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Nomenclature
AAA Abdominal Aortic Aneurysm

AAA Abdominal Aortic Aneurysm

AAA Abodminal Aaorta’s Aneurysm

BP Backpropagation

CAD Computer Aided Diagnosis

CT Computed Tomography

CT Computerized Tomography

CTA Computed Tomography Angiography

CTA Computed Tomography Angiography

EVAR EndoVascular prostheses for Aneurysm Repair

EVAR Endovascular Aneurysm Repair

FFD Free From Deformations

LMT Logistic Model Tree

LVQ Learning Vector Quantization

MI Mutual Information

MIP Maximum Intensity Projection

MLP Multi-Layer Perceptron

MRI Magnetic Resonance Imaging

MSD Mean Squared Differences

PET Positron Emision Tomography

RBF Radial Basis Function

RF Random Forest

SVM Support Vector Machine
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1. Introduction

This introductory chapter is aimed to provide a quick overlook of the thesis that
may allow the casual reader to assess its contents and main contributions. Its struc-
ture is as follows: Section section 1.1 gives some general guidelines and motivation
of the Thesis contents. Section section 1.2 gives a general description of the The-
sis contents. Section section 1.3 summarizes the main contributions of the Thesis.
Section section 1.4 enumerates the publications obtained along the works. Section
section 1.5 describes the actual contents of the chapters in the Thesis.

1.1. Introduction and motivation

The main material on which this Thesis works are Computed Tomography (CT) ab-
dominal images, specifically Computed Tomography Angiography (CTA) of patients
of Abdominal Aortic Aneuryms (AAA) which underwent Endovascular Aneurysm
Repair (EVAR). It is expected of the deployment of CT imaging devices to improve
our ability for detecting and monitoring anatomical structures in the body, as well
as tracking their evolution in time. However, these kind of images pose new kinds
of challenges.

This Thesis has grown along two main lines of work. First, the idea of predicting
the evolution of patients who underwent EVAR according to aortic deformation
values measured by image registration techniques. Prediction has to be achieved by
Machine Learning approaches. Second, the segmentation of challenging structures
in the images (3D CTA) applying an Active Learning approach in the training
of classifiers performing the voxel-based classification achieving the segmentation.
Some of the works in this Thesis have been done in close relation with the clinicians
in actual treatment of AAA patients, so that some of the contents of the Thesis are
directly aimed to provide them with useful tools for their daily work.

1.2. General description of the contents of the Thesis

The pipeline of processes implemented in the Thesis is shown in Figure Figure 1.1.
The starting point is the CTA data provided by the clinicians from conveniently
anonymized databases. Major goals of the work done in this Thesis are highlighted

3
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1.2 General description of the contents of the Thesis

in red boxes: Visualization and Computer Aided Diagnosis. Visualization is a re-
quirement for the human assessment of the patient’s state and evolution. The goal is
to provide the clinicians with a visualization procedure that highlights the required
information. In this case is the evolution of the AAA’s thrombus. Computer Aided
Diagnosis (CAD) goal is to provide predictions about patient’s state on the basis of
image information. In this case, the prognosis of the patient. CAD is done on the
basis of the registration parameters which can be also used for visualization. Thus,
the central processes in this pipeline are the segementation and registration of the
patient’s imaging data. Volume registration is performed using the first study of a
patient as the reference image, and the other taken as the moving image, so that
the deformation and movement introduced by the evolution of the AAA thrombus,
stent graft and aortic lumen are computed in a longitudinal analysis.

1.2.1. Segmentation by Active Learning

Segmentation of AAA thrombus and lumen in the CTA volume image has been
proposed following diverse approaches, as will be commented in Chapters 3 and
5, requiring diverse degrees of interaction and human operator feedback. Some at-
tempts have been reported applying adaptive region growing and deformable surface
matching approaches, which require usually good initial guesses to achieve good re-
sults, and some careful algorithm design because of the very low contrast-to-noise
ratio of some features of AAA volumetric CTA data. Parameter tuning and valida-
tion of all segmentation processes is conditioned to the availability of data samples,
which must be representative of all possible situations in order to assess the gen-
eralization of the segmentation method to new data. CTA data may have strong
variability due to several causes: (a) different CT imaging devices, either from the
hardware or the software point of views, (b) variations in anatomical localization due
to inter and intra-subject variability, (c) low contrast-to-noise ratio due to similarity
of tissue absortion patterns in neighboring organs of the abdomen, (d) miscelanous
noise sources such as capture and computational additive noise and patient motion,
(e) functional/physiological variations, such as diverse flow patterns of the contrast
agent. To cope with such variability we are forced either to retrain the existing
segmentation process or to start afresh the segmentation design following some op-
timized design strategy. In this Thesis we have opted for the second approach
applying an Active Learning strategy to train specific classifiers for the detection of
the target anatomical structures.
Active Learning is an interactive train data selection and labeling algorithm that
uses the actual classification uncertainty to guide the selection of new training data
to be labeled by an oracle, usually the human operator. Active Learning minimizes
the number of data samples needed to build up a classifier maximizing its gener-
alization performance by selection of the data samples with maximal uncertainty.
The intuitive rationale is that maxim. On this basis, the segmentation procedure
consists in the following steps:

5
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1. Computation of the selected features from the data set given by the CTA 3D
image data.

2. Create a random selection of candidate voxels for the train dataset. Ask the
oracle for their class labeling.

3. Iterating the following steps, until reaching a desired accuracy performance.

a) Add the selected set of labeled voxels to the train dataset. The data
consist of pairs of feature vectors and corresponding labels. The

b) Train the classifier on the train dataset.

c) Compute accuracy by suitable crossvalidation procedure. Often it is re-
duced to leave-one-out if the dataset is too small. In experiments where
the ground truth is already available, accuracy can be computed on all
samples out of the train dataset.

d) Compute the classification uncertainty of the data samples outside the
train dataset which are candidates to be added to it.

e) Select the candidate data samples with maximal uncertainty asking the
oracle for their class labeling.

4. Apply the obtained classifier to the whole CTA 3D image data. In the ex-
perimental validation reported in this Thesis, there is a given ground truth,
therefore the accuracy on the whole image can be obtained.

This procedure involves some human operator interaction in the clinical setting,
however this interaction reduces to picking among the voxels with highest classifi-
cation uncertainty. An appropriate visualization and interface tool would make this
process amenable in the real clinical context for accurate measurement of the AAA’s
thrombus volume.

1.2.2. Registration for visual assessment

The clinicias find very useful tools that allow them to perform visual inspection of
the data in such a way that their intuitive assessment of the patient’s state and
evolution. For the monitoring of AAA patients after EVAR treatment, the visual
inspection of the evolution of the thrombus in the aneurysm sac provides a very
direct way to perform the desired assessment. The approach followed consists in
the rigid registration of the thrombus according to the registration transformation
computed on the Aorta’s lumen bounded by the stent graft. Segmentation of the
lumen and stent graft usually does not pose problems. Moreover, when the stent
graft is stable, the shape of the lumen will not vary, so that the rigid registration of
the segmented lumen between the initial and subsequent imaging studies is within
the scope of conventional registration software. The complete procedure is as follows:

6 6



1.3 Contributions

• Segment aortic lumen in CTA volumes obtaining the fixed (initial EVAR imag-
ing study) and moving (imaging study after some time) binary 3D images for
registration.

• Compute rigid registration of the lumen region.
• Apply the rigid registration transformation to the lumen and segemented

thrombus of the moving study.
• Visualize the overlapping of the two thrombus regions.

The restriction of the registration transformation to the rigid body case arises from
the fact that we do not want to introduce false deformations of the thrombus that
may misguide the clinician’s assessment. The presentation of the results to the
clinicians has been encouraging.

1.2.3. Computer Aided Diagnosis

Aiming to offer a complementary tool suppporting the clinician assessment, we look
to the application of Machine Learning approaches to provide some CAD system
for AAA prognosis based on imaging information. The features considered for the
characterization of the AAA state are the parameters of the registration performed to
match the thrombus in the moving CTA data to the thrombus in fixed CTA data.
Now, the registration includes affine and non-linear transformations, because we
want to build the CAD system on the quantitative measurement of the deformations
suffered by the thrombus along time. To reduce the feature dimensinality, we use as
features the registration quality measures instead of the transformation parameters.
The procedure for feature extraction proceeds by successive registration refinements,
from the rigid body, affine registration, up to a two level diffeomorphic registration
using B-splines to model the deformation field. The registration quality measures are
input to a Machine Learning algorithm learning the prognosis prediction from the
actual diagnosis provided by the clinicians. The validation of the approach reported
includes several state-of-the-art algorithms for classifier training on the available
clinical data (conveniently anonimized). Results have been positive, reaching high
accuracy in a leave-one-out validation process. However the small sample size asks
for an extended recruitment of patients and data to perform extensive validation of
the approach.

1.3. Contributions

The specific contributions of the Thesis are the following ones:
• A state-of-the-art review covering diverse topics tackled in the Thesis, such as

AAA segmentation, imaging and visualization techniques, image registration,
and Machine Learning for medical image analysis.
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• Definition of a feature selection procedure for Random Forests based on the
sensitivity of the out-of-bag error as a measure of feature importance. This
procedure has been applied to the selection of the voxels’ features for the CTA
image segmentation.

• Definition of an Active Learning strategy based on the variance of the indi-
vidual classifier Random Forest outputs as a measure of classification uncer-
tainty. This strategy has been applied to CTA image segmentation of the
AAA’s thrombus.

• Experimental validation of the Active Learning strategy for training classifiers
to perform AAA’s thrombus segmentation.

• Definition of a visualization pipeline for the visual assessment of AAA’s throm-
bus evolution, avoiding artifacts due to image registration.

• Definition of the feature extraction for a CAD system devoted to EVAR prog-
nosis. Features are based on the successive steps of a registration pipeline,
specifically they are the registration quality measures.

• Validation of the CAD systems on clinical CTA datasets provided by the clin-
icians, testing several state-of-the-art supervised classfier training algorithms.

1.4. Publications obtained

1. J. Maiora, B. Ayerdi, M. Graña, «Random Forest Active Learning for Com-
puted Tomography Angiography Image Segmentation» Neurocomputing, 2012
(in press)

2. D. Chyzhyk, M. Graña, A. Savio, J. Maiora, «Hybrid Dendritic Computing
with Kernel-LICA applied to Alzheimer’s Disease detection in MRI», Neuro-
computing, 2012, Volume 75, issue 1, pp. 72-77.

3. G. García, J. Maiora A. Tapia, M. De Blas, «Evaluation of Texture for Classi-
fication of Abdominal Aortic Aneurysm After Endovascular Repair», Journal
of Digital Imaging, Volumen 25, issue 3, pp. 369-376, 2012.

4. J. Maiora, M. Graña, «A computer aided diagnostic system for survival anal-
ysis after EVAR treatment», Journal of Medical Informatics & Technologies,
Volume 18, pp. 51-58, 2011.

5. I. Macia; M. Graña; J. Maiora; C. Paloc; M. de Blas, «Detection of Type
II Endoleaks in Abdominal Aortic Aneurysms After Endovascular Repair»,
Computers in Biology and Medicine, Volume 41, issue 10, pp. 871-880, 2011.

6. J. Maiora, G. Garcia, A. Tapia, I. Macia, J.H. Legarreta, C. Paloc, M. De Blas,
M. Graña «Thrombus Change Detection After Endovascular Abdominal Aor-
tic Aneurysm Repair», International Journal of Computer Assisted Radiology
and Surgery, Springer-Verlag, Volume 5 (Suppl 1), pp. S15, 2010.
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7. J. Maiora, M. Graña, «Abdominal CTA Image Analisys Through Active Learn-
ing and Decision Random Forests: Aplication to AAA Segmentation», IJCNN
2012, Brisbane, Australia.

8. J. Maiora, M. Graña, «A Hybrid Segmentation of Abdominal CT Images»,
7th International Conference on Hybrid Artificial Intelligence Systems. Spe-
cial session on Hybrid Computational Intelligence and Lattice Computing for
Image and Signal Processing. Salamanca, Spain. March 28-30, 2012.

9. J. Maiora, G. García, M. Graña, M. De Blas, J. Sanchez, «Classification of
Patients after Endovascular Repair Based on Image Registration Quality Mea-
sures», MICCAI-CVII 2011, Toronto, Canada, 18-22, Sept 2011.

10. J. Maiora, M. Graña. «A hybrid system for survival analysis after EVAR
treatment of AAA», Hybrid Artificial Intelligence Systems, 6th International
Conference (HAIS), Wroclaw, Poland, 2011.

11. J. Maiora, G. García, I. Macía, J. Haitz-Legarreta, F. Boto, C. Paloc, M.
Graña and J. Sanchez Abuín, «Thrombus Volume Change Visualization after
Endovascular Abdominal Aortic Aneurysm Repair», Hybrid Artificial Intelli-
gence Systems, 6th International Conference (HAIS), San Sebastian, 2010.

12. J. H. Legarreta, F. Boto, I. Macía, J. Maiora, G. García, C. Paloc, M. Graña
and M. de Blas, «Hybrid Decision Support System for Endovascular Aortic
Aneurysm Repair Follow-up», Hybrid Artificial Intelligence Systems, 6th In-
ternational Conference (HAIS), San Sebastian, 2010.

13. J. Maiora, G. Garcia, M. Grana, I. Macia, J.H. Legarreta, C. Paloc, M.
De Blas, «Thrombus change detection after endovascular abdominal aortic
aneurysm repair», CARS 2010 Computer Assisted Radiology and Surgery,
Geneva, Switzerland, 2010.

14. I. Macía, J.H. Legarreta, C. Paloc, M. Graña, J. Maiora, G. García, «Segmen-
tation of Abdominal Aortic Aneurysms in CT Images using a Radial Model
Approach», IDEAL 2009, Burgos, 2009.

15. J. Maiora, G. García, A. Tapia, I. Macía, J. H. Legarreta, M. Graña, «Stent
Graft Change Detection after Endovascular Abdominal Aortic Aneurysm Re-
pair», IDEAL 2009, Burgos, 2009.

1.5. Structure of the Thesis

The Contents of the Thesis is the following:

• Chapter 2 reviews the medical background of the Abdominal Aortic Aneurysm
(AAA), including some description of the gold standard medical imaging device
employed for patient examination and monitoring.
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• Chapter 3 reviews the medical image processing background, with some em-
phasis in the algorithms employed for the segmentation of AAA’s structures.

• Chapter 4 reviews Machine Learning methods with an emphasis on their ap-
plication to the medical image data, either at the level of image segmentation
or clinical assistance based on global image classification.

• Chapter 5 contains the first main contribution of the Thesis consisting in
the application of Active Learning to the segmentation of thrombus in AAA
volumes. The chaper explains the approach and provides empirical results on
rela life data.

• Chapter 6 contains the second contribution of the Thesis, consisting in the ap-
plication of registration methods for the visualization of the AAA’s thrombus
evolution in clinical application. The method has been tested on real clinical
data.

• Chapter 7 contains the last contribution of the Thesis, consisting in the appli-
cation of Machine Learning for the development of Computer Aided Diagnosis
system for the prognosis of the evolution of the treatment of the AAA.

• Chapter 8 contains the conclusions of the Thesis and some lines of future
research.

• Appendix A comments on the datasets used for the experiments along the
Thesis, provided by mecial teams from Hospital Donostia and Mount Sinai
School of Medecine.

• Appendix B comments on the main software tool used for image processing,
namely the ITK library.

10 10



2. Medical Background: Abdominal
Aortic Aneurysm

This chapter is aimed to set the stage for the Thesis from the medical point of
view, describing the main problem addressed in the Thesis, and its motivation. Sec-
tion section 2.1 gives an introduction to the main medical issue: Abdominal Aortic
Aneurysm and its endovascular repair. Section section 2.2 introduces Computed
Tomography Angiography (CTA). Section section 2.3 comments on its application
to this medical issue.

2.1. Abdominal Aortic Aneurysm and Treatment

An aneurysm is a focal dilation of a blood vessel to more than twice its normal
diameter. Aneurysms are most commonly found in large arteries (aorta, iliac, and
femoral); however, they have been reported in smaller arteries such as the radial or
coronary arteries as well. The etiology of aneurysm is currently believed to be multi-
factorial with atherosclerosis contributing the greatest part to the disease process.
Other causes may include infectious etiologies, traumatic injury, chronic lung dis-
eases, genetic disorders, smoking, and biomechanical factors such as hypertension,
disturbed blood flow, and wall tissue degradation. The prevalence of aneurysms is
greatest in the infra-renal abdominal aorta.

Abdominal Aortic Aneurysm (AAA) [80] is a dilation of the aorta that occurs be-
tween the renal and iliac arteries due to weakening of the vessel wall. The weakening
of the aortic wall leads to its deformation and the generation of a thrombus. If the
aneurysm gets too big, it can break. If left untreated, nearly all aneurysms continue
to enlarge and eventually rupture. Aneuryms with a diameter of 5 cm or greater
should be treated. The rupture of an aneurysm can have very serious consequences
and even cause death. Figure

Treatment options involve replacement of the diseased artery segment with a syn-
thetic tube and, until this past decade, were solely performed with standard open
surgical technique, which is considered to be a major intervention with significant
risk to the patient. In the early 90s there was a breakthrough in the treatment of
AAA with the implantation of the Endovascular Aneurysm Repair (EVAR) [127].
Nowadays, EVAR is one of the most popular treatments against AAA because it is
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a minimally invasive procedure to remove the aneurysm from the blood flow. Com-
pared with traditional surgery, a stent graft is deployed in the interior of the aorta
using a catheter system that is introduced through the femoral arteries (see Figure
Figure 2.2). After the stent graft implantation, it becomes the Aorta’s lumen in the
aneurysm section of the Aorta, supporting all blood flow and pressure. Outside the
stent graft a thrombus develops in the aneurysm sac, that can disapear if reabsorbed
by the body. Despite the success of the technique, in a number of occasions it is
preferable traditional open surgery of AAA[143].

EVAR risks A major problem after EVAR is migration [70]of the stent graft, which
may involve a twisting or buckling. This can lead to leaks and or fatigue of the
material of the prosthesis, leading to progressive aneurysm complications [44].
Incomplete exclusion of the aneurysms from the blood flow results in endoleaks:
the leakage of blood around the stent graft entering the thrombosed aneurysm sac.
The endoleaks may cause continued pressurization of the sac which again increases
the risk of Aorta rupture. In addition to leakage and fatigue of the material of the
prosthesis, their migration can cause blockages in their legs that have to be treated
by femoral bypasses. It requires post-treatment follow-up to ensure that the stent
is stable (no leaks). A decrease in aneurysm size indicates that the exclusion of
the Aorta’s wall from the blood flow has been effective, while an expansion after
deployment is indicative of the presence of a leak in the stent, and the existence of
risk of rupture.
To prevent future risk after the EVAR and to assess the response of the aneurysm
to the implant of the stent graft, the patient needs to be monitored imaging the
abdominal region along the follow-up period. The acquired images help physicians
to get information about the aneurysm and the stent graft. Based on the segmen-
tation of aortic inner and outer boundary, that is, lumen and thrombus boundary,
it is possible to reconstruct and visualize the 3D AAA model allowing to asses the
displacement and deformation of the stent graft and to measure the aneurysm’s size.

