
implementation is a simple approach to the ant based algorithm, because the aim
of this work is the Swarm Intelligence. More result using Genetic Algorithms
appears in a Parallel Genetic approach can be seen in [76] and [75] but the
number of experiments is quite poor compare with ours. They perform well but
in a reduced group of graphs.

In [80] a cultural algorithm is implemented to solve the GCP. The results
are similar to ours but again with a small group of algorithms. In [140] using
grouping genetic algorithms, works good but fails in some graphs. We also fails
in some graphs but test different families.

Result over queens graphs can be seen in [72], where a Genetic algorithm is
used again, but here introducing a new mutation operator. The results are not
optimum. Other example where the basic genetic strategy fails compared with
ours is [71]. Our algorithm has show that the queens graphs are very difficult
for it, but in the other hand we have good result in other graphs.

6.6.1 Test

The Friedman test is a non-parametric statistical test developed by Milton Fried-
man [131] as we have said in the previous chapter. We are going to use it to
proof that teh results of our algorithm are statistically independet from the
other methods. For the SGB graphs we have the ranking values shown in table
6.4.

With this table, we obtained the Friedman value χF = 21.6. The value of
the square-chi with six degrees of freedom and a probability of accepting the
null hypothesis with 0.99 χ2 = 16.8. The Friedman values is bigger than the null
hypothesis, so we can say that the results of these algorithms are statiscically
independent. Using the Iman-Davenport improvement we have a χID = 4.5.
The new null hypothesis with 6 and 78 degrees of freedom and an accepting
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Table 6.3: Results of CAR graphs
Graph #K BT DS SA TS ACO PSO GSI
myciel3 4 100 100 100 100 100 100 100
myciel4 5 100 100 100 100 100 100 100
myciel5 6 100 100 100 100 100 100 100
myciel6 7 100 100 100 100 100 100 100
myciel7 8 100 100 100 100 100 100 100

1-FullIns_3 3 100 100 100 78 93 100 100
1-FullIns_4 4 0 0 0 10 0 20 93
1-FullIns_5 5 0 0 0 0 0 0 90
2-FullIns_3 4 0 100 20 43 73 100 93
2-FullIns_4 5 0 0 0 3 0 0 93
2-FullIns_5 6 0 0 0 0 0 0 90
3-FullIns_3 5 0 0 3 37 0 100 87
3-FullIns_4 6 0 0 0 3 0 0 63
3-FullIns_5 7 0 0 0 0 0 0 87
4-FullIns_3 6 0 0 3 40 0 97 66
4-FullIns_4 7 0 0 0 0 0 0 66
4-FullIns_5 8 0 0 0 0 0 0 77
5-FullIns_3 7 0 0 0 20 0 57 97
5-FullIns_4 8 0 0 0 0 0 0 73

Method BT DS SA TS ACO PSO GSI
anna 5.5 5.5 3 2 5.5 5.5 1
david 5.5 1 3 5.5 5.5 5.5 2
home 4.5 4.5 4.5 4.5 4.5 4.5 1
huck 2.5 2.5 2.5 6 7 2.5 5
jean 2 2 2 6 7 4 5

miles250 5.5 5.5 2 5.5 5.5 3 1
miles500 4.5 4.5 4.5 4.5 4.5 4.5 1
miles750 4.5 4.5 4.5 4.5 4.5 4.5 1
miles1000 4.5 4.5 4.5 4.5 4.5 4.5 1
miles1500 4.5 4.5 4.5 4.5 4.5 4.5 1
queen_5_5 2.5 2.5 6.5 5 6.5 2.5 2.5
queen_6_6 1.5 1.5 6.5 4.5 6. 4.5 3
queen_7_7 1.5 1.5 5.5 5.5 5.5 5.5 3
queen_8_12 1.5 1.5 5.5 5.5 5.5 5.5 3

Rj 3.61 3.29 4.21 4.86 5.5 4.36 2.18

Table 6.4: Algorithm Rankings for Friedman Test
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probability of 0.99 is F (6, 72) = 3.29. The Iman-Davenport value is bigger than
the null hypothesis so we can say that the results of these algorithms values
are statistically different. Finally, we could make a Post-hoc test, but it is no
necessary, because we wanted to show that our algorithm is independent from
the others, but it doesn’t matter if the other algorithm has o not a dependence.