2.2. Computed Tomography Angiography

Computed Tomography (CT), a modality for non-invasive medical imaging has been
established as the gold standard in many areas. Computed Tomography (CT) is a
further development of the traditional X-ray technique. It is a medical imaging
method employing tomography to generate a large series of cross-sectional images
of the body. Though the CT slice is a two-dimensional (2D) image, using image
processing, anatomical structures can be segmented and three-dimensional (3D)
rendering can be created, which enhances the visual information of planar images
and give physicians anatomical information of the region of interest .
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2.2 Computed Tomography Angiography

Early CT scanners could only acquire images as a single axial slice at a time (sequen-
tial scanning), Later, several generations of scanners have been developed. Spiral
CT scanners enables the X-ray tube to rotate continuously in one direction around
the patient. Multi-slice CT machines (now up to 64-slice) utilizes the principle of the
spiral scanner and incorporate multiple rows of detector rings. The latest generation
of CT scanner is Dual Source CT scanners, which were introduced in 2005. They
allow higher temporal and spacial resolution, therefore reducing motion blurring at
high heart rates and potentially requiring a shorter breath-hold time.
Volumetric data acquired by the modern CT scanner can be reconstructed to suit
most clinical requirements. The data can be reformatted in various planes which
is called multiplanar reformatting (MPR). We can get sagittal, coronal and oblique
plane views along with the standard transaxial plane. The stack of 2D slices can
also be reconstructed as volumetric (3D) representations of structures for a better
anatomical view. Contrast between different tissues of the body can be improved
by the use of different contrast agents. These contrast agents are used to highlight
specific areas so that the organs, blood vessels, or tissues are more visible. Figure
Figure 2.3 highlights the differences in contrast due to the use of a blood contrast.
Contrast-enhanced Computed Tomography Angiography (CTA) is the most widely
used medical imaging technology for getting exact knowledge of the position, shape,
size of an aneurysm and the occurrence of endoleaks.
Hounsfield Unit (HU) is a unit to describe the amount of X-ray attenuation of
each voxel in the CT image. The reading in Hounsfield Unit is also called the CT
number. It is obtained by scaling and calibrating the original value to the intensity
value of water (equation Equation 2.1) and named after Godfrey Hounfield, who
demonstrated the first CT scanner in 1972.

H = 1000(u− uwater)
uwater

(2.1)

This scale assigns water as a standard attenuation value of zero HU. The range cf CT
numbers is usually 2000 HU wide and some modern scanners have a greater range
of up tn 4000 HU. Each number represents a shade of gray with +1000 (white) and
-1000 (black) at either end of the spectrum (figure Figure 2.4).
Since the human eye can only distinguish less than 80 different gray scale values, it
is not possible to display all possible density values in perceptible shades of gray. In
order to allow the observer to interpret the image, only a narrow range of HU values
are displayed. This is done by a process called windowing. To set a proper window,
a center gray scale value and the window width have to be defined. The window
is usually centered over average HU values of a particular structure to be studied.
Afterwards the window width has to be set, which covers the HU of all the tissues of
interest. Tissues with CT values in this range should be distinguishable by varying
gray scale values. CT values outside this range are displayed either black or white.
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2.3. Application of CTA to AAA

High quality imaging is mandatory for both selection of appropriate candidates for
EVAR and follow-up after EVAR. The endovascular devices currently available re-
quire the assessment of several anatomical features of an abdominal aortic aneurysm
prior to endoluminal repair.
In most centers, spiral CTA has become the gold standard for preoperative imag-
ing for EVAR [15] [56]. High quality preoperative imaging is essential for patient
selection, stent graft sizing and planning. Employing the single breath-hold tech-
nique to avoid respiratory artifact optimizes the image quality, patients are asked
to hold their breath during scanning for as long as possible. Most patients will be
able to do this for approximately 30 seconds. By that time, the aortic bifurcation
will have been reached. Modern multi-slice helical CT scanners will be able to cover
the entire abdomen within 25 seconds, reducing motion artifacts even further [144].
Such scans of the patient’s abdomen are available in clinical routine as a set of 2D
images, as shown in Figure Figure 2.5. An additional advantage of multi-slice scan-
ners is that the thickness of the slices is smaller and the voxel size becomes more
isotropic. This will not only increase the effective in-plane resolution because of a
smaller partial volume effect, but the resolution of reconstructed planes will also
improve dramatically compared with the resolution in normal spiral CTA.

2.3.1. Preoperative Imaging

In order to evaluate a patient for suitability for EVAR, it is essential to measure
the diameter and length of the infra-renal aortic neck and both common iliac arter-
ies. CTA provides adequate tissue contrast by which lumen, mural thrombus and
aortic wall can be easily distinguished. These qualities, in combination with image
post-processing, provide the basis for accurate measurements. Furthermore, it is
important to depict the amount of thrombus and calcium in the infra-renal neck,
common iliac arteries and external iliac arteries. For stent graft sizing, aortic length
and diameter are needed. Depending on these measurements, the right configuration
(supra-renal, aorto-iliac or bifurcated) of stent graft can be chosen. The last step in
preoperative imaging is planning the intervention. In most abdominal aneurysms,
the aorta is elongated and tortuous. This may result in a more difficult introduction
through one of the iliac systems or in a complicated stent graft delivery owing to a
very angulated infra-renal neck [22].

2.3.2. Postoperative Imaging

Follow-up after EVAR is an important part of patient care. After EVAR patients
need to be monitored for life because the long-term durability and outcome of this
treatment are still unknown[69, 70]. In most clinical centers, CTA is currently used
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2.3 Application of CTA to AAA

for the follow-up of patients after EVAR[56]. Endoleak detection, change in size of
the aneurysmal sac, size and type of endoleak, stent graft migration and deformation
are the most important aspects of the EVAR follow-up [195, 196, 184]. To this end,
we can perform the monitor the evolution of the EVAR in two different ways:

1. Analysis of the density of the material inside the aneurysm sac. We study the
different transformations within the aneurysmal sac by analyzing changes in
gray levels or texture. Previously we should segment the aneurysm. By post
processing imaging methods multiple CT scans are studied for quantitative
assessment of temporal intensity profiles for further analysis of trends in be-
havior and classification [115]. The steps that are required are the spatial and
intensity normalization and partial volume filtering. The spatial normalization
corrects variations in patient positioning and distortion artifacts by algorithms
for rigid and nonrigid registration. Normalization of intensities includes sepa-
rate stages for correcting variations in intra and inter-scanners. Partial volume
filtering is used to correct artifacts due to variations in patient positioning.

2. Motion analysis of the stent. Several strategies are studied to quantify the
migration hh[112] and deformation [113] with the objective of evaluating the
risk associated with these movements and especially to characterize the oc-
currence of complications. Rigid motion of the stent and the aorta in relation
to the spinal cord is estimated. These data allow us to identify patterns for
a high probability of dangerous progression of the aneurysm. This way we
can make a prediction about future complications and the progression of the
disease. Because the processes are complex and data from medical devices are
difficult to assess visually, it requires a computer-assisted analysis. Currently,
the morphological changes and migration of the stent and the aneurysm after
EVAR are not systematically studied with a quantitative basis that represent
the complexity of these movements.

Endoleaks A fundamental problem of endoleak classification on CTA images is
that they provideinstantaneus information, so that classification is based solely upon
the location of the endoleak. Absolute proof can be obtained only through a dy-
namic imaging study. An essential part of our follow-up is the tracking of size change
by volume measurements of the non-luminal aneurysm sac. Volume measurements
have been shown to be more sensitive to size change than are measurements of
diameter [180]. These volume measurements are obtained by a process of manual
segmentation of the lumen and total aneurysm volume on a separate graphical work-
station. Even using the most sophisticated CTA protocols, endoleaks may be missed
[183, 182]. There is a significant number of patients with a growing aneurysmal sac
after EVAR who do not have a detectable endoleak on CTA or conventional angiog-
raphy [179]. The evaluation of aneurysmal sac size change, by using diameter or
volume measurements, can be difficult on CTA as well. The only moderate amount
of soft tissue contrast does not always allow an accurate demarcation of the aneurys-
mal wall, especially in inflammatory aneurysms. CTA images depict not only the
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stent graft and lumen, but also calcium, bone, metal and other signal-intense tissues
making introducing artifacts in the segmentation of the thrombus and lumen.

Migration and deformation of the stent graft The EVAR may have complica-
tions including internal leakage, torque and displacement of the stent, and imaging
may suffer occlusions from limbs. In many cases, these complications are due to
migration of the stent, which is often associated with the deformation of the stent.
In most cases it can be treated with a second stent or operation.
Clinical studies describe methods to quantify the migration and shape changes [195].
They are based on interactive distance measurement over the visualization in a com-
puter screen, thus they are not very accurate. The migration’s translation parame-
ters are roughly extracted, neither rotation nor non-linear deformation parameters
are quantified. Other works [61] quantified the movement of a stent using 10 tanta-
lum markers placed on it, using simulation data for reference. However, it is unclear
how migration is measured against a fixed reference system using this method.
Quantification of several features of the shape of the aneurysm has been proposed
to classify AAA [4, 30]. These features include specific distances and angles. The
quality of the interactive extraction of these features by different observers have
been used to evaluate CTA scans perpendicular to blood flow [158]. The computer-
assisted (semi)automatic extraction of several characteristics have been evaluated
before EVAR [102] and after EVAR [174][181]. Analysis of the geometry of the
surface of an AAA has been carried out [154]. In addition to computing principal
curvature distributions the authors present methods to compute principal strains
and changes of curvature that was not subsequently applied to the AAA but to a
membrane of an artificial heart valve.
A study [97, 96] investigated the influence of biomechanical factors in the migration
of the stent using the modeling of blood flow, interactions of the wall structure
and the pressure of the aneurysm sac, together with the modeling of AAA and
deformation of the stent. These factors are the geometry of the stent, the material
properties, hemodynamic conditions, the morphology of the AAA represented by the
AAA neck angle, the angle of the iliac bifurcation, etc. The modeling will help to
understand why the the stent begin to migrate. The modeling of the hemodynamics
was also used to try to assess the risk of rupture. Other studies have modeled the
pulsatile flow in AAA [58].

16 16



2.3 Application of CTA to AAA

Figure 2.1.: A sagital cut of the body showing a treated AAA. Arrows indicate
the Aorta’s wall, the white contrasted blood flowing inside the stent graft placed
in the aneurysm section of the Aorta
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Figure 2.2.: Endovascular Prosthesis

(a) (b)

Figure 2.3.: Comparison of vessel intensity values between CT and CTA slice. a)
in CTA slice using the contrast agents, blood in lumen is highlighted for a better
view. b) in CT slice without using the contrast agent, intensity values of lumen
and thrombus are similar.
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Figure 2.4.: The Hounsfield scale of CT numbers[1]

Figure 2.5.: CT set of images arranged in the traditional manner for monitoring
EVAR
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3. Medical Image Visualization for
AAA

This chapter reviews relevant ideas about medical image processing and visual-
ization, with an emphasis in its application to the Abodminal Aaortic Aneurysm
(AAA). Section section 3.1 gives some introductory remarks. Section section 3.2 es-
tablishes some definitions for future reference. Section section 3.3 presents common
medical image visualization methods, including 2D and 3D conventional methods.
Section section 3.4 reviews some common methods used in vascular image segmen-
tation. Section section 3.5 comments specific methods for AAA structures segmen-
tation. Finally, Section section 3.6 gives some discussion of the state of affairs.

3.1. Introduction

An image is a map of some property of an object onto image space. Imaging allows
to extract significant information about the objects and their properties from the vi-
sualized objects. Techniques to discover this information looking for answers to the
mysteries of form and function are in the domain of image processing and visualiza-
tion. A variety of techniques have been developed to process images in order to en-
hance the visibility and measurability of desired object features and properties. The
challenge of imaging science in biomedical research is to provide advanced capabili-
ties for acquisition, processing, visualization, and quantitative analysis of biomedical
images providing faithful displays, interactive manipulation and simulation, accu-
rate, reproducible measurements [14], and extraction any useful information that
they contain.
Imaging science has evolved in three distinct fields: segmentation, registration and
visualization.
Segmentation is the recognition and delineation of all individual objects in an

image scene [121].
Registration methods seek to obtain the transformation that brings different images

of the same object(s) into spatial (and/or temporal) congruence.
Visualization provides renderings of the objects enhancing the intuitive understand-

ing of the human operator, and subsequent interations with the imaged objects
[201].
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3.2. Definitions

3-D medical image visualization: the transformation, presentation of and interaction
with multidimensional medical image data sets.
Real time imaging: Processing allowing for on-line refreshment of the data visu-
alization without perceptive artifacts. It is generally accepted to be a rate of 30
frames/s.
Interactive imaging: This refers to sufficiently quick response time of the system
after sensing a user action (e.g., mouse movement, key press) providing a corre-
sponding result (e.g., updating the view on the screen) so that the user will per-
ceive (near) instantaneous response to his actions. This generally requires a re-
sponse/repetition rate of 10±20 frames/s. However, interactivity is application or
procedure dependent, i.e., faster response times are needed in highly dynamic situa-
tions (e.g. catheter positioning), while and slower response times maybe appropriate
for more static activity (e.g., tumor delineation in images).
3-D imaging: Refers to acquiring imaging data on a 3D domain, i.e., in x, y, and
z dimensions, usually but not necessarily with isotropic spacing (equal separation
in all three directions). The term is often generalized to include processing, display
and analysis of 3-D data sets.
Multi-modal imaging: The use of different imaging systems (e.g., CT, MRI, PET) to
acquire images of the same object (e.g., a patient brain), providing complimentary
and more complete information about the object than can be obtained from any
single image type (uni-modal). Processing of multi-modal images involves some
degree of information fusion.
3-D visualization: Display of 3-D objects so as to effectively represent the 3-D
nature of the objects (e.g. shaded graphics). But the term visualization as used
in computer imaging also implies the capability to manipulate and analyze the
displayed information [48].
Segmentation: It is the partitioning of a dataset into contiguous regions (or sub-
volumes) whose member elements (eg. pixels or voxels) have common properties.
Segmentation is the procedure by which we impose structure on raw medical image
data; we dwell on this structure when visualizing the anatomy or pathology in ques-
tion as well as plan interventions and treatments to address the medical condition.

3.3. Visualization Methods

For 2-D, three types of multiplanar section projection and display will be described,
including orthogonal, oblique planes and curved surfaces. For 3-D, two types of dis-
play will be discussed, namely surface renderings and volume renderings (including
both projection and surface types) [131].
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3.3.1. 2-D image generation and display

The utility of 2-D images often depends on the physical orientation of the image
plane with respect to the structure of interest. However, most medical imaging sys-
tems are not able to create optimal 2-D image projections directly, because structure
positioning and scanner orientation are generally restricted. Consequently, tech-
niques to generate and display arbitrary 2-D images from 3-D volume images are
particularly important, allowing a customized optimal orientation of the 2-D image
plane showing the important features in the 2-D image of the visualized 3D struc-
ture. For example, the measurement of the cross-sectional shape of the aortic arc
may be necessary for its functional assessment.

Multiplanar reformatting

3-D isotropic volume images allow for simple and efficient computation of 2D im-
ages lying along the non-acquired orthogonal orientations of the volume. This is
accomplished by reordering voxels in the volume image, which can be done inter-
actively when the volume image is entirely stored in the computer memory. When
the imaged structure is anatomic , the orthogonal planes can be referenced by the
anatomic terms for orthogonal orientation: transaxial, coronal, and sagittal. This is
demonstrated in figure Figure 3.1 for a 3-D volume image of the torax and abdom-
inal image from a 3-D acquired CT scan. The original plane of acquisition was the
transaxial plane, as shown by the transaxial images in the top. The orthogonally
reformatted coronal sections from the back towards the front are shown in the mid-
dle, with sagittal sections from the right toward the left side shown in the bottom
[85]. Implementations of multiplanar reformatting techniques on current computer
technology allow the interactive generation and display of these images, such as it
is illustrated in figure Figure 3.2.
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(a)

(b)

(c)

Figure 3.1.: Multiplanar reformatting of a 3-D CT volume image of the torax and
abdomen. (a) Image in the original transaxial plane of acquisition. The orthog-
onally reformatted coronal plane (b) and sagittal plane (c) can be interactively
computed and displayed.
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Figure 3.2.: Interactive orthogonal sectioning of a 3-D volume image. Sliders are
used to control the interactive orthogonal sectioning.

Oblique projections

The desired 2-D image may not lie along an orthogonal plane of the 3-D volume im-
age, but along an arbitrarily plane oriented at some oblique angle to the orthogonal
axes of the volume image domain. Computing oblique projections involve accurate
image interpolation and resampling to avoid artifacts due to image resotion.

Curved projections

Often structures of interest may have curvilinear morphology that multi-planar and
oblique images cannot capture in a single 2-D image. This shortcoming of planar
sections can be overcome using curvilinear projection techniques. This technique is
useful for curved structures that remain constant in shape through one orthogonal
dimension (one degree of freedom), like the entire extent of the spine in sagittal CT
images or curved structures in the orbit of the eye.
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3.3.2. 3-D image generation and display

Visualization of 3-D medical images has evolved into two different branches of tech-
niques: surface rendering and volume rendering. Both techniques produce a visual-
ization of selected structures in the 3-D volume image, but the methods involved in
these techniques are quite different, and each has its advantages and disadvantages.
Selection between these techniques is often conditioned on the particular nature of
the biomedical image data, the application of the visualization, and its desired result
[68].

Surface rendering

Surface rendering techniques require the extraction of the contours that define the
surface of the structure to be visualized. An algorithm is then applied that places
surface patches or tiles at each contour point, and the surface is rendered apply-
ing hidden surface removal and shading. The advantage of this technique lies in
the small amount of contour data needed, resulting in fast rendering speeds. The
technique can take advantage of particular graphics hardware to speed the geometric
transformation and rendering processes. The contour-based surface descriptions can
be transformed into analytical descriptions, which permits use with other geometric
visualization packages (i.e., CAD/CAM software), and the contours can be used to
drive machinery to create models of the structure. The disadvantages of this tech-
nique are largely based on the need to extract the contours defining the structure
to be visualized. Any other volume image information is lost in this transforma-
tion, breaking the connection back to the original volume information, which may
be important for slice generation or feature measurement. This also prohibits any
interactive, dynamic determination of the surface to be rendered, as the decision
has been made during contour extraction about specific surface will be visualized.
Finally, due to the discrete nature of the surface patch placement, this technique is
prone to sampling and aliasing artifacts on the rendered surface. Figure Figure 3.3
illustrates surface rendering of the skeleton and vascular system from a thresholded
CT scan of the thoracoabdominal region.
Shaded surface displays are useful if there is a need or desire to visualize 3-D sur-
faces. They are a 2-D representation of a 3-D surface. The 3-D nature of the surface
is conveyed with the aid of visual cues such as perspective, shading, texture, shad-
owing, and stereopsis[81]. Generally, shaded surface displays are not well suited to
’immediate’ full visualization of the 3-D volume; that is, they require some prepro-
cessing of the 3-D data to extract the desired surfaces. Shaded surface displays have
proven popular in many applications, since, once the surfaces of interest have been
determined, it is not difficult to quickly compute images for display.
Modern computational systems can process thousands of polygon patches per sec-
ond. This speed permits satisfactory interactive capabilities in computer-aided de-
sign applications but does not satisfy the requirements of interactive display of
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biological/medical images, because a 3-D image of anatomic structures may contain
up to hundreds of thousands of faces. Unless the number of faces can be greatly
reduced, even state-of-the-art display systems do not really provide acceptable user
interaction. Special-purpose graphics hardware can achieve the necessary speed at
increased cost.

Figure 3.3.: Surface rendering of thoracoabdominal CT slices. Segmentation of
skeleton and main vascular structures (aorta and iliac arteries).