6.7 Sequential chromatic number determination

All the test explained in previous sections have been made knowing the chro-
matic number of the graphs. What what happened if the Chromatic number is
unknown or the algorithm can solve the graph in a proper time. In real life prob-
lem we will find that the chromatic number is unknown or that is not necessary
to get the best solution (a solution under a certain threshold is enough).

We have added to our algorithm an improvement that we have call Sequen-
tial approximation (SeccApp). The SeccApp consist of starting from an upper
bound to the chromatic number of a graphs, we solve the GCP with the given
number and if we succeed, we reduce the number of colors and try to solve the
problem again until we reach to a lower bound, given to the algorithm, or we
arrive to the chromatic number and the problem can go further, stopping until
a number of iterations.

We can’t say that the result of the SeccApp is the chromatic number, but we
can determine an upper bound to the graph. The accuracy of this improvement
is directly related with the number of iteration to stop the algorithm after
finding the chromatic number and the lower bound given to the algorithm. It
the number of iteration is small, we will get a result far away for the optimal
solution, but in the other hand we will have to wait a long time after finding
the optimal.

This experiment has two problems:

1. As we don’t know the chromatic number, we can’t say how near we are
to the optimal. We can extract the chromatic number from small graphs
with the greedy exacts algorithms like backtracking and DSATUR, but
with big graphs it is impossible to use this method.

2. If the chromatic number is unknown, or the the graphs have been gener-
ated aleatory, there is any reference in the literature to compare with.

We have prepare three test using the SeccApp. Test over random graphs, DI-
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Graphs100x1000 BT SA TS PSO ACO GSI
Random1 9 15(14) 11 11 17.1(17) 8.6(8)
Random2 10 15.1(15) 11 11 17(17) 9.2(9)
Random3 10 15(14) 14 11 17.2(17) 9.3(9)
Random4 9 15.1(14) 17 11 17.1(17) 9.1(9)
Random5 10 15(14) 11 11 17(17) 9.1(9)
Random6 11 14.9(14) 11 11 17(17) 9.2(9)
Random7 10 15(14) 11 10 17(17) 9.2(9)
Random8 10 15.1(14) 13 11 17.2(17) 9.1(9)
Random9 10 15(14) 15 10 17.3(17) 9.3(9)
Random10 11 15(14) 11 10 17.1(17) 9.2(9)

Table 6.5: Graphs of 100 nodes and 1000 edges. Between parentheses the min-
imum solution found.

MACS Leighton’s graphs and real graphs from “Exam timetabling problems”
[141].

6.7.1 Random Graphs

We have generated four families of absolutely random graphs. We have add
any feature to these graphs. We have generated 10 graphs per family with 100
nodes and 1000 edges in the first family, 2000 edges in the second family, 3000
edges in the third family and 4000 edges in the last family. We have started
from an upper bound of 50 colors and try to reduce the number of colors to a
lower bound of 5 colors. We have use the same experimental metric as used in
previous section.

The results are plotted in tables 6.5,6.6,6.7 and 6.8

The analysis of these results come very easily from the tables. Our GSI
algorithm gets the best result for all the families. We can’t say that the result
of the GSI if the chromatic number but it is very near. The reason for this
experiment is to test the SeccApp improvement and not to find the chromatic
number of these random graphs.

The ACO algorithm is the worst as we expected, but the SA works in a
estrange manner getting very bad results. The behavior of the SA algorithm is
very estrange and would be interesting to study it, but is out of the scope of
this work.

The TS and PSO obtain very competitive results, very similar for these two
algorithms. The performance of these algorithm is reduced when the density of
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Graphs100x2000 BT SA TS PSO ACO GSI
Random1 16 29.5(28) 18 18 34 15
Random2 16 29.5(28) 22 18 35 15
Random3 17 29.5(28) 19 18 34 15
Random4 18 29.4(28) 23 19 35 15
Random5 15 29.5(28) 19 19 34 15
Random6 18 29.4(28) 28 18 34 15
Random7 17 29.6(28) 17 18 34 15
Random8 16 29.5(28) 21 19 34 15
Random9 15 29.4(29) 23 19 34 15
Random10 18 29.6(29) 19 18 35 15

Table 6.6: Graphs of 100 nodes and 2000 edges. Between parentheses the min-
imum solution found.

Graphs100x3000 BT SA TS PSO ACO GSI
Random1 23 45(44) 27 28 50 23
Random2 24 45.5(44) 30 28 50 22
Random3 23 45.6(44) 34 27 50 22
Random4 26 45.8(44) 36 27 50 23
Random5 25 45.7(44) 31 27 50 23
Random6 24 45.4(44) 32 28 50 23
Random7 25 45.4(14) 32 29 50 22
Random8 25 45.5(44) 29 28 50 23
Random9 25 45.4(44) 31 27 50 23
Random10 25 45.5(44) 35 28 50 22

Table 6.7: Graphs of 100 nodes and 3000 edges. Between parentheses the min-
imum solution found.

Graphs100x4000 BT SA TS PSO ACO GSI
Random1 36 50 47 41 50 32
Random2 36 50 44 40 50 33
Random3 36 50 15 40 50 34
Random4 37 50 39 42 50 34
Random5 35 50 47 39 50 33
Random6 36 50 40 40 50 33
Random7 36 50 42 42 50 33
Random8 34 50 40 40 50 33
Random9 39 50 43 41 50 33
Random10 35 50 43 40 50 33

Table 6.8: Graphs of 100 nodes and 4000 edges. Between parentheses the min-
imum solution found.
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the graphs grows.
Finally, the deterministic BT algorithm get the second best results in the

given number of steps (the BT will find the chromatic number always). This
behavior is also unexpected because beats more sophisticated algorithms.

The implementation of the DS has a limitation of a chromatic number of 8
so we haven’t used it in this experiment.

6.7.2 Leigthon graphs

Theorem 46. Two finite graphs which have a common covering have a common
finite covering [142].

Based in this theorem Leighton show a way to built graphs [31] where the
chromatic number is known.

After testing the SeccApp with random graphs we have make a test with
DIMACS Leighton’s graphs, because although we know the chromatic number
of these graphs, we have problems solving them with out graph coloring suite so
we decide, at least, return the most approximate solution with our algorithm.
We can see them in table 6.9.

In Fleurent [143] a Evolutionary Tabu Search Approach has been used with
good results, finding the best solution for all the 5-colorable and 15-colorable
graphs, and two of the 25 colorable graphs. The time needed to solve these
problems has been high but similar to the time used in our experiments, but
the methods presented in this paper has been tune for a particular kind of
graphs, and ours is a more general graphs, as we can see the different types of
experiments.

6.7.3 Real Graphs

Finally we have use graphs from the Exam timetabling problem of several uni-
versities of the United States. In the papers of Lewis [2, 128], we can find a great
comparison of some methods for graph coloring. We have add a new column
with our result. The results appear in table 6.10.

Been TabuCol a Tabu Search Based Algorithm. PartialCol a particulariza-
tion of a Tabu Search algorithm searching only feasible solutions. AntCol an Ant
Colony Optimization, similar to the ACO algorithm implemented in our suite
but more accurate than ours. HEA is an Hybrid Evolutionary Algorithm. HC a
standard Hill Climbing algorithm. BT the Backtracking algorithm but different
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Graph #node #Edges Density #K GSI
le450_5a 450 5714 0.056 5 8
le450_5b 450 5734 0.057 5 8
le450_5c 450 9803 0.097 5 9
le450_5d 450 9757 0.096 5 9
le450_15a 450 8168 0.081 15 18
le450_15b 450 8169 0.081 15 18
le450_15c 450 16680 0.165 15 20
le450_15d 450 16750 0.166 15 20
le450_25a 450 8260 0.082 25 26
le450_25b 450 8263 0.082 25 27
le450_25c 450 17343 0.171 25 30
le450_25d 450 17425 0.172 25 30