Volume rendering

Volume rendering is one of the simplest ways to visualize 3D volumetric scalar data
as projections into 2D images by a ray-casting process. The individual values in the
dataset are made visible by the choice of a transfer function that maps the data to
optical properties, like color and opacity, which are then projected and composited to
form an image. An important advantage is that this process displays data directly
from the gray scale volume. It produces ’on-the-fly’ segmented surfaces, and/or
selected degrees of transparency/opacity within the volume [146].
A common visualization goal in volume rendering is the depiction of the interface be-
tween two different materials in a volume dataset. The material surface can usually
be seen with a simple transfer function which assigns opacity only to a narrow range
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of values between the data values associated with each of the two materials[193]. An
example of several of these capabilities for interactive transformation and volume
rendering of 3-D biomedical image data is illustrated in figure Figure 3.4.

Figure 3.4.: Volume rendering of thoraco-abdominal CT slices

The most simple, and often used by radiologists, procedure for volume rendering
is the Maximum Intensity Projection (MIP) method. The MIP algorithm works
by projecting parallel rays (ray casting) through the volume from the viewpoint of
the user. For each ray, the algorithm selects the maximum scalar value and uses
that value to determine the color of the corresponding pixel on the 2D image plane.
Figure Figure 3.5 shows a maximum intensity projection (MIP) of CT data of the
thoracoabdominal region.
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Figure 3.5.: Amaximum intensity volume rendering of thoracoabdominal CT slices
data.

3.4. 3D Vascular Segmentation

A common problem shared by many segmentation methods is that automated meth-
ods for partitioning structures within a dataset may not correspond to the object or
structures meaningful to a human expert.

• over-segmentation: the data is fractured into many small pieces that have to
be aggregated into whole structures using expert human intervention.

• under-segmentation: a dataset requires later subdivision of mixed or connected
objects into separate pieces.

For this reason automated segmentation methods are often mixed with graphic user
interfaces to allow clinicians and researchers to explore, manipulate, and edit the re-
sults created by computer segmentation algorithms. Meanwhile medical technicians
have to process a large number of images with much more details. Compared with
the algorithms for common imagery segmentation, the ones used for medical images
require more concrete application background knowledge. A priori knowledge about
the imaging procedure or the biomechanical behaviors of organs can be crucial for a
successful segmentation. Also, medical images are usually low contrast to noise, so
robustness requirements are stronger. In the following sections, segmenttion algo-
rithms are classified into three categories: algorithms based on threshold, algorithms
based on pattern recognition techniques, and algorithms based on deformable mod-
els.
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3.4.1. Thresholding Algorithms

Most of the algorithms that belong to this category make the assumption that the
interested structures can be discerned by quantifiable features, like image intensity
or gradient magnitude. Segmentation is a procedure of searching for pixels that
satisfy the rules defined by the thresholds. Thresholds in these algorithms can be
selected manually according to a priori knowledge or automatically through image
information. Due to the noise influence and partial volume effect, the edges of
organs or structures in medical images are usually not clearly defined and therefore
algorithms based on threshold are seldom used alone. Algorithms can be further
divided to edge-based , region-based and hybrid.
Edge-based algorithms: thresholds are related with the edge information. Struc-

tures are depicted by edge points. Common edge detection algorithms such
as Canny edge detector [28] and Laplacian edge detector can be classified to
this type. For example, Canny edge detector uses the threshold of gradient
magnitude to find the potential edge pixels and suppresses them through the
procedures of the non-maximal suppression and hysteresis thresholding. Due
to the discrete nature of the images the detected edges may be incomplete or
discontinuous. Hence, it is necessary to apply post-processing like morpholog-
ical operations to connect the broken boundaries.

Region-based algorithms come from the observation that pixels inside a structure
tend to have similar intensities. Region growing algorithm [3] is a typical algo-
rithm of this type. After selecting initial seeds, algorithms begin to search for
the neighbored pixels whose intensities are inside the intervals defined by the
thresholds and then merge them to expand the regions. To eliminate the de-
pendence on initial seeds and make the algorithm more automatic, statistical
information and a priori knowledge can be incorporated, such as an adap-
tative homogeneity criterion robust to the different locations of initial seeds.
However, as the algorithms mainly rely on the image intensity information,
they do not handle partial volume effects (when a pixel represents more than
one kind of tissue type).

Hybrid algorithms combine different image cues to achieve the segmentation. Typ-
ical examples are the watershed algorithms [16], which combine the image
intensity with the gradient information. In the watershed algorithms, gray
scale images are considered as reliefs and the gradient magnitude of each pixel
is treated as elevation. Watershed lines are defined to be the pixels with local
maximum of gradient magnitude. The segmentation procedure is to construct
watersheds during the successive flooding of the gray value relief. Due to the
combination of image information, watershed algorithms can achieve better
results, but these algorithms tend to over-segmentation especially when the
images are noisy or the objects themselves have low signal-to-noise ratio. Hy-
brid threshold-based algorithms can further combine with other techniques to
perform the segmentation [120].
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3.4.2. Algorithms Based on Pattern Recognition Techniques

As structures in medical images can be treated as patterns, techniques from pattern
recognition fields can be used to perform the segmentation. Classification algorithms
are the most popular ones for the medical image segmentation. However, supervised
classification algorithms are sensitive to the initial conditions. To guarantee the cor-
rectness of the results, the training set must contain enough samples and the samples
should be representative and segmented accurately. Popular techniques used by the
supervised algorithms include supervised Artificial Neural Network (ANN) [6], Sup-
port Vector Machine (SVM) [177]and Active Appearance Models (AAM) [39]. ANN
and SVM are non-linear statistical data modeling tools and can be used to model
complex relationships between inputs and outputs. Weights in the classifier are es-
timated optimizing energy functionals, sometimes using updating rules processing
each sample in the training set. The extracted information from the training set pro-
vides important cues of the structures such as intensity, position and shape, which
can be valuable complementary information for the segmentation of test images.
AAM are statistical models of the shape of structures. Training samples are used to
extract the mean shape, mean appearance and define ranges of shape parameters.
Restrictions on shape parameters guarantee the similarity between the segmenta-
tion result and the training samples. The segmentation procedure is to find the
better positions of the shape points according to the appearance information. Algo-
rithms based on classifiers have been widely applied to segment organs in medical
images like cardiac and brain images. Frequently used unsupervised classification
algorithms include Fuzzy C-means algorithm [118], Iterative Self-organizing Data
Analysis Technique Algorithm and unsupervised neural network [34].

3.4.3. Algorithms Based on Deformable Models

Algorithms based on deformable models are very flexible and can be used for complex
segmentations. According to the representation of the contour, deformable models
can be classified into parametric models and geometric models. A moving equation
should be defined to drive the initial contours to the structure boundaries. Therefore,
the procedure of these algorithms can be viewed as a modeling of curve evolution.
The moving equation for the parametric deformable models can be derived froim
either an energy functional or dynamic forces.

The parametric deformable models have a tight relationship with the snake method
[83]. Snake method was the first deformable model applied to medical image seg-
mentation. Contours are sampled as discrete points and are tracked according to
their respective moving equations. The explicit tracking has the advantage of high
computational efficiency, so that it allows for real-time applications. The traditional
snake method relies on the gradient information, therefore is sensitive to the initial
position of the contour. The contour must be placed to the positions near to the
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structure boundary so that the external forces are strong enough to attract the
contour. Otherwise the contours may converge to wrong positions.

The geometric deformable models are based on the level set method [124] which
was initially proposed to handle the topological changes during the curve evolution.
The main idea of the level set method is to implicitly embed the moving contour
into a higher dimensional level set function and view the contour as its zero level set
(Figure Figure 3.6). Then, instead of tracking the contour points, we can track the
zero level set of the level set function. The advantage of doing so is that topological
changes can be naturally handled and the geometric properties of the contour such
as normal vector and curvature can be calculated implicitly. Consequently, the
computational complexity is decreased. Like the parametric deformable models,
speed functions should be properly defined. Malladi, et al. [109] and Caselles, et
al. [29] first applied the level set methods to medical images. Malladi’s model
used the gradient information as a stop criterion. The definition of the contour’s
speed is intuitive: when the contour moves to the structure boundary, the increase
of gradient magnitude decreases the speed value therefore slows down the contour
motion. However, this speed model suffered from leakage due to its mere dependence
on the gradient magnitude.

Figure 3.6.: An illustration of the level set method

Unlike Malladi’s model, the Geodesic Active Contour algorithm (GAC) [29] treated
the segmentation as an optimization problem of finding the minimal distance curve.
The moving equation of GAC is also derived through energy functional. While
instead of solving directly the moving equation, the contour is embedded in a level
set function and the moving equation then becomes a level set equation. . The
introduction of level set representation in GAC makes the algorithm flexible to
handle the topological changes. GAC and the later improved GAC algorithms have
been applied to process the MR, CT and ultrasound images like the tumor detection
and vascular segmentation.
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3.5 AAA segmentation

3.5. AAA segmentation

The assessment of AAA begins with a computed tomography angiography (CTA)
study, in which several hundred of axial images are acquired during the first arterial
pass of intravenous iodinated contrast material. Aneurysm size is relatively easy to
determine using the reconstructed transaxial, sagittal and/or coronal cross sections.
However, determination of aneurysm morphology, including the length and location
of the proximal neck as well as the location and patency of important branch vessels,
is much more difficult, and often requires tedious manual interaction to segment the
aorta and branch vessels. While there are some methods for segmentation of the
iodinated contrast content of the lumen, accurate automatic determination of the
outer aortic wall and thrombus bulge is presently a challenging problem.
In anatomical regions where the vessel wall is surrounded by fat, segmentation is
relatively easy. However, where the wall touches muscle and/or other vascular struc-
tures, the difference in CT attenuation values is small compared to expected noise
and artifacts, making automatic methods problematic. Manual segmentation, in-
volving hand tracing of tomograms using a pointing device, requiring trained op-
erators, is often time-consuming, tiring, and prone to inter- and intra- observer
variability.

3.5.1. Lumen Segmentation

Segmentation of the lumen is typically performed by a 3D region growing algorithm
[3] computed on the CTA volume [94]. The CTA signal of the contrasted blood
flowing through the lumen is hyper intense, with good contrast against sorrounding
tissues. Minor confusion may occur with calcifications and the frame of the stent
graft. First, a Volume of Interest (VOI) is defined in order to reduce the extent of
the data and then preprocessed to reduce noise. A manually given seed point on the
lumen is at least required for the region growing algorithm. The algorithm includes
voxels whose intensity values lie in a confidence interval defined over the current
segmented region over an iterative process.

3.5.2. Thrombus Segmentation

The AAA’s thrombus segmentation is still a difficult task, for which only a handfull
of methods have appeared in the literature.
A semi-automatic method based on Active Shape Model (ASM) is described in [45].
On average it requires one our of six image slices to be segmented manually. The
automatized part of the segmentation is performed by fitting an ASM to a slice on
the basis of landmark points in manually labeled training images, using the result
from the previous slice as a reference. The shape is captured by a point distribution
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model. For each slice of the training set, a vector containing the positions of the
landmarks is formed. The covariance matrix of these vectors is built subsequently,
and a principle component analysis (PCA) is performed. A new shape is then
approximated by the vector of the mean positions, to which a linear combination
of the largest eigenvectors of the covariance matrix is added. The optimal fit is
determined on the basis of multi-resolution gray level models constructed from gray
value patches sampled around each landmark. Only the similarity of adjacent image
slices for this gray level model is used because of the high variability in thrombus’
shape within the whole data set. The reported results are accurate, but the amount
of user intervention is large, since slice-by- slice control is required.

A method based on 3D deformable model is introduced in [162]. The application
uses a 3D deformable model implemented using the level-set algorithm, but the con-
trast of outer boundary is quite low. Low contrast areas produce large gaps on the
aortic boundary. which level-set algorithm can‘t handle. In order to eliminate large
boundary gaps, several pre-processing steps are used, such as local thresholding to
image data, thresholding the image gradient with two thresholds, and some other
knowledge based image processing. After all slices are processed, a binary volume
represents abdominal aorta. Then the 3D deformable model is applied on the bi-
nary volume to detect the edge and get the outer aortic boundary. Although user
intervention is minimal. the reported results are not accurate.

Another method is a grey level modeling approach based on a nonparametric pattern
classification technique, namely k-nearest neighbors was proposed in [122]. The
intensity profile sampled along the surface normal is used as the classification feature.
Manual segmentations are used for training the classifier: samples are collected
inside, outside, and at the given boundary positions. The deformation is steered
by the most likely class corresponding to the intensity profile at each vertex on the
surface.

In [106] the internal and external radii of the thrombus of the aneurysm are modeled
as radial functions in cylindrical coordinates. At every value, the origin of these
functions is chosen to be the centerline point at the corresponding slices. The
external and internal radii of the thrombus and the aneurysm can be defined as
two contours. The segmentation procedure consists of calculating the internal and
external radii at every point, which enclose the segmented region corresponding to
the thrombus(Figure Figure 3.7).

3.6. Discussion

New imaging modalities, more accurate simulation models, and continued growth in
computational power all contribute to confronting biomedical researchers and engi-
neers with an unprecedented volume of information to further their understanding
of biological systems and improve clinical practice. As the size and complexity of the
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Figure 3.7.: 3D view of the segmented lumen and thrombus.

resulting data explode, the tools created by medical visualization research become
crucial to gaining insight into the underlying biophysical phenomena.
High performance computing, including massively parallel computers and even pow-
erful new micro-computer-based systems and software packages have been integrated
into networks which permit access to all the information available in large 3-D image
databases, facilitating rapid display, manipulation, and measurement of those data.
However such facilities are far from the clinical practice, so that computational so-
lutions that can effectively applied on of-the-shelf computers are still required. This
Thesis contributes in some aspects to this endeavor, specifically the active learning
approach to volume segmentation is intended for application in the clinical practice.
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4. Machine Learning for Medical
Image Analysis

This chapter provides a review of the Machine Learning techniques and method-
ologies that are applied for Medical Image Analysis along the remaining chapters
of the Thesis. Section section 4.1 gives some introductory remarks and motivation
of Machine Learning in Medical Image Analysis. Section section 4.2 presents the
Active Learning that will be used for thrombus segmentation. Section section 4.3
provides a review of classification methods based on Artificial Neural Networks.
Section section 4.4 provides a review of classification methods based on statistical
approaches.

4.1. Introduction

The increasing number and complexity of the images requieres new capacities to
interpret them. CT images acquisition as increased its resolution so that many more
and thinner slices than in the past are produced in each study. The time needed
for interpretation by the radiologists increases as the number of CT slices grows,
cosequently increasing the probability of error due to fatigue and other problems
inherent human machine interaction.
Automated intelligent image analysis is becoming an essential component of medical
image analysis procedures, such as image segmentation, registration, and computer-
aided diagnosis. Machine learning may play an important role when we have prob-
lems that complicate medical image segmentation such as high anatomic variability,
vague and incomplete boundaries, inadequate contrast, artifacts and noise. Ma-
chine Learning provides effective techniques for these tasks, with great potential for
reducing processing time and undesired errors. Actual applications include:

• medical image segmentation (e.g., brain, spine, lung, liver, kidney, colon);
• medical image registration (e.g., organ image registration from different modal-

ities or time series);
• computer-aided detection and diagnosis systems for CT or MRI images (e.g.,

mammography, CT colonography, and CT lung nodule CAD).
Machine Learning algorithms learn complex relationships of patterns from empirical
data to make accurate predictions and decisions [51] [17]. It is an interdisciplinary
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field that has close relationships with artificial intelligence, pattern recognition, data
mining, statistics, probability theory, optimization, statistical physics, and theoret-
ical computer science.

The Machine Learning pipeline The conventional Machine Learning Pipeline con-
sists in three elements: Feature extraction, learning algorithm, and validation of
the algorithm. The two first elements can be roughly assumed to be sequentially
performed. While the latter is a wrapper process that may execute many feature
extraction and learning processes in order to estimate the generalization error of the
classifier.

4.1.1. Learning algorithm categories

Machine learning algorithms can be categorized into supervised learning, semi-
supervised learning, and unsupervised learning algorithms depending on the uti-
lization of class labels of the train dataset samples:

• Supervised learning: each data sample is an input-output pair. The input
corresponds to the quantitative features describing the object. The output
corresponds to the desired sytem’s response, which can either be a categorical
variable specifying a class label or a continuous real valued variable speci-
fying a functional relation [7]. Alternatively, the input observations can be
conceptualized as causes and the output observations as effects. The goal of
supervised learning is to induce a functional relationship from provided train
data that generalizes well to unknown test data. The model of the relation-
ship is a set of (non-linear) equations parameterized by numerical coefficients
or weights. Examples of supervised learning include classification, regression,
and reinforcement learning.

• In unsupervised learning, we only have one set of observations and there is no
label information for each sample [71]. Usually these observations or features
are caused by a set of unobserved or latent variables. The main purpose of
unsupervised learning is to discover relationships between samples or reveal the
latent variables behind the observations. Examples of unsupervised learning
include clustering, density estimation, and blind source separation.

• Semi-supervised learning falls between supervised and unsupervised learning
[200]. It utilizes both labeled data (usually a few) and unlabeled data (usu-
ally many) during the training process. Semi-supervised learning algorithms
were developed mainly because the labeling of data is very expensive or im-
possible in some applications. Examples of semisupervised learning include
semi-supervised classification and information recommendation systems.

• Active Learning: classifier training is embedded in a closed loop that takes
the human operator, or an equivalent oracle, in an iterative enrichment of the
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train data set in order to maximize the classifier generalization performance
while minimizing the amount of data that must be processed by the oracle to
provide supervised labels.

4.1.2. Classifier models

The classifier model states the functional relationship that is to be discovered in the
data through the learning process. It also imposese limits on what can be learnt.
The most popular are:

• Linear models: they assume that there is a linear relationship between the
input of the model and the output of the model. Perhaps it is the simplest
method for classification and regression. It has been widely used in computer-
aided classification.

• Artificial neural networks (ANNs) are techniques that were inspired by the
brain and the way it learns and processes information. ANNs are frequently
used to solve classification and regression problems in real world applications.
Neural networks are composed of nodes and interconnections. Nodes usually
have limited computation power. They simulate neurons by behaving like a
switch, just as neurons will be activated only when sufficient neurotransmitter
has accumulated. The density and complexity of the interconnections are the
real source of a neural network’s computational power.

• Learning with kernels: By applying traditional supervised and unsupervised
learning methods in the feature space, kernel methods provide powerful tools
for data analysis and have been found to be successful in a number of real
applications. Support vector machines (SVMs) are a set of kernel-based su-
pervised learning methods used for classification and regression [25]. Typical
applications of kernel-based learning methods in radiology are in CAD [176].

• Learning and inference in probabilistic models. Probabilistic models provide a
concise representation of real world data and enable predictions of future events
from present observations. One of the most popular probabilistic classifier
is the Naive Bayes classifier. It is a classifier based on probabilistic models
with strong (Naïve) independence assumptions. In spite of its oversimplified
assumptions, Naïve Bayes classifiers work well in many real life applications
[50].