Table 6.9: Leighton Graphs results

Graph best #K TabuCol PartCol AntCol HEA HC BT GSI
sta-f-83 13 13.35 13 13.13 13 13 13 13
hec-s-92 17 17.22 17 17.04 17 17 19 18
kfu-s-93 19 20.76 19 19 19 19 19 20
yor-f-83 19 19.74 19 19.87 19.06 19 20 21
tre-s-92 20 20.58 20 20.04 20 20 23 23
car_f-92 27 39.92 32.48 30.04 28.5 27.96 27 36
car-s-91 28 39.1 30.2 29.23 29.04 29.1 28 37
pur-s-93 33 50.7 45.48 33.47 33.7 33.87 33 44

Table 6.10: Exam timetabling of Lewis [2] plus GSI



6.8. CONCLUSIONS 99

from ours because this version of BT uses an especial ordering to improve the
results.

The results of our GSI algorithm is equal to the best in the sta-f-83 graphs,
and not the best but not the worst in the rest of the examples. This is because
the amount of time used in both experiments, GSI iterations and the appearing
in [2]is different. They used a measure that they call checks and the experiments
stops until 5e11 checks. We used a measure called steps that is bigger than checks
obviously, but we stop in only 1e5steps. Other problem is that we haven’t use
the parallel advantage of our algorithm in the implementation that is critical in
large problems like this.

6.8 Conclusions

We have test our GSI algorithm with a wide range of problems. We have com-
pared the results obtained of our GSI with the other six algorithms implemented
in our Suite, and also results extracted from the bibliography. Our algorithm is
clearly better than other algorithms implemented in our Suite in almost all the
situations. When our algorithms didn’t get the best results, it is nevertheless
ranked among the best. The comparison with result that appear in the literature
is more difficult, because the metric used to carry out the test in not always the
same. Our algorithm is most cases gets at lest the same results or even better
than appear in the literature, finding the chromatic number reported by other
researchers.

Sometimes our algorithm don’t find the chromatic number, or get worse
results than the appearing in a publication, but this is a minority. We must take
into account that we explore a big number of different classes, where published
works, usually focuses in one kind of graph.
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Chapter 7

Conclusions and further work

Graph Coloring is a classical combinatorial problem, which has been studied
from many diverse points of view, and still benefits from fresh approaches in
the approximate solution in acceptable computational time. The work reported
in this Thesis aims to contribute an innovative approach with general good
convergence results. Graph Coloring importance from a practical point of view
lies in the definition of mappings from other combinatorial problems, so that
an efficient solution of the Graph Coloring provides efficient solutions to the
original practical problem.

The approach followed in this Thesis is nature inspired in two ways:

• Uses the swarm intelligence metaphor that has produced innovative com-
putational solutions such as the Ant Colony Optimization (ACO) and the
Particle Swarm Optimization (PSO).

• Uses the gravitational and electromagnetic interaction (loosely speaking)
metaphors to map the GCP into the swarm dynamics.

In this regard, we can state that we have succeed in proposing an efficient
nature inspired algorithm for the solution of the GCP. The proof of the value
of algorithm follows from two separate works.

1. First, we have been able to state formally some desired convergence prop-
erties giving formal proof in the asymptotic case. Specifically, we have
shown that upon convergence to a stationary state the GSI always reaches
a solution of GCP if the number of color goals is no lower than the graph
chromatic number.
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2. Second, we have been able to perform computational experiments over an
extesive collection of benchmark graphs, comparing with other state-of-
the-art algorithms. The performances obtained were competitive or even
improved the state of the art in several respects.

The extensive sensitivity analysis experiments have allowed to assess the general
insensitivity of the GSI to fine parameter tuning, amounting to a high degree
of robustness.

7.1 Future works

Theoretical works: Future works in the theoretical domain must address the
dynamical convergence of the GSI: does the GSI always converge to a stationary
state? Are there cyclic behaviors? For such research more sophisticated math-
ematical tools dealing with dynamic stochastic processes may be needed. In
any case, the GSI definition must be extended to include some of the intuitive
elements, such as the comfort, which play a role in this dynamic convergence.

Computational verification: Future works in the computational domain al-
ways ask for more extensive computational experimentation, with more accurate
implementations of the competing algorithms, finer tuning of all algorithms.

Non-stationary: Another interesting issue is that of coping with non-stationary
environments. It will be highly interesting to study the theoretical convergence
issues in the non-stationary case, which would surely imply innovative defini-
tions of the processes involved. For computational evaluations, the definition of
appropriate benchmarking and even the adaptation of other approaches to the
non-stationary setting will be non trivial

Applications: Future works in the application domain require the identifica-
tion of appropriate practical problems which can be mapped into a GCP. For
instance, actually the candidate is working in social network community de-
tection and tracking, which is a dual problem to the GCP. The GSI may be
very proficient in the adaptation to changes in the social structure by its own
nature. The GSI does not stop its computation when reaching an stationary
state, and if some external condition changes the relation between nodes and
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thus GSI agents, the GSI is automatically activated to restore the equilibrium
state, meaning computing the closest GCP solution.
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Appendix A

Graph experimental instances
and graph generators

In this appendix we present the collection of graphs that have been used in
the computational experiments for senstitivity exploration and/or comparison
among GCP solving algorithms. After a brief introduction in Section A.1, we
visit each of the kinds of graphs used: the trees in Section A.2, the DIMACS
graphs in Section A.3, random graphs in Section A.4, Mizuno’s graphs in Section
A.5, planar graphs in Section A.6, KRG graphs in Section A.7, and real graphs
in Section A.8

A.1 Introduction

Testing algorithms for Graph Coloring Problem (GCP), including our Gravi-
tational Swarm algorithm, requires a controlled collection of graphs to allow
for verification of results and reproduction by independent testers. We have
prepared eight groups of graphs to use in the experimental works:

1. 30 Tree graphs.

2. 30 bipartite graphs.

3. 20 DIMACS graphs [84].

4. 250 Kuratowski’s theorem based graphs [86].

5. 250 Mizuno’s method graphs [1].
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6. 280 particular graphs of a new graph family of our own design that we
call KRG.

7. 40 completely random graphs of a given number of nodes and edges.

8. 8 real graphs extracted from [2] modeling a scheduling problem is some
universities in the USA.

It’s is impossible to test all kinds of graphs, and even in the selected groups, there
are infinite subfamilies with small differences between them, but the graphs in
the list above show many special features that are of interest in the GCP.

A.2 Trees and bipartite graphs

A.2.1 Trees

The trees are special graphs with the specific feature that their chromatic num-
ber is 2. A Tree is an undirected graph such that any two nodes are connected
by exactly one single path. In other words, a tree is a connected graph without
cycles.

Trees can be draw in such a way that we have a root node with two or more
offspring. Each of these offspring can have more offspring until all the nodes are
downs forming a structure similar to a tree.

Coloring trees is quite easy, nevertheless trying to color them may uncover
unexpected problems for some algorithms. Therefore, they are a kind of bottom
benchmark for algorithm performance.

A.2.2 Bipartite

A bipartite graph is a graph whose nodes can be divided into two disjoint sets
U and V such that every edge connects a node in U to one in V; that is, U and
V are sets of independent nodes. By definition, bipartite graphs are 2-colorable.
And are very easy to color. But as happened with the trees, the way that the
algorithm tries to find the coloring can make it to fail.

A.3 DIMACS

The Center for Discrete Mathematics and Theoretical Computer Science at Rut-
gers University, DIMACS, celebrated a challenge in 1993 to probe the state of
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the art of algorithms solving the GCP. Gathering material from different sources,
they offered a lot of graphs to test and show the goodness of the algorithms.