• Ensemble learning. Ensemble learning refers to a collection of methods that
learn a target function by training a number of individual learners and com-
bining their predictions together. Bagging, bootstraping and Adaboost are
popular ensemble learning algorithms applied in medicine.
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4.1.3. Feature extraction

Feature extraction is any trasnformation or selection process that allows to obtain
a reduced representation of the data with increasing discrimination power. That
is, feature extraction often produces a noise reduction and enhanced separation of
the classes in feature space. Classical techniques for dimensionality reduction which
can be used as feature extraction are Principal Components Analysis (PCA) [82]
and Independent Component Analysis (ICA) [38]. Both are linear transformation
methods. The difference is that for ICA the transformation matrix is designed to
minimize the statistical dependence between its components; whereas in PCA the
transformation matrix is to retain the components with maximal variance or energy.
In PCA the noise corresponds to the lowest eigenvalue eigenvectors and the data
informative dimensions to the high eigenvalue eigenvectors. PCA does not ensure
discrimination between classes. Anyway it is still the most common transformation
found in the literature because of its well know statistical properties. The ICA
searches to decompose the data into statistically independent sources, hoping that
some of them correspond to noise, other to informative data coefficients. There is
no value associated with the sources, contrary to PCA, so that the assignation of
meaning to the sources must be done by hand.
As image resolution increases significantly in the last years, more data is provided
in each image, therfore input spaces increase and the classifier learning complexity
increases accordingly. Therefore, dimension reduction are increasingly important.
However, linear transformations have a great disadvantage, they loss all localization
information, so that even we can obtain accurate classifiers, we can not attribute
value to specific locations in the source image. In medical image analysis, localization
is often important, because it carries some anatomical or functional significance
attibuted by the a priori medical accumulated knowledge. Besides, in the current
scope of this thesis, feature extraction is not very relevant for the task pursued. For
these reasons, we will not consider further feature extraction methods.

4.1.4. Validation

Validation plays an important role in the evaluation of machine learning algorithms
such as computer-aided diagnosis (CAD) systems. Usually a machine learning al-
gorithm will be trained on a training set and tested on a test set obtained from
partitions of the given data set. Test set is intended to give some estimation of the
generalization of the error of the classifier in new data. Popular partition strate-
gies include K -fold cross-validation, leave-one-out, and random sampling. In K -fold
cross-validation, the whole data set is partitioned into K subsets. A learning al-
gorithm is trained on K − 1 of the subsets and tested on the remaining one. This
procedure is conducted K times until all K subsets have been tested. Leave-one-out
is similar to K -fold cross-validation but each subset consists of only a single sample
from the dataset. Each time a sample will be held aside for testing and the learning
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algorithm is trained on the other samples. This process is repeated N times, where
N is number of samples in the dataset (each sample will be tested exactly once).
Conventional performance measures are accuracy, sensitivity, specificity, F-index.
Receiver operating characteristic (ROC) analysis provides a practical tool for model
selection. An ROC curve is a 1D curve which shows the trade-off in sensitivity ver-
sus false positive rate as the threshold is varied for the decision variable for a binary
classifier [203].

4.1.5. General problem statement

Here we give some notation that will be used in the definition of the algorithms and
applications. In this Thesis we deal with a two class classification problem, given a
collection of training/testing input feature vectors X = {xi ∈ Rn, i = 1, . . . , l} and
the corresponding labels {yi ∈ {−1, 1}, i = 1, . . . , l}, which sometimes can be better
denoted in aggregated form as a binary vector y ∈ {−1, 1}l. Our aim is to classify
the patients as those who have a favorable or unfavorable evolution.

4.2. Active Learning

4.2.1. Introduction

Classifier supervised learning consists in building a map from data features into a
set of classes given a labeled training set. In many real life situations, obtaining the
training data is costly, time consuming and error prone. This makes the construction
of the training set a cumbersome task requiring extensive manual analysis of the
image. This is typically done by visual inspection of the scene and successive labeling
of each sample. Consequently, the training set is highly redundant and training
phase of the model is significantly slowed down. Besides, noisy pixels may interfere
the class statistics, which may lead to poor classification performances and/or over-
fitting. For these reasons, a training set should also be kept as small as possible and
focused on those pixels effectively improving the performance of the model[107].
Therefore a desirable training set must be constructed in a smart way, meaning it
must represent correctly the class boundaries by sampling discriminative pixels.
Generalization is the ability of providing correct class labels to previously unseen
data. The difference in performance of supervised training classification algorithms
when feed by different train datasets is strongly dependent on the information gain
provided by the new data in one set relative to the other.
Active Learning is an strategy for the construction of the optimal set of training data,
which tries to obtain the most accurate classification and greater generalization using
the smallest possible training set. To this end, Active Learning [169, 36, 37] exploits
the interaction with a human operator, which is the oracle providing the labels
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for the samples added to the training set. These samples are optimally selected for
inclusion, ensuring that they will provide the greatest increase in accuracy [148]. The
incremental data selection follows some classification uncertainty criterium that does
not require actual knowledge of the data sample label, thus there is no circularity in
the validation process. n the context of classifier based image segmentation [190], the
system returns to the user the pixels whose classification outcome is most uncertain.
After accurate labeling by the user, pixels are included into the training set in
order to retrain the classifier [62]. When the underlying data statistics are non
stationary, so that the classifier built at one time instant may not be optimal later
on, Active Learning provides an efficient methodology to retrain the already obtained
classifiers, or to train them from scratch. Besides, Active Learning provides economy
of computation and data labeling,

4.2.2. Query Strategy

An active leaming process requires interaction between the user and the model: the
first provides the labeled information and the knowledge about the desired classes,
while the latter provides both its own interpretation of the distribution of the classes
and the most relevant pixels that are needed in order to solve the discrepancies
encountered. This point is crucial for the success of an active leaming algorithm: the
machine needs a strategy to rank the pixels in the pool of unlabeled data samples U .
The main strategies that have been considered in the literature are (a) membership
query synthesis, (b) stream-based selective sampling, and (c) pool-based sampling,
(d) uncertainty sampling, and (e) query by committee. All these scenarios assume
that queries take the form of unlabeled instances to be labeled by the oracle.

Membership Query Synthesis In learning with membership queries [9] the train-
ing algorithm may request labels for any unlabeled instance in the input space, in-
cluding (and typically assuming) queries that the learner generates de novo, rather
than those sampled from some underlying natural distribution. Query synthesis is
reasonable for many problems, but labeling such arbitrary instances can be awkward
if the oracle is a human annotator.

Stream-Based Selective Sampling An alternative to synthesizing queries is se-
lective sampling[37]. This method assumes that obtaining an unlabeled instance is
not expensive, so it can first be sampled from the actual distribution, and then the
learner can decide whether or not to request its label[43]. This approach is some-
times called stream-based or sequential active learning, as each unlabeled instance
is typically drawn one at a time from the data source, and the learner must decide
whether to query or discard it [192].
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Pool-Based Sampling For many real-world learning problems, large collections
of unlabeled data can be gathered at once. This motivates pool-based sampling [95],
which assumes that there is a small set of labeled data and a large pool of unlabeled
data available. Queries are selectively drawn from the pool typically, in a greedy
fashion, according to an informativeness measure used to evaluate all instances in
the pool. The pool-based scenario has been studied for many real-world problem
domains in machine learning such as text classification [95], information extraction
[166], image classification and retrieval [168] [197], and cancer diagnosis [99] to name
a few.

Uncertainty Sampling Perhaps the simplest and most commonly used query
framework is uncertainty sampling [95]. In this framework, an active learner queries
the instances about which it is least certain how to label. This approach is often
straightforward for probabilistic learning models. A general uncertainty sampling
strategy (and possibly the most popular) uses entropy [151]as an uncertainty mea-
sure.

Query-By-Committee Another query selection framework is the query-by- com-
mittee (QBC) algorithm [149]. The QBC approach involves maintaining a committee
of models which are all trained on the current labeled set, but represent compet-
ing hypotheses. Each committee member is then allowed to vote on the labelings
of query candidates. The most informative query is considered to be the instance
about which they most disagree.
Additional query strategies can be divided in margin-sampling based [27] and pos-
terior probability based families [137].

4.2.3. Active Learning Canonical Algorithm

Active leaming algorithms are iterative sampling schemes, where a classification
model is adapted regularly by feeding it with new labeled pixels corresponding to
the ones that are most beneficial for the improvement of the model performance.
These pixels are usually found in the areas of uncertainty of the model and their
inclusion in the training set forces the model to solve the regions of low confidence.
Let X = {xi, yi}li=1 be a training set labeled samples, with xi ∈ Rd and yi ∈
{1, . . . , N}. Let be U = {xi}ι+ui=l+1 ∈ Rd the pool of candidates, with u � l, corre-
sponding to the set of unlabeled pixels to be classified. In a given iteration ε, the
Active Learning algorithm selects from the pool U ε the q candidates that will at
the same time maximize the gain in performance and reduce the uncertainty of the
classification model if added to the current training set Xε. The selected samples
Sε = {xm}qm=1 ⊂ U ε are labeled with labels {ym}qm=1 by an oracle, which can be a
human operator in interactive segementation, or the ground truth. Finally, the set
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Sε is added to the current training set (Xε+1 = Xε∪Sε) and removed from the pool
of candidates (U ε+1 = U ε\Sε). The process is iterated until a stopping criterion is
met. Algorithm Algorithm 4.1 summarizes the Active Learning process.

Algorithm 4.1 Active learning canonical algorithm
Imputs
–Initial training set Xε = {xi, yi}li=1(X ∈ X , ε = 1).
–Pool of candidates U ε = {xi}ι+ui=l+1(U ∈ X , ε = 1).
–Number of pixels q to add at each iteration (defining the batch of selected pixels
S ).
1: repeat
2: Train a model with current training set Xε

3: for each candidate in U ε do
4: Evaluate a user-defined heuristic
5: end for
6: Rank the candidates in U ε according to the score of the heuristic
7: Select the q most interesting pixels Sε = {xk}qk=1
8: The system assigns a label to the selected pixels Sε = {xk, yk}k=1
9: Add the batch to the training set Xε+1 = Xε ∪ Sε

10: Remove the batch from the pool of candidates U ε+1 = U ε\Sε
11: ε = ε+ 1
12: until accuracy > 0.99

4.3. Artificial Neural Networks

4.3.1. Neuron Model

The simple neuron unit receives the input through the synapses which modulate
its value, multiplying it by a weight. The net stimulus received by the neuron is
the inner product of the feature vector and the weight vector. This net stimulus is
filtered by a non-linear transfer function to give the ouptut of the neuron activation,
which can be transferred to further neurons. The main advance given by Artificial
Neural Networks (ANN) was that they were endowed with learning algorithms that
search for the weights of the neuron that produce the desired output value (in
the supervised training case). Three of the most commonly used neuron transfer
functions are:

• The hard-limit transfer function limits the output of the neuron to either 0, if
the net input argument is less than 0; or 1, if n is greater than or equal to 0.
This was the transfer function originally proposed in the Perceptron to create
neurons that make classification decisions.

• The linear transfer function is used as linear approximators in Linear Filters.
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• The sigmoid transfer function takes the input, which may have any value
between plus and minus infinity, and squashes the output into the range 0
to 1. This transfer function is commonly used in back-propagation networks
because of the recursive expression of its derivative.

Network Architectures can be composed when the single neurons are diposed in
layers such as the one illustrated in figure Figure 4.1, which can be disposed into a
multilayer architectre such as the one shown in figure Figure 4.2. Each layer feeds
on the outputs of the previous layer, forwarding its output to the next layer. Each
layer is characterized by its own weight matrix, including the bias values of the
single neurons, and the settings of the transfer functions, which conventionally are
uniform over all the network. The last layer is the output layer, giving the result of
the ANN process.

Figure 4.1.: A layer in an Artificial Neural Network

Figure 4.2.: Multilayer architecture of an ANN

4.3.2. Perceptron

The Perceptron is the oldest proposal of a learning analogic (no based on logic rules)
classifier. Is a single layer system, where the single neuron is as illustrated in figure
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Figure 4.3, that is, it is a neuron with a hard-limit transfer function. The perceptron
learning rule is a supervised hebbian learning rule that reinforces the weights upon
success and reduces them on failure to ouput the desired class. The Perceptron is
especially suited for simple two class problems in pattern classification, providing
fast and reliable solutions for problems that can be solved by a single hyperplane as
the class boundary.

Figure 4.3.: Single Perceptron

A single layer Perceptron network consists of a single layer of S perceptron neurons
connected to R inputs through a set of weights wi,j as shown below in two forms.
As before, the network indexesi and j indicate that wi,j is the strength of the
connection from the ith input to the jth neuron. The composition of a multi-layer
Percetron network is not so straight forward, and the learning algorithm is not
defined in general. In fact, the reason that the Perceptrons were abandoned was the
theoretical result that they are only able to learn a linear discriminant funtion, that
is, they can not implement classifiers for data which are not linearly separable.

Figure 4.4.: General structure of the single layer Perceptron network.
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4.3.3. Linear Networks

The linear networks discussed are similar to the perceptron, but their transfer func-
tion is a linear function rather than the hard-limiting function. Their outputs can
take any value, whereas the perceptron output is limited to either 0 or 1.
Linear networks, like the Perceptron, can only solve linearly separable problems.
Here we will design a linear network that, when presented with a set of given input
vectors, produces outputs of corresponding target vectors. For each input vector we
can calculate the network’s output vector. The difference between an output vector
and its target vector is the error. We would like to find values for the network
weights and biases such that the sum of the squares of the errors is minimized or
below a specific value. This problem is manageable because linear systems have a
single error minimum. In most cases, we can calculate a linear network directly,
such that its error is a minimum for the given input vectors and targets vectors.
In other cases, numerical problems prohibit direct calculation. Fortunately, we can
always train the network to have a minimum error by using the Least Mean Squares
(Widrow-Hoff) algorithm.

4.3.4. Backpropagation

Backward propagation of errors, or Backpropagation (BP), [138][140] [72, 142, 141]
is a non-linear generalization of the squared error gradient descent learning rule for
updating the ANN’s weights to feed-forward networks with sigmoid transfer func-
tions, also called Multi-Layer Perceptron (MLP) with some abuse of the language.
MLP is illustrated in figure Figure 4.5. The BP rule solves the problem of comput-
ing the output error gradient relative to the hidden units’ weights, generalizing the
Widrow-Hoff learning rule to multiple-layer networks with nonlinear differentiable
transfer functions. Feedforward ANN with biases, a sigmoid layer, and a linear
output layer are capable of approximating any function with a finite number of dis-
continuities. There are a number of variations on the basic algorithm that are based
on other standard optimization techniques, such as conjugate gradient and Newton
methods.

4.3.4.1. Analytical derivation

We restrict our presentation of BP to train the weights of the MLP for the current
two class problem. Let the instantaneous error Ep be defined as:

Ep (w) = 1
2 (yp − zK (xp))2 , (4.1)
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Figure 4.5.: A Multilayer Perceptron arquitecture

where yp is the p-th desired output yp, and zK (xp) is the network output when the
p-th training exemplar xp is inputted to the MLP composed of K layers, whose
weights are aggregated in the vector w. The output of the j-th node in layer k is
given by:

zk,j (xp) = f

Nk−1∑
i=0

wk,j,izk−1,i (xp)
 , (4.2)

where zk,j is the output of node j in layer k, Nk is the number of nodes in layer k,
wk,j,i is the weight which connects the i-th node in layer k − 1 to the j-th node in
layer k, and f (·) is the sigmoid nonlinear function, which has a simple derivative:

f ′ (α) = df (α)
dα

= f (α) (1− f (α)) . (4.3)

The convention is that z0,j (xp) = xp,j. Let the total error ET be defined as follows:

ET (w) =
l∑

p=1
Ep (w) , (4.4)

where l is the cardinality of X. Note that ET is a function of both the training set
and the weights in the network. The backpropagation learning rule is defined as
follows:

∆w (t) = −η∂Ep (w)
∂w

+ α∆w (t− 1) , (4.5)
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where 0 < η < 1, which is the learning rate, the momentum factor α is also a small
positive number, and w represents any single weight in the network. In the above
equation, ∆w (t) is the change in the weight computed at time t. The momentum
term is sometimes used (α 6= 0) to improve the smooth convergence of the algorithm.
The algorithm defined by equation (Equation 4.5) is often termed as instantaneous
backpropagation because it computes the gradient based on a single training vector.
Another variation is batch backpropagation, which computes the weight update using
the gradient based on the total error ET .
To implement this algorithm we must give an expression for the partial derivative
of Ep with respect to each weight in the network. For an arbitrary weight in layer
k this can be written using the Chain Rule:

∂Ep (w)
∂wk,j,j

= ∂Ep (w)
∂zk,j (xp)

∂zk,j (xp)
∂wk,j,i

. (4.6)

Because the derivative of the activation function follows equation Equation 4.3, we
get:

∂zk,j (xp)
∂wk,j,i

= zk,j (xp) (1− zk,j (xp)) zk−1,j (xp) , (4.7)

and

∂Ep (w)
∂zk,j (xp)

=
Nk+1∑
m=1

∂Ep (w)
∂zk+1,m (xp)

zk+1,m (xp) (1− zk+1,m (xp))wk+1,m,j,

which at the output layer corresponds to the output error :

∂Ep (w)
∂zK (xp)

= zL (xp)− yp. (4.8)

4.3.5. Radial Basis Function

Introduction Radial Basis Function networks (RBF) [33] [72][73] are a type of
ANN that use radial basis functions as activation functions. RBFs consist of a
two layer neural network, where each hidden unit has a transfer function given by
a radial activation function. Figure Figure 4.6 illustrates one hidden unit of the
RBF architecture, whose activation function is detailed in figure Figure 4.7. A The
output units compute a weighted sum of hidden unit outputs. Training consists of
the unsupervised training of the hidden units followed by the supervised training
of the output units weights. Radial basis networks may require more neurons than
standard feed-forward backpropagation networks, but often they can be designed in
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a fraction of the time it takes to train standard feed-forward networks. They work
best when big sample sizes are available.

Figure 4.6.: Radial Basis Function neuron

Figure 4.7.: Profile of a radially activated funtion for RBF activation function.

Figure 4.8.: RBF architecture, as realized in the Matlab’s Neural Networks tool-
box.

Formally, RBFs have their origin in the solution of a multivariate interpolation
problem [23]. An arbitrary function g (x) : Rn → R can be approximated by a map
defined by a RBF network with a single hidden layer of K units:

ĝθ (x) =
K∑
j=1

wjφ (σj, ‖x− cj‖) , (4.9)

where θ is the vector of RBF parameters including wj, σj ∈ R, and cj ∈ Rn; let us
denote w = (w1, w2, . . . , wp)T , then the vector of RBF parameters can be expressed
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as θT =
(
wT , σ1, cT1 , . . . , σK , cTK

)
. Each RBF is defined by its center cj ∈ Rn and

width σj ∈ R, and the contribution of each RBF to the network output is weighted
by wj. The RBF function φ (·) is a nonlinear function that monotonically decreases
as x moves away from its center cj. The most common RBF used is the isotropic
Gaussian:

ĝθ (x) =
p∑
j=1

wj exp
(
−‖x− cj‖2

2σ2
j

)
.

The network can be thought as the composition of two functions ĝθ (x) = W ◦Φ (x).
The first one, implemented by the RBF units Φ : Rn → RK , performs a data space
transformation which can produce a dimensionality reduction or not, depending
on whether K > n. The second function corresponds to a single layer Perceptron
network W : RK → R mapping the RBF transformed data into the class labels.
Training is accordingly decomposed into two phases. First a clustering algorithm is
used to estimate the Gaussian RBF parameters (centers and variances). Afterwards,
linear supervised training is used to estimate the weights from the hidden RBF to
the output. In order to obtain a binary class label output, a hard limiter function
is applied to the continuous output of the RBF network.

4.3.6. Learning Vector Quantization Neural Network

Learning Vector Quantization (LVQ) [88] [156] represents every class c ∈ {−1, 1}
by a set W (c) = {wi ∈ Rn; i = 1, . . . , Nc} of weight vectors (prototypes) which
tessellate the input feature space. Let us denote W the union of all prototypes,
regardless of class. If we denote ci the class the weight vector wi ∈ W is associated
with, the decision rule that classifies a feature vector x is as follows:

c (x) = ci∗

where

i∗ = arg min
i
{‖x−wi‖} .