These graphs are very important because the scientific community used them
to test different GCP algorithms allowing easy and fair comparison of different
works. This is only partially true, because even though a lot of researchers
use these graphs for testing new algorithm, it is also true that the specific
parametrization, stopping conditions, and computational resources used for the
experiments, make really difficult to compare one work with another. In the DI-
MACS challenge, a graph file format was introduced as a way to share graphs
between different research groups. The format has three tags. The lines that
start with a letter «c» are comments, the line starting with the letter «p edge»
followed by two numbers contain the number of nodes and the number of edges
respectively. The line starting with «e» followed by two natural numbers rep-
resent an edge between two nodes identified by numbers. An example graph
codification follows:

c Test graph
p edge 5 6
e 1 2
e 1 3
e 2 3
e 2 4
e 2 5
e 4 5
The DIMACS graphs used in our experiments are the Mycielski graphs,

queens graphs, miles graphs, fullins graphs and the books graph.

A.3.1 Mycielski graphs

Among all the DIMACS graphs, the Mycielski graphs [90] have been very im-
portant in our experiments. The Mycielski graphs are constructed following
the Mycielski theorem, and are a family of small and simple graphs useful to
tune the parameters of optimization algorithms. The Mycielski theorem reads
as follows:

Theorem 47. There are triangle-free graphs with arbitrarily high chromatic
number.

The construction of the Mycielski graph follow a mathematical formula as
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Figure A.1: Mycielski graph transition from M3 to M4

follows. Let us denote the n nodes of a given graph G as v0, v1, etc. The
Mycielski graph of G contains G itself as an isomorphic sub-graph, together
with n+ 1 additional nodes: a node ui corresponding to each node vi of G, and
another node w. Each node ui is connected by an edge to w, so that these nodes
form a star-shaped sub-graph k1,n . In addition, for each edge (vi, vj) of G, the
Mycielski graph includes two edges, (ui, vj) and (vi, uj).

Thus, if G has n nodes and m edges, m(G) has 2n + 1 nodes and 3m + n

edges. In figure A.1 we can observe the graph transition fromM3 toM4. (source
wikipedia).

A.3.2 Queens Graphs

The n × n queen graph has the squares of a n × n chessboard as its nodes
and two nodes are adjacent if and only if queens placed on the two squares
attack each other. These graphs are very dense, because as the queen can
move in all directions and all the squares that she wanted, it is very difficult
to place n queens in a n × n chessboard. This graph family is inspired in the
classical problem of placing 8 queens in a standard 8×8 chessboard, see figure
A.2. Martin Gardner states [144] without proof that the n × n queen graph is
n-colorable whenever nmod 6 is 1 or 5.

A.3.3 Miles graphs

Miles graphs are similar to geometric graphs in that nodes are placed in space
with two nodes connected if they are close enough. These graphs, however, are
not random. The nodes represent a set of United States cities and the distance
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Figure A.2: 8 queens problem solution

between them is given by by road mileage from 1947. These graphs are also due
to Knuth. There are different graphs according to the number of cities used for
its construction. In the figure A.3 we can see a map of the USA where some
cities of different states are linked by a wire.

A.3.4 Fullins graphs

Full Insertion aka Fullins graphs are a generalization of Mycielski graphs with
inserted nodes to increase graph size but not density. The result is a graph more
complex and difficult to color. The problem of Mycielski graphs is that they are
very easy to solve by deterministic algorithms and don’t offer a handicap. This
generalization allow to use the Mycielski theorem to built more difficult graphs.