The training algorithm of LVQ aims at minimizing the classification error on the
given training set, i.e., E = ∑

j (yj − c (xj))2, modifying the weight vectors on the
presentation of input feature vectors. The heuristic weight updating rule is as fol-
lows:

∆wi∗ =

ε· (xj −wi∗) if ci∗ = yj

−ε· (xj −wi∗) otherwise
, (4.10)
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that is, the input’s closest weight is adapted either toward the input if their classes
match, or away from it if not. This rule is highly unstable, therefore, the practical
approach consists in performing an initial clustering of each class data samples to
obtain an initial weight configuration using equation Equation 4.10 to perform the
fine tuning of the classification boundaries. This equation corresponds to a LVQ1
approach. The LVQ2 approach involves determining the two input vector’s closest
weights. They are moved toward or away the input according to the matching of
their classes.

4.4. Statistical Classification Algorithms

4.4.1. Support Vector Machines (SVM)

The Support Vector Machines (SVM) are currently considered the state-of-the-art
classifier system in the machine learning and pattern recognition community [165]
[170] owing to its good generalization properties [170]. A SVM separates a given set
of binary labeled training data with a hyperplane that is maximally distant from the
two classes (known as the maximal margin hyperplane). The objective is to build a
discriminating function using training data that will correctly classify new examples
(x, y). The SVM approach to build a classifier system from the given data consists
in solving the following optimization problem:

min
w,b,ξ

1
2wTw + C

l∑
i=1

ξi, (4.11)

subject to

yi(wTφ(xi) + b) ≥ (1− ξi), ξi ≥ 0, i = 1, 2, . . . , n. (4.12)

The minimization problem is solved via its dual optimization problem:

min
α

1
2αTQα− eTα, (4.13)

subject to

yTα = 0, 0 ≤ αi ≤ C, i = 1, . . . , l. (4.14)
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Where e is the vector of all ones, C > 0 is the upper bound on the error, Q is an l× l
positive semidefinite matrix, whose elements are given by the following expression:

Qij ≡ yiyjK(xi,xj), (4.15)

where

K(xi,xj) ≡ φ(xi)Tφ(xj), (4.16)

is the kernel function that describes the behavior of the support vectors. Here,
training vectors xi are mapped into a higher (maybe infinite) dimensional space by
the function φ(xi). The decision function is:

sgn(
l∑

i=1
yiαiK(xi,x) + b). (4.17)

The regularization parameter C is used to balance the model complexity and the
training error. It was always set to 1 in this case study.

The chosen kernel function results in different kinds of SVM with different perfor-
mance levels, and the choice of the appropriate kernel for a specific application is a
difficult task. In this study we only needed to use a linear kernel, defined as:

K(xi,xj) = 1 + xTi xj, (4.18)

this kernel shows good performance for linearly separable data.

4.4.2. Logistic Model Tree

Logistic Model Tree (LMT) produces a single tree containing binary splits on nu-
meric attributes, multiway splits on nominal ones, and logistic regression models
at the leaves, and the algorithm ensures that only relevant attributes are included
in the latter. The result is not quite as easy to interpret as a standard decision
tree, but much more intelligible than a committee of multiple trees or more opaque
classifiers like kernel-based estimators. Like other tree induction methods, it does
not require any tuning of parameters by the user[92].
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4.4.3. Random Forest

The Random Forest (RF) machine learning algorithm [21] is a classifier that encom-
passes bagging [20] and random decision forests [8] [77]. RF has been widely used in
a variety of applications, including Virtual Reality [12]. RF became popular due to
its simplicity of training and tuning while offering a similar performance to boosting.
It is a large collection of decorrelated decision trees, which are ideal candidates to
capture complex interaction structures in data. RF is supposed to be resistant to
over-fitting of data if individual trees are sufficiently deep. Consider a RF collection
of tree predictors

h(x;ψu), u = 1, ..., U, (4.19)

where x is a random sample of d-dimensions associated to random vector X and ψu
independent identically distributed random vectors. Given a dataset of N samples,
the bootstrap training sample of tree h(x;ψu) is used to grow the tree by recursively
selecting a subset of random dimensions d̂ such that d̂� d d and picking the best
split of each node based on these variables. Unlike conventional decision trees,
pruning is not required.

ĉ = majority vote{Cu(x)u1} (4.20)

To make a prediction for a new sample x, the trained RF could then be used for
classification by majority vote among the trees of the RF as shown in Eq. (1), where
Cu(x) is the class prediction of the uth RF tree. The important parameters of the RF
classifier to set are, the number of trees in the forest -that should be sufficiently large
to ensure that each input class receives a number of predictions- and the number of
variables randomly sampled at each split node.
Despite the success of SVMs and boosting, these techniques do not extend natu-
rally to multiple class problems . In principle, classification trees and forests, work
unmodified with any number of classes.
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5. Active Learning for Thrombus
Segmentation

In this chapter we develop and apply an Active Learning approach to image seg-
mentation of the AAA’s thrombus. The rationale is that the system is intended to
help the human operator to perform the thrombus segmentation in the minimal time
with the minimal need to interact with the system specifying sample labels. That
is, the system is not intended as classifier able to generalize to any future dataset,
because the high variability of scanners and patients will prevent that. Validation
is performed against ground-truth data, following a conventional machine learning
methodology.

The structure of the chapter is as follows: Section section 5.1 gives an introduction.
Section section 5.2 describes the learning and feature selection methods. Section
section 5.3 describes the experimental setup. Section section 5.4 provides the exper-
imental results. Section section 5.5 presents summary conclusions of the chapter.

5.1. Introduction

3D Contrast Computerized Tomography Angiography (CTA) is the preferred imag-
ing method for tracking the evolution of AAA because it allows minimally invasive
visualization of the Aorta’s lumen, thrombus and calcifications. Methods for Aorta’s
lumen segmentation have been reported [94] [104, 105], however AAA’s thrombus
segmentation is still challenging due to low signal contrast between the thrombus
and surrounding tissues, as can be appreciated in Fig. Figure 5.1. Furthemore,
attempts to establish prior spatial information are useless because of AAA great
shape variability.

Previous works Deformable models describe object shapes in a compact and ana-
lytical way, and incorporate anatomic constraints, to adapt the segmentation to the
variability of biological structures over time and across different individuals [114]. In
deformable models and level set-based segmentation methods, training information
is incorporated into the segmentation method in an implicit way (through parame-
ter learning). On the contrary, active shape models (ASMs) tries to utilize training
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shape information in a more explicit way by building a shape model from train-
ing images and adapting the model to a new test image through an alternative
optimization way [40].
Several AAA thrombus segmentation methods have been recently developed in this
direction. An interactive contour tracking method performed on axial slices of ab-
dominal CTA is proposed by De Bruijne et al. [45]. A deformable model approach
based on a nonparametric statistical grey-level appearance model is employed by
Olabarriaga et al. [122] to determine the deformable model adaptation direction
starting from a lumen contour shape interactive segmentation. A level-set segmen-
tation based on a parametric statistical model is presented by Zhuge et al. [202].
A deformable B-spline parametric model based on a nonparametric intensity distri-
bution model is proposed by Demirci et al. [46]. An iterative model-constrained
graph-cut algorithm is applied by Freiman et al. [57]. The above methods involve a
significant user interaction either for the initialization of the segmentation process
or for guiding its evolution. They are based on the optimization of some non-linear
functional of the image, such that the state of each pixel is updated according to
the values of the neighboring pixels searching for the optimal value of the func-
tional. Recently, the fusion of categorization and segmentation (JCaS) has become
a hot topic in computer vision [91]. In JCaS, interested objects in a 2D image are
categorized and segmented simultaneously.

Alternative segmentation methods Shi and Malik proposed a graph partitioning
method called “normalized cut” to perform image segmentation [153]. Given a graph
G = (V,E), whereV represents a set of vertices and E a set of edges, a cut between
two disjoint subsets of vertices A,B ⊂ V is defined as (A,B) =

∑
u∈A,v∈B

w(u, v))

where w (u, v) is the weight of the edge connecting two nodes in subsets A and B.
The cut measures the dissimilarity between the two subsets. Graph cuts have many
applications in medical image segmentation including interactive or fully-automated
organ segmentation for 3D CT and MRI images [19] [60] [84] [5]. Bayesian methods
using Markov Random Fields (MRFs) priors have wide applications in medical image
segmentation[74] [198], but is applicability to AAA segmentation is limited to the
extent that there is no proper atlas that could be used as a topological a priori.

Segmentation by classification Image segmentation can be realized as a classifi-
cation process, where each pixel receives a class label according to the pixel features
which can be computed from the pixel neighborhood. Clustering algorithms may
discover classes in the feature space, which can be applied directly to some medi-
cal image segmentation problems [26]. However, in the problem of AAA thrombus
segmentation, we need to apply some supervised approach to perform detection of
thetarget structure in the image. In this chapter we perform the pixel classifica-
tion using random forest (RF) classifier. In the medical image domain, RF have
been applied to delineate the myocardium in 3D ultrasound (US) of adult hearts

56 56



5.1 Introduction

[93], brain tissue segmentation [62, 191], detection of several organs in CT volumes
[41, 42]. Thrombus segmentation of AAA on CTA data volumes is a voxel classifi-
cation problem mapping them into aortic thrombus or background.

Active Learning Image segmentation of 3D CTA data is affected by a variety of
noise conditions so that an image segmentation procedure developed and validated
on a collection of training CTA data may be ineffective when applied on new CTA
data. The approach followed to tackle this problem in this thesis is to provide an
Active Learning based interactive image segmentation system which will allow quick
volume segmentation requiring minimal intervention of the human operator. The
experimental setup is illustrated in Fig. Figure 5.2. In one experiment, we perform
Active Learning on each CTA slice containing part of the thrombus. In the other
experiment we apply the results of Active Learning performed on data from the
thrombus’ central slice to the remaining slices of the volume, providing a strong
test of the generalization power of the approach. The Active Learning oracle in the
experiments is the ground truth provided by manual segmentation.

Figure 5.1.: Axial view of thrombus and lumen in a CTA orthoslice using the
contrast agents, blood in lumen is highlighted but thrombus intensity levels are
similar to other surrounding tissue.
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Load All CT Slices 

Extract Feature Vectors for All Slices  

Active Learning 
with Single Slice 
(Experiment1)  

All Slices Classification 

Active Learning 
with All Slices  
(Experiment2)  

Compute Feature Importance 

CT Volume  Rendering 

Figure 5.2.: Pipeline of the experimental setup for the Active Learning segmenta-
tion process
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5.2. Learning and feature selection

Active Learning

Active Learning has been introduced in section section 4.2, including the canonical
algorithm for Active Learning. In this chapter it is applied to the training of the
RF classifiers for thrombus segmentation. Because RF is an ensemble, we can follow
the committee approach to the prediction of the unlabeled sample uncertainty [169]:
assume that we have built a commitee of k classifiers, i.e. a RF with k trees, so that
classification outcome is produced by majority voting. The goal is the classification
of all CTA dataset voxels, therefore, the unlabeled sample set U ε corresponds to
the feature vectors attached to all voxels which have not been labeled or used for
building a classifier in previous iterations of the Active Learning process.

In the RF implementations the committee is built by bagging [20]:

• First, we build k training sets using a draw with replacement of the original
data. These draws account for a part of the available labeled pixels only.

• Second, each set is used to train a separate RF classifier, which is used to
predict the uncertainty u of the candidates.

We quantify the uncertatinty of a pixel as follows: The output of the RF component
classifiers provide k labels for each candidate unlabeled voxel feature vector xi ∈ U .
The standard deviation of the class predictions’ distribution, denoted σc (xi), is
the heuristic measure of the uncertainty of its classification. Let us consider the
candidates ordered by this uncertainty measure:

U ε = {xi |(i < j)⇒ [σc (xi) ≥ σc (xj)]} . (5.1)

The set of selected voxels to be labeled by the human operator and included in the
training set for the next iteration of the Active Learning, correspond to the first q
candidates in this ordered set:

Sε = {xi ∈ U ε}qi=1 . (5.2)

Standard deviation of the classification outputs of the ensemble constituents is a
natural multiclass heuristic measure of classification uncertainty. A candidate sam-
ple for which all the classifiers in the committee agree has a zero prediction standard
deviation, therefore is not appropriate for inclusion in the training set because it
does not bring any additional information. On the contrary, a candidate with max-
imum disagreement between the classifiers results in maximum standard deviation,
so that its inclusion will be highly beneficial.
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Feature extraction

The goal of the segmentation procedure is to classify image pixels into two classes,
the thrombus region and the background [190]. Image intensity is not a discriminant
value, because often many unrelated regions have similar pixel intensity values. This
is specially true of voxels in CTA volume data. Feature extraction aims to attach
additional information to each pixel computed from the spatial distribution of in-
tensity values so that the spatial structures can offer more discriminant information
for classification. Features are computed as functions of the intensity in neighboring
pixels, the simplest ones are the first and second order statistics: average and stan-
dard deviation. The simplest non linear features are the maximum and minimum
values in the pixel’s nerighborhood. Table Table 5.1 summarizes the spatial features
extracted from the CTA images. The size (radius) of the neighborhood was set to
powers of two: 1, 2, 4, ..., 2n. With n set empirically.

Image Feature
Voxel Coordinates

Maximum
Minimum
Mean

Variance

Table 5.1.: Image features extracted to build the training set

Feature selection based on variable importance

The feature set built as specified can be of very high dimension and with much
redundancies. Feature selection aims to reduce the dimension of the feature set
for each pixel, increasing the discriminative power by removing redundant or non-
informative features. In this chapter feature selection is done on the basis of the
variable importance defined on the basis of the individual responses of the trees
in the RF that we use for classification. Let us denote Xj the j-th feature of the
feature vector. The variable importance of Xj is defined from the RF response
as follows: For each tree h(x;ψt) of the RF, consider the associated out-of-box
OOBt dataset [21] constituted by data samples not included in the boostrap sample
used to construct h(x;ψt). Denote errOOBt the error corresponding to the miss-
classification rate for classification of the single tree h(x;ψt) over the OOBt dataset.

Now, randomly permute the values of Xj in OOBt to get a perturbed out-of-box
dataset denoted by ÕOBt

j

, and compute errÕOBt

j

, the error of h(x;ψt) on the
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perturbed sample. The Variable Importance of feature Xj is computed as follows:

V I(Xj) = 1
T

∑
t

(errÕOBt

j

− errOOBt),

where T denotes the number of trees of the RF. To perform feature selection,
1. We order the features by decreasing value of Variable Importance, such that
V I(Xji) > V I(Xji+1),

2. We compute the total variable importance of the features

TV I =
N∑
j=1

V I(Xj).

3. We find the first K faetures accounting for 95% of TVI:

K∑
i=1

V I(Xji) ≥ 0.95TV I.

4. We discard the remaining features
In Table Table 5.2 we show the image features finally selected to build the training
set.

Morphological postprocessing

Morphological operators [155] are nonlinear filters, convolution-like operations ap-
plying lattice operators (infimum and supremum) on pixel neighborhoods defined by
spatial masks. They have been used for edge detection, smoothing, removing noise
and even detect shapes. Dilation, erosion, closing, and opening are the basic mor-
phological operators. The structuring element defines the spatial span of the filter
and some weighting that modulates it. The so-called area based operators do not
depend on an specific structuring element, but work on connected components. For
instance, area conditional erosion operator deletes connected components smaller of
a given area, regardless of their size.
In this chapter, we apply morphological operators as a post-processing step removing
small regions of false positives, disconnected from the main thrombus segmentation.
We are concerned with binary images, whose pixels have values 0/1, resulting from
the classification process. The structuring element can be of any size and has an
arbitrary structure that can be represented by binary values. We will a disk of di-
ameter d as the structuring element. We briefly recall the definition of the elemental
operators and filters.
The binary erosion of A by B, denoted A � B, is defined as the set operation
A�B = {z |(B) z ⊆ A}. In other words, it is the set of pixel locations z, where the
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Image Feature (Filter radius) Importance
Maximum
(16) 1.277

Maximum
(4) 0.9533

Maximum
(8) 0.9531

Median (8) 0.8037
Maximum
(2) 0.7623

Maximum
(1) 0.7594

Median (1) 0.7415
Median (4) 0.7406
Median
(16) 0.7328

Gaussian
Blur (4) 0.725

Table 5.2.: Features selected according to the variable importance ranking

structuring element translated to location z overlaps only with foreground pixels in
A.
The binary dilation of A by B, denoted A ⊕ B , is defined as the set operation:
A ⊕ B =

{
z
∣∣∣(B̂)

z
∩ A 6= Ø

}
where ˆ(B) is the reflection of the structuring element

B. In other words, it is the set of pixel locations z, where the reflected structuring
element overlaps with foreground pixels in A when translated to z.
Dilation and erosion are often used in combination to detect sub-images or image
components. The definition of a morphological opening of an image is an erosion
followed by a dilation, using the same structuring element for both operations: XB =
(X � B) ⊕ B. The morphological closing of an image is the reverse: it consists
of a dilation followed by an erosion with the same structuring element: XB =
(X ⊕B) �B.

5.3. Experimental setup

Datasets. We have performed computational experiments over 8 datasets to test the
proposed Active Learning based image classification approach. Each dataset con-
sists in real human contrast-enhanced datasets of the abdominal area with 512x512
pixel resolution on each slice. Each dataset consists of between 216 and 560 slices
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and 0.887x0.887x1mm spatial resolution corresponding to patients who suffered Ab-
dominal Aortic Aneurysm. The datasets show diverse sizes and locations of the
thrombus. Some of them have metal streaking artifacts due to the stent graft place-
ment. Ground truth segmentations of the thrombus for each dataset that simulates
the human oracle providing the labels for the voxels, were performed manually by
a clinical radiologist.

Segmentation problem. We are looking for the segmentation of the thrombus formed
in the AAA after the placement of the endo-prosthesis. Therefore, segmentation is
converted into a two-class classification problem.

Parameter tuning. In our experiments we build the feature set with Matlab, in a 8
core CPU runing under Ubuntu. The total processing time to get the complete set
of features for the 8 patients was 42 ours. We train the RF classifier with a single
slice a to test the sensitivity of the forest parameters: the number of the trees T and
their depth D. We vary T from 10 to 100 in steps of 10 and D from 10 to 24 in steps
of 2. A 3-fold cross-validation is carried out for each parameter combination. In Fig.
Figure 5.3 segmentation results are evaluated for each combination of RF parameters
to compute the response surface of classification accuracy due to variations in RF
parameters. The surface corresponds to the average accuracy in the 3-fold cross
validation. The figure shows that for a fixed depth, increasing the number of trees
and the depth leads to a more accurate classification. The increase in performance
stabilizes around number of trees = 80 and depth = 20.

Once we get the optimal parameters and feature set, we have designed two differ-
ent experiments to test the proposed approach in the patients’ CTA volumes as
illustrated in figure Figure 5.2:

1. Independent slice classifier: we build a separate RF classifier for each slice
of the volume, applying an Active Learning strategy, and we test it with the
corresponding slice.

2. Generalization of a single slice classifier: we build only one RF classifier from
the data of the central slice of the aneurysm, applying an Active Learning
strategy, and we apply it to the classification of the remaining slices of the CT
volume, testing the generalization power of the learnt classifier.

Validation. The performance measure results of the experiments is the classification
accuracy. For the first experiment, the independent slice classifiers, we average the
classification accuracy obtained on each slice at each iteration of the Active Learning
process. That is, we obtain the average evolution of the classification accuracy, with
a corresponding variance value. For the second experiment, we plot the accuracy
obtained when applying the single RF classifier on each slice.
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Figure 5.3.: Accuracy of the segmentation as a function of the RF parameters:
number of trees and depth.

5.4. Experimental Results

Fig. Figure 5.4 shows the performance of the Active Learning based image segmen-
tation algorithm for 6 CTA volumes of AAA patients. We plot the average accuracy
of the RF classifiers built at each iteration of the Active Learning process on each
slice, the abcissas correspond to the number of voxeles being added to the training
set, 5 voxels per iteration. It can be appreciated that all plots converge reaching 0.99
accuracy after four iterations (20 voxels added). The variance of the classification
accuracy is represented by a blue region around of the mean, upper and lower limits
correspond to adding and subtracting two times the standard deviation. Addition-
ally the accuracy’s variance drops dramatically after the fourth iteration, becoming
negligible after the fifth iteration. The Active Learning process is extremely robust.

The experiment reported in Fig. Figure 5.4 is equivalent to asking of the human
operator to follow the Active Learning procedure on each slice, which amounts to
some two hundred independent segmentation processes, restricting the work to the
CTA slices containing the AAA thrombus. Then we run the experiment in which
we test the all the slices with the classifier built on the training set corresponding to
the image features of one single slice, therefore achieving a hundred-fold reduction
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on the human effort. We can observe that the approach provides good performance
detecting and segmenting the anatomical structures in several consecutive slices. If
the RF classifier obtained on one slice can be applied to the remaining slices without
loss of accuracy, the human operator would only need to perform once the Active
Learning process to obtain the whole volume segmentation. Fig. Figure 5.5 shows
the overlaid plots of the accuracy obtained at each CTA volume slice applying the
RF classifier trained on the thrombus central slice for each of the 8 CTA volumes
in the experiment. The abcissa’s zero value corresponds to the central slice, the
negative abcissa values correspond to slices above the central slice, the positive
values correspond to slices below the central slice. There is some variability of the
plots’ span, due to the different sizes of the thrombus in each patient. As can be
expected, the drop in classification accuracy is symmetric. The generalization results
are very good: the lowest accuracy is above 0.98 in almost all cases. This results
comes with a hundred-fold reduction of learning complexity involving computer and
human operator time.

The segmentation quality has minimum variations from one slice to the next. Throm-
bus segmentation is preserved, and the false positives are distributed in similar way.
Fig. Figure 5.6 shows the segmentation of six consecutive slices. The final step of
the system applies a morphological opening operator to get rid of the false positives,
obtaining the mask of the aneurysm thrombus. Fig. Figure 5.7 shows the results of
the opening on several consecutive slices of the same patient after classification with
the RF trained in 8 Active Learning iterations on the central slice. We observe little
variation between consecutive slices. The evolution of the DICE coefficient values
after each Active Learning iteration is shown in the figure Figure 5.8. After the first
two iteration DICE values are still relatively low, but after the third iteration there
is a steep increase above 0.8. We observe that the segmentation quality reaches a
maximum after 6 Active Learning iterations.

A 3D volume rendering of the Aorta’s lumen (green) and thrombus (red) of one pa-
tient is shown in Fig.Figure 5.9 in three situations. Fig.Figure 5.9(a) shows the ren-
dering of the ground truth given by volume manual segmentation. Fig.Figure 5.9(b)
shows the result of the segmentation based on the Active Learning performed on
each slice. The high accuracy of the segmentation is evident from the comparison
with the rendering of the manual segmentaion. Fig. Figure 5.9(c) shows the result
of the segmentation based on the RF classifier built from the thrombus’ central
slice. The structure of the thrombus is well delineated, most errors come from the
identification as thrombus of separate structures which can be easily removed by
morphological operations.
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5.5. Conclusions

This chapter presents an Active Learning approach to the segmentaion of the AAA’s
thrombus for posterior measurement and monotoring. Active Learning is justified
by the difficulty of ensuring that learned classifiers will remain valid for new data
due to the great anatomical variability in the patients, as well as the varibility of
the imaging sensors. The results are quite positive, showing that a great reduction
of human segmentation effort preserving a high accuracy can be obtained by the
procedure of training a classifier on the central slice and applying it to the remaining
slices, followed by a simple morphological post-processing.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4.: Average and standard deviation interval of the classification accuracy
at each slice versus size of the additions to the train dataset for the 6 CTA volumes
of AAA patients. Active Learning adds the 5 most uncertain unlabeled samples
to the train dataset at each iteration. Initial train dataset of 20 voxels.
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Figure 5.5.: Generalization result. The classifier learned on the central slice is
applied to the remaining slices.

(a) (b) (c)

(d) (e) (f)

Figure 5.6.: Segmentation of 6 consecutive abdominal slices of the same patient
after RF classification process. Lumen (darkest circle in the center), thrombus
(circle around lumen), and bones (backbone and rib) are distinguished.
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(a) (b) (c)

(d) (e) (f)

Figure 5.7.: Segmented images after opening to remove noisy false positive com-
ponents: 6 consecutive abdominal aortic aneurysm thrombus slices of the same
patient.

Figure 5.8.: Dice similarity measures after each iteration
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(a) (b) (c)

Figure 5.9.: Volume rendering of aortic lumen (green) and thrombus (red) obtained
from the segmentation of one CTA volume. (a) manual segmentation of the ground
truth, (b) result of Active Learning RF classifiers detecting the thrombus in each
slice, (c) result of generalization of the Active Learning the RF classifier on the
central slice to the remaining slices.

70 70



6. Abdominal Aortic Aneurysm
Registration

This chapter describes the works done on the registration of images of the Abdominal
Aortic Aneurysm (AAA) taken at different time instants. The registration allows
the accurate comparison of the state of the aneurysm in these time instants, so
that a clinician can can easily determine the evolution of the thrombus by visual
inspection.
Section section 6.1 gives a short introduction. Section section 6.2 gives an overview
of registration algorithms. Section section 6.3 explains the Aorta’s lumen registra-
tion. Section section 6.4 presents results on the thrombus co-registration. Section
section 6.5 gives some conclusions of the work reported in this chapter.

6.1. Introduction

Image registration is the process of overlaying two or more images of the same scene
taken at different times, from different viewpoints, and/or by different sensors, so
that the same pixel site corresponds to the same point in the real life object. In
medical images, the goal is that the pixel or voxel images the same anatomical point.
As illustrated in figure Figure 6.1, registration considers a fixed image, correspond-
ing to the nominal positions of the objects in the scene, and a moving image, which
must be transformed to overlay as much accurately as possible the fixed image. The
moving image is transformed according a domain transformation, applying interpo-
lation methods to allow for numerical accuracy. The quality of the registration is
measured using a image comparison metric. The estimation of the best transfor-
mation is performed as an optimization process over the transformation parameters
maximizing the registration quality. Registration techniques can be categorized by
the transformation computed to align the moving image to the fixed image:

• Rigid registration permits translation in any direction and rotation around
any axis, resulting in six degrees of freedom in 3D imaging.

• Affine registration adds skew and scaling to the rigid transformations, permit-
ting 12 degrees of freedom for 3D image sets [87].

• Deformable registration algorithms [90] computes non-rigid free-form transfor-
mations from. Deformable registration involves much more parameters than
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Figure 6.1.: Image Registration Framework[79]

rigid and affine registration, and despite advances reached so far, it is still a
topic of ongoing research[152][87].

Rigid and affine registration methods have been shown to be effective in aligning
PET, CT and MR images of the brain where the rigidity of the skull prevents arbi-
trary deformation [178]. However, in more general cases, rigid and affine approaches
cannot sufficiently model the image differences. Registration algorithms can also be
grouped according to the kind of information used:

• Feature based methods require the preprocessing of the images to extract
features such as edges, landmarks, segmented structures and texture. For in-
stance, non-rigid registration based on by correspondence of boundary struc-
tures is reported in [53, 52][125][160].

• Voxel-based methods work directly on the image gray values without any pre-
ceding feature extraction. Voxel-based methods are more flexible and less
reliant on the success of the processing steps, but they have a higher compu-
tational cost [126][152].

Image registration is a critical step in image analysis tasks combining information
from various data sources like in image fusion, change detection, and multichannel
image restoration[76]. The ability to register images from different image modalities
is also important to fuse the information from each mode, enabling better clinical
decisions to be made. Much of the early work in medical image registration was
dedicated to co-registration of brain images of the same subject acquired with dif-
ferent modalities (e.g. MRI and CT or PET) [128]. For these applications a rigid
body approximation was sufficient as there is relatively little change in brain shape
or position within the skull over the relatively short periods between scans. There
have been several recent reviews that cover these areas in more detail [66]. Clearly
most of the human body does not conform to a rigid or even an affine approximation
and much of the most interesting and challenging work in registration today involves
the development of non-rigid registration techniques for applications ranging from
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correcting for soft-tissue deformation during imaging or surgery [55] to modeling
neuro-anatomical changes [75].

Intramodality or intermodality studies use the same or different image acquisition
technology. Intrasubject studies use images of the same subject, while intersubject
studies use images from different subjects. Using these two axes, with an application-
centered emphasis, we can divide the methods of registering images in:

• Intramodal, intrasubject: in this case it is aligning images of the same type
and the same subject acquired at different time points. For example, one can
study the longitudinal changes in a patient due to treatment, variations due
to disease progression or check the result of surgery[167].

• Intramodal, intersubject: the use of this type of registration can compare
images of different subjects and find differences between them. The image
analysis procedure fMRI [188] and PET known as SPM (Statistical Parametric
Mapping) requires this step before comparing studies. Using a reference atlas
to assist in locating such structures also requires registration.

• Intermodal, intrasubject: studies using different methods for the same subject
opens the possibility of combining the information from all of them. Thus,
the precise location allowing anatomical modalities such as MRI or CT can be
supplemented with functional information from PET or SPECT[159].

• Intermodal, intersubject: this case is the least practical applications presented
so far. One of them could be the registration of PET or SPECT images with
an anatomical atlas, but so far several difficulties are impeding good results.

Co-registration is the process of computing the optimal registration transformation
over one object and applying it to a related object. In this chapter we perform
co-registration of the aneurysm’s thrombus by the Aorta’s lumen. The rationale is
that the Aorta’s lumen is a stable object with the same shape in time, while the
thrombus will be subject to shape changes due to reductions or dilations, according
to the positive or negative evolution of the patient. Therefore, direct thrombus
registration would mask the effect that we are trying to highlight to the clinician.
The process followed has two steps:

1. Registration of the Aorta’s lumen using affine and deformable registration.

2. Application of the transformation to the segmented thrombus to overlay its
two time instants.

6.2. Overview of Registration Algorithms

Registration based on patient image content can be divided into geometric ap-
proaches and intensity-based approaches.
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• Geometric approaches build explicit models of identifiable anatomical elements
in each image. These elements typically include functionally important sur-
faces, curves and point landmarks [135] that can be matched with their coun-
terparts in the second image, defining correspondences used to estimate the
transformation parameters. The use of such structural information ensures
that the mapping has biological validity, allowing the transformation to be
interpreted in terms of the underlying anatomy or physiology.

• Intensity-based approaches match intensity patterns in each image using math-
ematical or statistical criteria. They are based in the definition of a measure
of intensity similarity between the source and the target, tuning the trans-
formation to maximize the similarity measure. Correct registration of the
images will be the similarity maximum. Intensity-based registrations match
intensity patterns over the whole image but do not use anatomical knowledge.
Geometric registration uses anatomical information but usually sparsely dis-
tributed throughout the images. Combining geometric features and intensity
features in registration should result in more robust methods. Hybrid algo-
rithms are therefore of particular current interest, combining intensity-based
and model-based criteria to establish more accurate correspondences in diffi-
cult registration problems [75].

Components of registration algorithms As illustrated in figure Figure 6.1 a reg-
istration algorithm can be decomposed into three components:

• The similarity metric measuring the image matching quality;
• The transformation model, which specifies the way in which the moving image

can be changed to match the fixed image. A number of numerical parameters
specify a particular instance of the transformation;

• The optimization process that searches in the transformation model parameter
space to optimize the matching criterion.

6.2.1. Similarity measures

Regardless of the particular images, the used registration method, and the appli-
cation area, it is highly desirable to provide the user with an estimate registration
accuracy. Registration accuracy evaluation is a non-trivial problem, partially be-
cause the errors can be dragged into the registration process in each of its stages
and partially because it is hard to distinguish between registration inaccuracies and
actual physical differences in the image contents[119][150].
We use two well known [189] similarity metrics: the intensity mean squared dif-
ferences (MSD) and Mutual Information (MI) [11, 10][173] [130]. These similarity
metrics have each been used widely in the past for nonrigid registration, to measure
the intensity agreement between a deforming image and the target image.
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• The MSD is a suitable similarity metric when the images have been acquired
by similar sensors, thus they are expected to present the same intensity range
and distribution. For voxel sites xA in image A lying in an overlap region of
the image domains ΩT

A,B comprising N voxels:

MSD = 1
N

∑
xA∈ΩT

A,B

(
A(xA)−BT (xA)

)
2 (6.1)

• The MI is a measure of how much information one random variable has about
another. The information contributed by the images is simply the entropy of
the portion of the image that overlaps with the other image volume, and the
mutual information is a measure of the joint entropy respect to the marginal
entropies.

I(A,B) = H(A) +H(B)−H(A,B) (6.2)

where I(A,B) is the mutual information, H(A) and H(B) are the marginal
entropies of the fixed and moving images and H(A,B) is the joint entropy.

6.2.2. Transformation models

A spatial transformation maps each point in the 3D image domain into another
point in the same space. The transformation model defines how one image can
be deformed to match another; it characterizes the type and number of possible
deformations. The best known example is the rigid or affine transformation that
can be described very compactly by between 6 (3 translations and 3 rotations) and
12 (6 + 3 scalings + 3 shears) parameters for a whole image. These parameters are
applied to a vector locating a point in the fixed image domain to predict its location
in the moving image domain (forward transformation), or the location of the moving
image point in the domain of the fixed image (backward transformation).
The transformation model serves two purposes; first it controls how image features
can be moved relative to one another to improve the image similarity and second
it interpolates between those features where there is no usable information. Trans-
formations used in non-rigid registration range from smooth regional variation de-
scribed by a small number of parameters[186] to dense displacement fields defined
at each voxel [76]. One of the most important class of transformations is the linear
combination of splines that have been used in various forms for around 15 years. The
thin-plate spline (TPS) is an important tool for medical image registration. TPS
can be considered to be a natural non-rigid extension of the affine map through
minimizing a bending energy based on the second derivative of the spatial mapping
[18]. Spline-based registration algorithms use corresponding (‘‘control’’) points, in
the source and target image and a spline function to define correspondences away
from these points. B-spline based non-rigid registration techniques [157] are popular
due to their general applicability, transparency and computational efficiency. Their
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main disadvantage is that special measures are sometimes required to prevent folding
of the deformation field and these measures become more difficult to enforce at finer
resolutions. Such problems have not prevented these techniques finding widespread
use (in the brain, the chest, the heart, the liver, the breast etc. Diffeomorphic Reg-
istration is also another type of widely used registration method in medical image
analysis. It seeks an invertible function smoothing and maping one differentiable
manifold (image) into another [139] [172].

6.2.2.1. Rigid Registration

For three dimensional images, such as CTA images, rigid body transformations have
6 degrees of freedom, consisting in the spatial translation t = [tx, ty, tz] parameters
and the rotation angles α, β and γ about these three axes, composed in a rotation
matrix R. For a given point x ∈ R3, a rigid body transformation T is given by the
following expression:

T (x) = Rx + t (6.3)

This transformation is appropiate for registration of rigid structures like bones [2]
[101].

6.2.2.2. Affine Registration

While a rigid transformation preserves the distances between all points in the object
transformed, an affine transformation preserves parallel lines. This model has 12
degrees of freedom, allowing for scaling and shearing. Let x = (x, y, z)T , the model
can be expressed in extended coordinates as:

T (x, y, z) =


x´
y´
z´
1

 =


a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
0 0 0 1



x
y
z
1

 (6.4)

This transformation has been successfully applied in registration of free-form sur-
faces [54], registration of SPECT brain images [145], vascular atlas formation us-
ing a vessel-to-image registration [35] and four-dimensional registration models for
respiratory-gated PET [86].
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6.2.2.3. Deformable Registration

We give some details of a B-spline deformable transform [31, 32] because it has
been used in our experiments below, for fine non-linear registration after the affine
registration. Free Form Deformations (FFD) based in locally controlled functions
such as B-splines are a powerful tool for modeling 3D deformable objects. A spline
based FFD is defined on the image domain

Ω = {(x, y, z) | 0x < X, 0 ≤ y < Y, 0 ≤ z < Z} (6.5)

where Ω denotes an nx × ny × nz mesh of control points with uniform spacing δ. In
this case, the displacement field u (x, y, z) defined by FFD can be expressed as the
3D tensor product of 1D cubic B-splines:

u(x, y, z) =
3∑
l=0

3∑
m=0

3∑
n=0

Θ(u)Θ(v)Θ(w)Φ(i+l,j+m,k+n) (6.6)

where

i =
⌊
x

δ

⌋
− 1, j =

⌊
y

δ

⌋
− 1, k =

⌊
z

δ

⌋
− 1, u = x

δ
−
⌊
x

δ

⌋
, v = y

δ
−
⌊
y

δ

⌋
, w = z

δ
−
⌊
z

δ

⌋
and Θ1 represents the l-th basis function of the b-splines:

Θ1(s) = (1− s)3⁄6(s)
Θ2(s) = (3s2 − 6s2 + 4)⁄6
Θ3(s) = (−3s2 + 3s2 + 3s+ 1)⁄6
Θ3(s) = s3⁄6

This transformation has been applied with good results in the implementation of an
algorithm for targeted prostate cancer radiotherapy [175], registration of respiratory
correlated CT images of lung cancer patients [123], breast MR images registration
[47] and in spatio-temporal tracking of myocardial deformations [78].

6.2.3. Optimization

The search for the parameters values of the true transformation between the fixed
and the moving image is performed in the parameter space following an optimization
of the image similarity, either maximization or minimization. The optimizer is the
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search algorithm used to perform such search. The landscape of the image similarity
is plagued by the existence of local optima, so that finding the global optimum is
usually infeasible. Therefore, optimizers look for the best local optimum or global
suboptimum that they can provide in an reasonable amount of time. In other
words, a good optimizer is one that reliably and quickly finds the best possible
transformation.

Choosing a good optimizer requires a good understanding of the registration prob-
lem, the constraints that can be applied and knowledge of numerical analysis. Op-
timization in non-rigid registration applications is a more difficult problem than in
affine registration because the number of parameters to estimate is much bigger,
so it is the dimension of the search space, causing the appearance of many local
optima, so that the difficulty of finding a good suboptimal solution (global minima
may be almost impossible) is increased.

A more subtle problem is that a transformation parameter estimation that gives a
good local optimum value of the feature similarity may not be physically meaningful.
For example, we have a prior belief that the registration of one image onto another
should be diffeomorphic [171]; in simple terms this means that if the transformation
were applied to a real physical object to deform it then no tearing of the object
would occur. Tearing can often result in a transformation that makes the images
more similar despite it being physically invalid. Therefore in many situations, e.g.
serial MRI brain registration of a subject undergoing diffuse atrophy, there is a
prior expectation that folding or tearing should not be required to secure a good
match. Often, object tearing results from correspondence problems. For instance,
intersubject brain registration where one subject has a large extrinsic tumor [117],
or registration of abdominal regions where fluid and gas filled spaces can appear
and disappear between scans [187] are examples where correspondence is not well
defined and where tearing or folding may be necessary to describe the underlying
physical transformation. Other constraints can be implicit in the choice of the
transformation model, e.g. that the transformation should be consistent with the
behavior of a deforming elastic body. Much of the work of optimizers is therefore to
balance the competing demands of finding the best set of correspondences subject
to application-specific constraints.