A.3.5 Books graphs

These graphs are extracted from books. The construction is as follows: Given
a work of literature, a graph is created where each node represents a character.
Two nodes are connected by an edge if the corresponding characters encounter
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Figure A.3: United States Cites Graph

each other in the book. Donald E. Knuth from the Stanford University created
the graphs for five classic works:

1. Leon Tolstoy’s Anna Karenina called anna.col with 138 node, 493 edges
and 11 colors.

2. Charles Dicken’s David Copperfield called david.col with 87 node, 406
edges and 11 colors.

3. Homer’s Iliad called homer.col with 561 node, 1629 edges and 13 colors.

4. Mark Twain’s Huckleberry Finn called huck.col with 74 node, 301 edges
and 11 colors.

5. Victor Hugo’s Les Miserables called jean.col with 80 node, 254 edges and
10 colors.

A.3.6 Leighton Graphs

This graphs are based on Leighton’s graph covering theorem [142] that says:

Theorem 48. Two finite graphs which have a common covering have a common
finite covering.
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Figure A.4: Books where the Books Graphs come from

This graph family has been widely studied and represent a particular group
of graphs called covering graphs.

Let G = (V,E) and C = (V 2, E2) be two graphs, and let f : V 2 → V be
a subjection. Then f is a covering map from C to G if for each v ∈ V 2, the
restriction of f to the neighborhood of v is a bijection onto the neighborhood
of f(v) ∈ V in G. In other words, f maps edges incident to v one-to-one onto
edges incident to f(v). If there exists a covering map from C to G, then C is a
covering graph (or a lift) of G.

A.4 Random Graphs

We have implemented a graph generator that given a number of nodes V and a
range of edges E1 and E2, the application can generated a graph G = {V,E}.
The test using this kind of graphs is useful to challenge different algorithms
starting without any information. The chromatic number is unknown, so start-
ing from an upper-bound, the algorithms must find the chromatic number, or
try to get near as fast as possible.

The random graphs are used in advanced test, when the algorithms have been
previously tuned. Not all the methods allow a sequential decreasing search, but
is essential in graphs of unknown chromatic number if we want the search of the
chromatic number to be an automatic task. The other way implies a manual
search changing the number of color after each success try. All implementations
in our Graph Coloring Suite came with this feature.
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A.5 Mizuno’s Graphs

We have implemented the graph generation method developed by Mizuno in
[97]. Mizuno’s Graphs are a family of 3-colorable graphs. Mizuno claims that
the graphs generated by his method are very hard to color. We have confirmed
empirically that it’s true.

The constructions of these graphs is based on 12 different graphs called
MUGs that are 4 colorable. We can see these MUGs in figure A.5. The method
takes two of these MUGS and join them according to a rule to form a new graph
that is exactly 3-colorable. The resulting graph can join with another MUG,
following the same rule, to create bigger graphs. This can be repeated until the
user wanted increasing the size of the graphs. All these graphs have the same
complexity but obviously, bigger graphs are even more difficult to solve than
small graphs.

The Mizuno’s graphs appear in the DIMACS challenge but we have built our
own generator because the chromatic number is known so we can make extensive
and exhaustive test on difficult graphs. The number of Mizuno’s graphs that
appears in DIMACS is very short.

A.6 Planar Graphs

We have prepared an especial family of Graphs: Planar Graphs. A planar graph
is a graph that can be embedded in the plane: all the edges can be draw in the
plane without any crossing. Planar graphs are 4-colorable according to the four
color theorem. This theorem states that, given any separation of a plane into
contiguous regions, producing a figure called a map, no more than four colors
are required to color the regions of the map so that no two adjacent regions
have the same color. In other words the chromatic number of planar graphs is
4.

We have prepared an application that generates this graphs using the Ku-
ratowski’s theorem that reads as follows:

Theorem 49. A finite graph is planar if and only if it does not contain a
sub-graph that is a subdivision of k5 or k3,3.

Where k5 is the complete graph on five nodes, and k3,3 is the complete
bipartite graph of six nodes, three of which connect to each of the other three.
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Figure A.5: Mizuno’s MUGs for 3-colorable graphs generation [1]
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Our implementation, like for random graphs, asks for the number of nodes
V and the number of edges E. The maximum number of edges comes from the
formula M = (V ∗ 3) − 6. If E > M then it is impossible to generate a planar
graph.