Gradient based methods are realized for low and medium dimensional parameter
spaces [100], when the similarity can be expressed functionally in terms of the
transformation parameters. Gradient descent can be performed by some of the con-
ventional numerical methods, such as Newton method [13], or Lavenberg-Marquard
[132]. We can find applications of this method in multi modality image registration
[64] like the registration of CT and intraoperative 3-D ultrasound images of the
spine [185], 3-D/2-D registration of CT and MR to X-ray images [110] and rigid
registration of 3-D ultrasound with MR images [134]

Random search methods, such as Genetic Algorithms [63] have been used for a
robust 3-D MR-CT registration [136], while Simulated Annealing [163] shows a
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good performance for registration of stereo and temporal images of the retina [133],
automatic retinal image registration [111]. Wang et al. proposed a graph matching
method based on mean field theory for computed tomographic colonography (CTC)
scan registration [176]. We can find Particle Filtering applications in rigid shape-
based surface registration [103], ultrasound to CT bone surface registration [116]
and magnetic resonance prostate imagery [59]. These methods are applied when
there is no such functional expression that can be differentiated, or the number of
parameters is too big to manage by conventional numerical methods.

6.3. Aorta’s Lumen Registration

First the two binary images corresponding to the patient lumen are roughly aligned
by using a transform initialization and then the two images are registered using
a rigid transformation. Figures Figure 6.2, Figure 6.3, and Figure 6.4 show exam-
ples of the results obtained by the proposed registration process. We apply an
intra-subject and mono-modal registration of the same patient in different dates.
A sequence of rigid, affine and deformable (B-splines) registrations is performed.
We use FFDs to deform the lumen by manipulating an underlying mesh of control
points. The resulting deformation controls the shape of the lumen and produces a
smooth and continuous transformation. The earliest CT volume is considered the
reference image and the others are registered relative to it. A linear interpolator,
Mutual Information metric and Regular Step Gradient Descent Optimizer are used.
We have computed the MSD and MI similarity metrics for the evaluation of the reg-
istration in 3 registration processes performed on the data from the same subject,
each of them consisting of rigid, affine, coarse-deformable and fine-deformable meth-
ods. A decrease of both metric is observed in the consecutive registration methods.
MI reports include a negative number because traditionally that has been used as
a cost function for minimization. Table Table 6.2 provides the quantification of the
these similarities.

6.4. Thrombus co-registration

We have developed a method that places the thrombi of different datasets of the same
patient referenced to the lumen of the first dataset. The registration process provides
the transformation parameters that allow to transform the thrombus of the moving
images to the same reference system of the fixed image, so that it becomes possible
to compare the volume changes and deformation of the thrombus. Figure Figure 6.5
illustrates this process. Figure Figure 6.5(a) shows the thrombus of the fixed and
moving image each one referred to its own aortic lumen. Figure Figure 6.5(b) shows
the overlapping of the moving image thrombus and the fixed image thrombus. The
method allows detecting small changes in volume or deformation of the thrombus
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(a)

(b)

Figure 6.2.: 3D rendering of the segmented Aorta’s lumen of patient #1 of the
fixed and moving image (a) before and (b) after registration

that may go unnoticed for radiologists while comparing individual slices of the same
patient along time. With this method, changes in thrombus’s volume can be detected
easily, such as the ones visualized in figure Figure 6.6.

6.5. Conclusions

Co-registration of the thrombus of the aneurysm sac can provide a powerful visu-
alization tool that may allow early detection of negative evolution of the EVAR
treatment. Visualizations of several patients data provide empirical confirmation to
this idea.
Besides, obtaining quantitative values of the changes in the thrombus after register
images from different studies of the same patient, leads to consider predictive models
of the evolution of other patients, providing quantitative measurements for decision
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Registered Studies Metric
MSD MI

#2-#3 Rigid 4,60E-01 -5,28E-06
Affine 3,42E-01 -7,25E-06

Deform. Coarse 3,05E-01 -8,35E-06
Deform. Fine 2,88E-01 -9,24E-06

#2-#4 Rigid 4,94E-01 -4,96E-06
Affine 2,97E-01 -7,91E-06

Deform. Coarse 2,70E-01 -8,64E-06
Deform. Fine 2,65E-01 -9,53E-06

#2-#5 Rigid 8,03E-01 -3,48E-06
Affine 3,73E-01 -6,29E-06

Deform. Coarse 3,19E-01 -7,27E-06
Deform. Fine 2,88E-01 -8,96E-06

Table 6.2.: Similarity metric results of the sequence of registrations over dataset
pairs of one patient. Image #2 of the study is the fixed image for registration of
moving images #3, #4 and #5.

support. Machine Learning approaches will be used to determine if the evolution
of the EVAR is positive or not. These data would be integrated into a more com-
plex database, where information about patients and monitored aneurysms may be
available for comparative studies.
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(a)

(b)

Figure 6.3.: 3D rendering of the segmented Aorta’s lumen of patient #2 of the
fixed and moving image (a) before and (b) after registration
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(a)

(b)

Figure 6.4.: 3D rendering of the segmented Aorta’s lumen of patient #3 of the
fixed and moving image (a) before and (b) after registration
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(a)

(b)

Figure 6.5.: Thrombus extracted for two points in time (semi-transparent orange
for the first one, semi-transparent green the second one). (a) each thrombus is
registered according to its correspondent segmented lumen, (b) both thrombi are
referenced to the lumen of the first point in time, so the evolution of the aneurysm
sac is highlighted.
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(a)

(b)

Figure 6.6.: Thrombus extracted for two CT datasets obtained in two points in
time (semi-transparent blue for the first one, semi-transparent red the second
one), both referenced to the lumen of the first point in time. (a)It can be seen an
increase in thrombus volume corresponding to an enlargement of the aneurysm
sac. (b)In this case it can be seen a decrease in thrombus volume
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7. Computer Aided Diagnosis

Cardiovascular diseases involving heart and blood vessels are the main causes of
death in the western countries. Abdominal Aortic Aneurysms (AAA) is one of such
diseases. This chapter describes the work done in this thesis to explore the con-
struction of Computer Aided Diagnosis (CAD) systems to the predict the evolution
of the aneurysm in patients treated with an endovascular prostheses. These CAD
systems are built on features obtained from image registration techniques. The aim
of this work is to make an semi-automatic analysis of the AAA using digital image
processing techniques, yielding visual and quantitative information for monitoring
and tracking of patients who underwent EVAR, aiming to classify their evolution as
favorable or unfavorable.
The contents of the chapter are the following: Section section 7.1 gives some med-
ical background on endovascular repairs. Section section 7.2 introduces CAD sys-
tems. Section section 7.3 presents the computational pipeline in detail. Section
section 7.4 presents results of the proposed CAD system on a specific dataset. Sec-
tion section 7.5 gives the conclusions of the chapter.

7.1. Endovascular Repair

The use of the endovascular prostheses for aneurysm repair (EVAR) has proven to be
an effective technique to reduce the pressure and rupture risk of aneurysms, offering
shorter post-operation recovery than open surgical repair. The EVAR isolates the
dilated aorta vessel walls from the high pressure flow in the Aorta’s lumen. In treated
patients with positive evolution, the thrombus sac between the EVAR and the vessel
wall is reabsorbed after a time. EVAR evolution monitoring main instrument are
Computerized Tomography (CT) images of the abdominal region after injection of
an intravenous contrast agent. The main concern is that there may be leaks into or
from the thrombus sac due to incorrect positioning, displacement or torsion of the
EVAR graft, that is, liquid blood may filter back from the Aorta’s lumen inside the
thrombus. This effect is called an endoleak and it can be detected by image analysis
procedures [104]. Fig. Figure 7.1(a) is a typical slice of the CT volume, while Fig.
Figure 7.1(b) shows a sagittal view of the volume with the segmented aorta, stent-
graft and thrombus. Such images of the patient’s abdominal area are available in
the clinical routine as a stack of 2D images whose visual analysis is time-consuming.
The majority of previous image processing methods for EVAR evolution monitoring
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dealt with lumen and thrombus segmentation problems [162, 161][122][202]. Few
works have addressed the lumen registration to estimate the deformation of the
stent [112, 46].

7.2. Computer Aided Diagnosis systems

Decision support systems have a growing importance in the clinical routine, becom-
ing Computer Aided Diagnosis (CAD) systems which CAD provide an effective way
improve diagnosis accuracy, reducing tiredness and stress effects on the medical dec-
sions, by combining elements of digital image processing, machine learning, pattern
recognition, and domain knowledge of medicine [89][49]. It is used in a variety of
diseases (i.e. cancer[164], neurological diseases [129], vascular diseases [147]) but the
design and optimization is specific for each case.
Often, the initial component of image interpretation and diagnosis is the identifi-
cation anatomical structures in the image. Afterwards, according to their position,
shape, texture and/or evolution through time, they are classified as favorable or
unfavorable. Artificial neural networks [65, 73] have become a standard tool for
the development of computational decision support systems from data. They have
been applied to a number of medical classification tasks [98]. Among the desirable
properties of artificial neural networks is their ability to perform complex pattern-
recognition tasks and the fact that they do not require prior knowledge of diagnostic
rules. Among the statistical classifiers, the SVM have become a standard tool for
the development of CAD systems from data [24].
The aim of our work is to make an automatic analysis of the AAA, yielding visual
and quantitative information for monitoring and tracking of patients who under-
went EVAR, allowing classifying their evolution as favorable or unfavorable. In this
chapter we present a computer aided system for EVAR prognosis based on classifi-
cation systems trained on the patient’s data. Specifically, this data consists in the
measurements of the deformation of the lumen between two different time instants
obtained as the image registration quality measures. Visual rendering of AAA and
EVAR transformation data can help the physician to recognize deformation patterns
having a high probability of dangerous progression of the EVAR and the aneurysm.
The quantitative features for the classification systems are the values of similarity
metrics obtained after rigid, affine and deformable registration of the aortic lumen.
The proposed system has two phases:

1. A pipeline of image registration processes
2. A classification system based on the image similarity metrics resulting from

the image registration steps.
The image registration of AAA after EVAR treatment has already been presented in
[108]. We test classification systems built using the standard SVM, with linear and
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non-linear (RBF) kernels, and some ANN architectures: Multi-Layer Perceptron
(MLP), and Radial Basis Function (RBF). As a general result, the diverse systems
showed a moderate accuracy due to a moderate sensitivity, and high specificity. Best
results were obtained with SVM classifiers. Specifically, the input to the artificial
neural network is the result of the registration methods.

7.3. Computational pipeline

We have developed a method to measure the deformation of the segmented Aorta
between two studies of the same patient using registration techniques. Figure
Figure 7.2 shows the computational pipeline.
In our approach, first we estimate the rigid motion of the lumen relative to the spinal
cord as well as its deformation [113, 46]. Visual overlapping of such transformed data
can help identifying deformation patterns having a high probability of dangerous
progression of the aneurysm but, we need to quantify those data to use neural
network classifiers. The aim of our research is to calculate the similarity metrics
after rigid, affine and deformable registration of the aortic lumen after EVAR and
to construct a classifier to make a prediction about future complications and disease
progression based on these variables.
First, the lumen is segmented using a 3D region growing algorithm. After that, the
registration of the lumen extracted from two datasets of the same patient obtained
at different moments in time is computed and then, we quantify the deformations of
the lumen computing the similarity metrics between the reference and the registered
binary image after the different registrations steps: rigid, affine and deformable.
Finally we classify them as favorable or unfavorable using a neural network .

7.3.1. Lumen Segmentation

Aorta’s lumen segmentation is performed applying User-Guided Level Set Segmen-
tation (UGLSS) [194], based on the well-known Region Competition [199] 3D active
contour segmentation method to get the segmented image of the lumen. During
the data preprocessing, probability maps are computed, by applying a smooth lower
and upper threshold. This ensures that voxels inside the lumen have a positive
value and voxels outside it have a negative value. We place a seed to initialize the
evolving contour into the lumen and we establish the parameters that control the
propagation velocity and curvature velocity. An evolving contour is a closed surface
C(t, u, v) parametrized by variables u, v and by the time variable t. The contour
evolves according to the following partial differential equation (PDE):

∂

∂t
C(t, u, v) = F

−→
N (7.1)
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We compute the external force F by estimating the probability that a voxel belongs
to the structure of interest and the probability that it belongs to the background at
each voxel in the input image:

F = α(Pobj − Pbg) + βK (7.2)

Figure Figure 7.3 shows an evolution of the closed surface from an initial seed put
inside the region of interest.
The spinal cord is also segmented as it is often used to place in the same reference
system when comparing different datasets of the same patient. Figure Figure 7.4
shows the 3D rendering of the segmentation of both spinal cord and Aorta’s lumen.

7.3.2. Quantification of Abdominal Aortic Deformation after
EVAR

A sequence of three registration steps is performed:
1. rigid registration,
2. affine registration and
3. deformable registration (B-splines).

The segmented lumen of the first study is considered as the fixed image and the
others are registered relative to it. A linear interpolator, Mutual Information (MI)
metric, and Regular Step Gradient Descent Optimizer are used. Rigid, affine and
deformable registration of the lumen allows for visual comparison of the evolution
of the stent-graft.

• First, the two images corresponding to the patient lumen are roughly aligned
by using an interactive registration initialization.

• Second, the two images are registered using a rigid transformation.
• Third, the rigid transformation is used to initialize a registration with an affine

transform of the stent-graft.
• Fourth, the transform resulting from the affine registration is used as the bulk

transform of a B-Spline deformable transform, and finally
• Fifth, the deformable registration is computed in two steps one at coarse res-

olution and refinement at fine resolution.
We use two similarity metrics: the mean of squared intensity differences (MSD) and
mutual information MI. These similarity metrics have been used widely for non-rigid
registration to measure the intensity agreement between a deformed source image
and the fixed target image. We show in table Table 7.1 the measurements obtained
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for the available datasets. The contents of table Table 7.1 summarize the dataset
used for the classification experiments below.

7.3.3. Learning Algorithms

Chapter 4 provides a review of the Learning Algorithms that have been applied
here, as well in other chapters of the Thesis. In this section we give some sum-
mary comments on the way these algorithms have been applied to AAA evolution
prediction.

Problem Statement We deal with a two class classification problem, given a
collection of training/testing input feature vectors X = {xi ∈ Rn, i = 1, . . . , l} and
the corresponding labels {yi ∈ {−1, 1}, i = 1, . . . , l}, which sometimes can be better
denoted in aggregated form as a binary vector y ∈ {−1, 1}l. Our aim is to classify
the patients as those who have a favorable or unfavorable evolution.

Learning algorithms The specific features of the learning algorithms applied in
this chapter are as follows:

• SVM: we have tested SVM with linear and RBF kernels. The regularization
parameter C is always set to 1 in this case study. Gamma is set to 0.01 in the
RBF kernel.

• LVQ: The learning rate is set to 1. The number of clusters is set to 2.

• MLP trained with BP algorithm. The number of hidden layer is given by the
wildcard value ’a’ = (attribs + classes) / 2. In our case its value is 5. The
learning rate was set to 0.3.

• Random Forest: we set the number of trees to 10. The number of attributes
to be used in random selection is 2. The máximun depth of the the trees is
not limited

We perform the classification in the Weka environment [67].

Methodology A leave-one-out process has been carried out to estimate general-
ization performance of the classifiers, due to the small sample size.
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7.4 Results

Classifier Accuracy Sensitivity Specificity AUC
Linear SVM 0.72 0.75 0.67 0.97
RBF SVM 0.77 0.80 0.70 0.98
LVQ 0.80 0.86 0.72 0.76
BP- MLP 0.73 0.71 0.80 0.97
Random-Forest 0.91 0.99 0.73 0.99

Table 7.2.: Leave-one-out cross-validation results of EVAR evolution classification
performed over the similarity metric features computed from the available CT
datasets.

7.4. Results

7.4.1. Datasets

We have tested the approach with 15 datasets corresponding to 5 patients which
have been treated with stent-graft devices. 4 datasets, corresponding to 1 patient,
are validated by the doctors as having a favorable evolution and 11, corresponding
to 4 patients, as unfavorable, according to aneurysm volume and surface measures,
as well as blood leakages in the aneurysm sac. The CT image stacks consists of
datasets obtained from a LightSpeed16 CT scanner (GE Medical Systems, Fairfield,
CT, USA) with 512x512x354 voxel resolution and 0.725x0.725x0.8 mm. spatial
resolution. The time elapsed between different studies of the same subject ranges
between 6 and 12 months. We have computed the MSD and MI similarity metrics
for the evaluation of the registration. A decrease of dissimilarity is observed in the
consecutive registration methods as shown in figure Figure 7.5.

We build the input feature vectors with the values of the similarity measures after
different registration modalities for each pair of segmented lumen images. So, we
have 8 features for each registered image pair, 4 computing the MSD dissimilarity
and 4 computing the MI similarity between the pair

Results We train over the set of features different classifiers and we show the
results for accuracy, sensitivity, specificity, and area under the ROC (AUC). Table
Table 7.2 gives average results from on a one-leave-out cross-validation strategy on
this database. We obtain the best results for Random-Forest, followed by LVQ
and RBF-SVM while MLP-BP and Linear SVM, give us the less accurate results.
Results are promising of high accuracy prognosis, needing confirmation on a larger
patient population.
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7.5. Conclusions

This chapter reports an approach to built CAD system for the prognosis of EVAR
treated patients with AAA. Features for the CAD classifier are the the similarity
measures of the segmented lumen after rigid, affine and deformable registration of
the Aorta’s lumen. The rationale is that registering images from different datasets
of a patient may provide us quantified values of deformation of the stent-graft. The
datasets of the patients have been previously validated by the medical team as
having a favorable or unfavorable evolution.
Considering the average accuracy data achieved by most of the classifiers tested,
our main conclusion is that the proposed feature extraction is very effective in pro-
viding a good discrimination between patients that can easily be exploited to build
classifier systems predicting the evolution of other patients and provide support for
the physician decision making. We have obtained very good results with a parsimo-
nious set of features. Other approaches, such as using the deformation fields, would
involve much more computational cost and the need to assess the dimensionality
reduction appropriate for the problem. Our approach shows that simple summary
information allows effective discrimination. Extensive validation of the approach
requires the incorporation of additional datasets, which is a long term endeavor.
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7.5 Conclusions

(a)

(b)

Figure 7.1.: (a) Axial view of thrombus and lumen in a CT orthoslice using the
contrast agents, blood in lumen is highlighted for a better view. (b) 3D view of
segmented lumen+stent-graft and thrombus localized over a sagittal CT image
faded in.
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Figure 7.2.: Pipeline of the CAD system for EVAR evolution prediction from image
data.