A.7 KRG graphs

The KRG graphs are a special family of graphs discovered in this thesis whose
chromatic number is given when we built them. We need three parameters,
the nodes V, the edges E and the chromatic number C. Taking into account
the Kuratowski theorem, there are any k5 or k3,3 sub-graphs. Then we choose
C nodes and we connect all the nodes forming a Kc sub-graph of n nodes,
n = V ∗(V−1)

2 . Then we have a graph G = {V,E} that is C-colorable.

Theorem 50. If we have a planar graph, if we add n edges between nodes such
that we form a complete sub-graph, then the chromatic number of the graph is
the order of the complete sub-graph.

The Graph Gk = {V, (E − n)} is planar using the Kuratowski theorem. The
graph G = {V,E} has a maximum clique of C, been a clique more or less a
complete sub-graph where all the nodes have and edge between them. Using
the Brèlaz [34] method for graph coloring we can say that the chromatic lower-
bound is C. Using the Bron-Kerbosch [129] method to extract a clique, we can
sure that there is any clique bigger than C. So the chromatic number is C.

In the figure A.7 we can see a screenshot of the implemented aplication,
embeded in the graph coloring suite, that generates the aleatory graphs with a
given number of nodes and a range of edges. Planar graphs based on kuratowski
theorem and our new graphs KRG. And also the 3-colorable graphs of Mizuno.

A.8 Real Graphs

We have used synthetic graphs to prove that our algorithm can solve the GCP.
These graphs follow a pattern which the algorithms can use to find the solu-
tion. Even the randomly generated graphs can have a pattern, induced by the
generation method implementation. However, sometimes modeling a real life
problem produces graphs without any special feature and arbitrary structures
that can confuse even the most accurate algorithms.
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Figure A.6: Aleatory graphs, Kuratowski’s planar graphs, Mizuno’s 3-colorable
graphs and KRG new developed graph type generator.

For that reason we have included in this benchmarking graph collection some
real life graphs that represent a scheduling problem in some universities in the
USA. Noteworthy, the exact chromatic number is unknown and for comparison
we only have the result published by other researchers.

The problem is to schedule the examinations using the existing resources, in
such a way that no two exams can be held in the same place in the same day.
The full explanation of these graphs can be found in [145].
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Appendix B

Graph Coloring Suite

We have implemented all the GCP solving methods in a single program. We
call it a Graph coloring Suite, because we have in a unique enviroment all the
algorihtms. We can see a snapshot of the the program’s user interface in figure
B.1.

The user interface allows to select:

• The input graph file (which must be coded in DIMACS format),

• The output directory for the results.

• The hypothesis on the chromatic number.

• The upper bound on the chromatic number, if you want to perform a
sequential search decreasing the hypothetical chromatic number of colors
until reaching the lowest unsolved hypothesis.

• Besides there are four additional parameter needed only for the GSI: the
Goal Radius, the world size and the Confort.

• The number of iterations that we are going to let to program before stoping
it without finding a solution. The program stops when a solution is found
or the maximum number of iterations is achieved.

• The number Repetitions of the algorithm that we want to execute. This
value has no meaning in the BackTracking and DSATUR algorithms, as
the are deterministic.

• The algorithm to be used for the solution (via separate buttons).
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Figure B.1: Graph Coloring Suite

The program returns a file that contains information about the result of the
applied algorithm. The first line is the algorithm used. Then for each repetition
of the algorithm, the number of iterations need to find a solution and the number
of repetition. If the algorithm didn’t managed to find a solution then the number
of iteration is equal to the maximum number of iteratiosn. After that, the
solution appears if it is found, showing for each vertex the assigned color by the
algorithm. The colors are represented by numbers starting from zero.

Finally, there is a summary report of the experiment. The number of repe-
titions. The numer of success experiment and the number of failures. Then the
average number of iterations for all the experiments, success and failures. And
the last two lines are for the total time of the experiments in seconds and the
name of the file with the graph tested. The figure B.2 shows a snapshot of a
result file.



119

Figure B.2: Snapshot of a result file
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