Figure 7.3.: Active contour evolution using the feature image based on region com-
petition. The propagation force acts outwards over the “foreground” region (red)
and inwards over the “background” region (blue), causing the active contour to
reach equilibrium at the boundary of the regions.
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Figure 7.4.: Segmented spinal canal and lumen localized on a 3D CT slice.
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(a)

(b)

(c)

(d)

Figure 7.5.: Visualization of fixed and moving images of the lumen (a) before reg-
istration , (b) after rigid, (c) affine, and (d) deformable registration.
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8. Conclusions and Future works

This chapter summarizes the conclusions of this Thesis and offers some lines for
future works. The Thesis is focused in a specific application of medical imaging to
a disease and treatment: the Abdominal Aortic Aneurysm (AAA) and its Endovas-
cular Aneurysm Repair (EVAR). The motivation comes from the high prevalence
of AAA in western population and the need to perform accurate follow-up of the
treatment to prevent the associated risks. The collaboration with the clinicians ac-
tually treating the patients has been very positive, in the measure that they have
provided real life data and some feedback on the results of the thesis, mainly about
the visual assessment of thrombus evolution which has been found potentially useful
at clinical practice level.

8.1. Conclusions

The Active Learning strategy for training classifiers performing the AAA’s thrombus
segmentation proposed in Chapter 5 has been validated on real life data obtaining
high classification accuracy. As a measure of generalization capability, the classifier
trained on the central slice of the CTA volume has been applied to the remaining
slices. Generalization accuracy results are also remarkable. More extensive valida-
tion experiments are always desirable, needing recruitment of additional data from
patients.

The longitudinal thrombus visualization procedure discussed in Chapter 6 has been
demonstrated to the clinicians, with good acceptance, notwithstanding the lack of
an easy-to-use tool to perform the pipeline process. The procedure has no critical
parameters to tune, therefore is a robust procedure for daily used with little training
requirements on the human operators.

The CAD system proposed in Chapter 7 has been validated on real clinical data,
testing several state-of-the-art classifiers. Results are encouraging, the small sample
size preventing to make claims of general applicability. However, as the process uses
longitudinal data, it is quite possible that its application will be equally successful
on new data.
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8.2. Future works

The thrombus segmentation by Active Learning may be compared in terms of ac-
curacy and usability with other state-of-the-art thrombus segmentation algorithms.
The usability test involves the repeatability of results by several human operators,
and the ease of use, sensitivity to the fine tuning of algorithm parameters, and other
issues that affect the daily practice, so that a theoretically superior segmentation
algorithm may be rather undesirable for clinical practice. Proposal of the technique
for clinical practice implies the design and development of an appropriate visualiza-
tion of classification uncertainty results as well as interaction means to explore the
uncertainty 3D data.
In general, the segmentation of abdominal organs and tissues is an on-going research
effort by many research teams. It poses many challenges: low contrast-to-noise
ratio, anatomical variability, motion and other sources of noise, lack of a priori
maps guiding the segmentation. Therefore, there is a wide open field to propose
and test new algorithms and hybridization of the old ones. In this setting, Machine
Learning approaches are getting increasingly relevant, providing sound methodology
to validate proposals and compare results.
CAD approaches would ideally be desirable at the pre-operative imaging moment.
That it, we would like to propose a tool helping the clinician to decide if the EVAR is
the appropriate solution for a specific patient. That implies a large collection of data
and experience gathered by the close collaboration with the clinicians. This CAD
system must also be based on more general image features than the ones proposed in
this Thesis, deriving from extensive a priori information possessed by the clinicians,
but which is not easily quantified or expressed in computable terms.
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A. Computer Tomography Datasets

In this appendix we describe the real life datasets used for the experimental works
in this Thesis. Section section A.1 describes images provided by the Dr Mariano de
Blas from the Hospital de Donostia. Section section A.2 describes the images pro-
vided by Dr. Joskowitz from Mount Sinai School of Medicine. Images are obtained
after constrast injection, so that the blood flow appears as hiperintense voxel regions
in the images.

A.1. Hospital Donostia Dataset

A.1.1. 16-row CT scanner

At the early stages of our research the medical research group working at the Hospital
Donostia provided us with relatively low resolution images adquired with 16-row CT
scanner. Each dataset is comprised between 50 and 100 axial slices that form a three
dimensional image. The CT datasets were obtained from a Philips CT 7000 scanner
(Philips Medical Systems) with 320x320 resolution and 1.094x1.094x3 mm. spatial
resolution. The time elapsed between different studies of the same subject varies
between 6 and 12 months. Figures Figure A.1(a) and Figure A.1(b) show an axial
view and a coronal view of this dataset, respectively.

A.1.2. 64-row CT scanner

We have tested our methods with 15 datasets corresponding to 5 patients which have
been subjected to EVAR with stent-graft devices. Each dataset is comprised between
300 and 500 axial slices that form a three dimensional image. The CT datasets were
obtained from a LightSpeed VCT scanner (GEMedical Systems, Fairfield, CT, USA)
with 512x512 pixel resolution per slice and 0.725x0.725x0.8 mm. spatial resolution.
The time elapsed between different studies of the same subject varies between 6
and 12 months. Four datasets, corresponding to one patient, are validated by the
doctors as having a favorable evolution and 11, corresponding to the remaining 4
patients, as unfavorable, according to aneurysm volume and surface measures, as
well as blood leakages in the aneurysm sac. Figures Figure A.2(a) and Figure A.2(b)
show an axial view and a coronal view of this dataset, respectively.
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A.2. Mount Sinai School of Medicine (New York)
Datasets

Patients were administered 100cc of non-iodinated contrast agent with a rapid in-
jection aid at 3-4cc per sec. The CTAs consist of 512 × 512 pixels per slice with
physical voxel sizes in the 0.7- 1.2mm range. The datasets included various sizes
and locations of the thrombus. Some of them were acquired after stent placement,
and thus include strong streaking artifacts. The datasets were acquired on a 64-row
CT scanner (Brilliance 64 - Phillips Healthcare, Cleveland, OH) and were chosen
randomly from the hospital archive to represent wide variety of patients with differ-
ent ages. Figures Figure A.3(a) and Figure A.3(b) show an axial view and a coronal
view of this dataset.
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(a)

(b)

Figure A.1.: Low resolution CT image with contrast agent from Hospital Donostia.
(a) Axial view (b) Coronal view 103
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(a)

(b)

Figure A.2.: High resolution CT image with contrast agent from Hospital Donos-
tia. (a) Axial view (b) Coronal view104 104
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(a)

(b)

Figure A.3.: Mount Sinai CT image with contrast agent. (a) Axial view (b) Coro-
nal view
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B. Insight Toolkit Software

B.1. Introduction

In this appendix we describe the software used for for image processing, segmen-
tation, and registration. Our applications are based in Insight Toolkit (ITK) open
source software which is can be downloaded without cost from http://www.itk.org.
Through the ITK initiative from the National Library of Medicine (NLM), experts
in the field of image processing have created a suite of state-of-the-art segmentation
and registration algorithms ideally suited to volume visualization and analysis. Al-
though it is large and complex, ITK is designed to be easy to use once you learn
about its basic object-oriented implementation methodology.

B.2. Configuring ITK

This section describes the process for configuring ITK on our system. ITK is a
toolkit, as such, once it is installed in our computer there will be no application to
run. Rather, we will use ITK to build your own applications.

ITK is implemented in C++ and, has been developed and tested across different
combinations of operating systems, compilers, and hardware platforms including
MS-Windows, Linux on Intel-compatible hardware, Solaris, IRIX and recently the
Mac. The toolkit is organised in a data-flow architecture: process objects (eg. filters)
consume data objects (eg. images). We have installed it in MS-Windows hardware
platform and compiled it with Visual Studio 2010.

The challenge of supporting ITK across platforms has been solved through the use
of CMake, a cross-platform, opensource build system. CMake is used to control
the software compilation process using simple platform and compiler independent
configuration files. CMake generates native makefiles and workspaces that can be
used in the compiler environment of your choice. CMake generates Visual Studio
workspaces. The information used by CMake is provided by CMakeLists.txt files
that are present in every directory of the ITK source tree. These files contain infor-
mation that the user provides to CMake at configuration time. Typical information
includes paths to utilities in the system and the selection of software options specified
by the user. CMake can be downloaded at no cost from http://www.cmake.org.
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B.3. ITK Modules

B.3.1. Data representation

The most common classes used by ITK for representing data are the Image, the
Mesh and the Point Set class.

Image

ITK supports images with any pixel type and any spatial dimension. In ITK, images
exist in combination with one or more regions. A region is a subset of the image
and indicates a portion of the image thatmay be processed by other classes in the
system.
The starting point of the image is defined by an Index class that is an n-dimensional
array where each component is an integer indicating the grid coordinates of the
initial pixel of the image. The region size is represented by an array of the same
dimension of the image (using the Size class). The components of the array are
unsigned integers indicating the extent in pixels of the image along every dimension.

Point Set

The Point Set class is a basic class intended to represent geometry in the form of a
set of points in n-dimensional space. It is the base class for the Mesh class providing
the methods necessary to manipulate sets of point. Points can have values associated
with them.

Mesh

The Mesh class is intended to represent shapes in space. It derives from the Point
Set class and hence inherits all the functionality related to points and access to the
pixel-data associated with the points. The mesh class is also n-dimensional which
allows a great flexibility in its use.
In practice a Mesh class can be seen as a Point Set to which cells (also known as
elements) of many different dimensions and shapes have been added.

B.3.2. Filters

In this section we describe the most commonly used filters found in the toolkit.
Most of these filters are meant to process images. They will accept one or more
images as input and will produce one or more images as output. ITK is based on
a data pipeline architecture in which the output of one filter is passed as input to
another filter.
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Thresholding

The thresholding operation is used to change or identify pixel values based on spec-
ifying one or more values (called the threshold value).

Edge Detection

The filter included in ITK for this purpose is the Canny Edge Detection. This filter
is widely used since it is the optimal solution satisfying the constraints of good
sensitivity, localization and noise robustness.

Casting and Intensity Mapping

Casting is used to convert one pixel type to another, while intensity mappings also
take into account the different intensity ranges of the pixel types.

Gradients

Computation of gradients is a fairly common operation in image processing. The
term “gradient” may refer in some contexts to the gradient vectors and in others
to the magnitude of the gradient vectors. ITK filters attempt to reduce this ambi-
guity by including the magnitude term when appropriate. ITK provides filters for
computing both the image of gradient vectors and the image of magnitudes

Second Order Derivatives: Laplacian Filters

In ITK we find the Laplacian Filter Recursive Gaussian. This filter applies the
approximation of the convolution along a single dimension. It is therefore necessary
to concatenate several of these filters to produce smoothing in all directions.

Neighborhood Filters

The concept of locality is frequently encountered in image processing in the form of
filters that compute every output pixel using information from a small region in the
neighborhood of the input pixel.
The Insight toolkit implements an elegant approach to neighborhood-based image
filtering. The input image is processed using a special iterator. This iterator is
capable of moving over all the pixels in an image and, for each position, it can
address the pixels in a local neighborhood. Operators are defined so as to applying
an algorithmic operation in the neighborhood of the input pixel they produce a value
for the output pixel.
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ITK implements some of the more commonly used neighborhood filters like mean
and median filters along with mathematical morphology filters.

Smoothing Filters

Real image data has a level of uncertainty that is manifested in the variability of
measures assigned to pixels. This uncertainty is usually interpreted as noise and
considered an undesirable component of the image data. ITK implements several
methods that can be applied to reduce noise on images, like gaussian blurring and
anisotropic difussion edge preserving smoothing.

Distance Map

ITK implements a filter that generates a distance map from the input image using
the algorithm developed by Danielsson. As secondary outputs, a Voronoi partition
of the input elements is produced, as well as a vector image with the components
of the distance vector to the closest point. The input to the map is assumed to be
a set of points on the input image. Each point/pixel is considered to be a separate
entity even if they share the same gray level value.

Geometric Transformations: Resample Image Filter

Resampling an image is a very important task in image analysis. It is especially
important in the frame of image registration. ITK implements image resampling
through the use of geometric transformations. The inputs expected by this filter are
an image, a transform and an interpolator. The space coordinates of the image are
mapped through the transform in order to generate a new image. The extent and
spacing of the resulting image are selected by the user. Resampling is performed in
space coordinates, not pixel/grid coordinates.

Frequency Domain

ITK provides a base abstract class that implements the Fast Fourier Transform filter
(FFT) for processing an image in the spectral domain.

One of the most common image processing operations performed in the Fourier
Domain is the masking of the spectrum in order to eliminate a range of spatial
frequencies from the input image. This operation is typically performed by taking
the input image, computing its Fourier transform using a FFT filter, masking the
resulting image in the Fourier domain with a mask, and finally taking the result of
the masking and computing its inverse Fourier transform.
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Extracting Surfaces

Probably the most widely known method of surface extraction is the Marching Cubes
algorithm. ITK performs surface extraction using an algorithm similar to Marching
Cubes.

B.3.3. Reading and Writing Images

ITK does not enforce any particular file format, instead, it provides a structure
supporting a variety of formats that can be easily extended by the user as new
formats become available.

When reading and writing images, the pixel type of the image is not necessarily the
same as the pixel type stored in the file. Your choice of the pixel type should be
driven mainly by two considerations:

• It should be possible to cast the file pixel type in the file to the pixel type you
select. This casting will be performed using the standard C-language rules, so
you will have to make sure that the conversion does not result in information
being lost.

• The pixel type in memory should be appropriate to the type of processing you
intended to apply on the images.

It is still quite common to store 3D medical images in sets of files each one containing
a single slice of a volume dataset. Those 2D files can be read as individual 2D
images, or can be grouped together in order to reconstruct a 3D dataset. ITK
provides functionalities for dealing with reading and writing series of images.

ITK olso provides functiomalities for reading and writing DICOM files. This is
extremely important in the domain of medical imaging since most of the images
that are acquired a clinical setting are stored and transported using the DICOM
standard.

B.3.4. Segmentation Methods

The most effective segmentation algorithms are obtained by carefully customizing
combinations of components. The parameters of these components are tuned for the
characteristics of the image modality used as input and the features of the anatomical
structure to be segmented. The Insight Toolkit provides a basic set of algorithms
that can be used to develop and customize a full segmentation application. Some of
the most commonly used segmentation components are described here.
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Region Growing

Region growing algorithms have proven to be an effective approach for image seg-
mentation. Several implementations of region growing are available in ITK. These
are the most popular:

• Connected Threshold: A simple criterion for including pixels in a growing
region is to evaluate intensity value inside a specific interval.

• Otsu Segmentation: Another criterion for classifying pixels is to minimize the
error of misclassification. The goal is to find a threshold that classifies the
image into two clusters such that we minimize the area under the histogram
for one cluster that lies on the other cluster’s side of the threshold. This is
equivalent to minimizing the within class variance or equivalently maximizing
the between class variance.

• Neighborhood Connected: this algorithme will only accept a pixel if all its
neighbors have intensities that fit in the interval. The size of the neighborhood
to be considered around each pixel is defined by a user-provided integer radius.

• Confidence Connected: The criterion used is based on simple statistics of
the current region. First, the algorithm computes the mean and standard
deviation of intensity values for all the pixels currently included in the region.
A user-provided factor is used to multiply the standard deviation and define
a range around the mean. Neighbor pixels whose intensity values fall inside
the range are accepted and included in the region. When no more neighbor
pixels are found that satisfy the criterion, the algorithm is considered to have
finished its first iteration. At that point, the mean and standard deviation of
the intensity levels are recomputed using all the pixels currently included in the
region. This mean and standard deviation defines a new intensity range that
is used to visit current region neighbors and evaluate whether their intensity
falls inside the range. This iterative process is repeated until no more pixels
are added or the maximum number of iterations is reached.

Watershed Segmentation

Watershed segmentation classifies pixels into regions using gradient descent on image
features and analysis of weak points along region boundaries.

The filter implemented in ITK is actually a collection of smaller filters that mod-
ularize the several steps of the algorithm in a mini-pipeline. The segmenter object
creates the initial segmentation via steepest descent from each pixel to local min-
ima. Shallow background regions are removed (flattened) before segmentation using
a simple minimum value threshold (this helps to minimize oversegmentation of the
image). The initial segmentation is passed to a second sub-filter that generates a
hierarchy of basins to a user-specified maximum watershed depth. The relabeler
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object at the end of the mini-pipeline uses the hierarchy and the initial segmenta-
tion to produce an output image at any scale below the user-specified maximum.
Data objects are cached in the mini-pipeline so that changing watershed depths only
requires a (fast) relabeling of the basic segmentation.

Level-Set Methods

Level sets can be used for image segmentation by using image-based features such
as mean intensity, gradient and edges in the governing differential equation. In a
typical approach, a contour is initialized by a user and is then evolved until it fits
the formof an anatomical structure in the image. Many different implementations
and variants of this basic concept have been published in the literature.

These are some of the main level set segmentation methods available in ITK:

• Fast Marching Segmentation: when the differential equation governing the
level set evolution has a very simple form, a fast evolution algorithm called
fast marching can be used. The mapping should be done in such a way that the
propagation speed of the front will be very low close to high image gradients
while it will move rather fast in low gradient areas. This arrangement will make
the contour propagate until it reaches the edges of anatomical structures in
the image and then slow down in front of those edges.

• Shape Detection Segmentation: The implementation of this filter in ITK is
based on the paper by Malladi et al. In this implementation, the governing
differential equation has an additional curvature-based term. This term acts
as a smoothing term where areas of high curvature, assumed to be due to
noise, are smoothed out. Scaling parameters are used to control the tradeoff
between the expansion term and the smoothing term. One consequence of this
additional curvature term is that the fast marching algorithm is no longer ap-
plicable, because the contour is no longer guaranteed to always be expanding.
Instead, the level set function is updated iteratively.

• Geodesic Active Contours Segmentation: The implementation of this filter
in ITK is based on the paper by Caselles. This implementation extends the
functionality of the Shape Detection Segmentation filter by the addition of a
third advection term which attracts the level set to the object boundaries.

B.3.5. Registration Framework

In ITK, registration is performed within a framework of pluggable components that
can easily be interchanged. This flexibility means that a combinatorial variety of
registration methods can be created, allowing users to pick and choose the right
tools for their specific application.
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The typical elements involved in solving an image registration problem within the
Insight registration framework are: two input Images, a Transform, a Metric, an
Interpolator and an Optimizer. Some of these components are parametrized by the
image type for which the registration is intended. ITK provides header files for
common types of these components.

Monitoring

Given the numerous parameters involved in tuning a registration method for a par-
ticular application it is common to be faced with a registration process that runs for
several minutes and ends up with a useless result. In order to avoid this situation
it is quite helpful to track the evolution of the registration as it progresses. ITK
provides mechanisms for monitoring the activity of the registration method class.

Transform

ITK provides a variety of transforms from simple translation, rotation and scaling
to general affine and kernel transforms.

Interpolator

During the registration process, a metric typically compares the intensity values in
the fixed image with the corresponding values in the transformed moving image.
When a point is mapped from one image space to another, it will generally be
mapped to a non-grid position. Thus, an interpolation method is needed to obtain
a intensity value for the mapped point using the information from the neighboring
grid positions. Three of the most popular interpolation methods: nearest-neighbor,
linear and B-spline are available in ITK.

Metric

In ITK, image metric objects measure quantitatively how well the transformed mov-
ing image fits the fixed image by comparing the gray-scale intensity of the images.
The metrics available in ITK are: Mean Squares Metric, Normalized Correlation
Metric, Mean Reciprocal Square Differences, Mutual Information Metric.

Optimizer

The role of the optimizer component is to optimize the qualitative measure pro-
vided by the metric with respect to the parameters of the transform component.
A variety of optimizier objects are provided by ITK: Amoeba, Conjugate Gradient,
Gradient Descent, Quaternion Rigid Transform Gradient Descent, LBFGS, Regular
Step Gradient Descent, LevenbergMarquard among others.
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Deformable Registration

The finite element (FEM) library within the Insight Toolkit can be used to solve
deformable image registration problems.
For the problem of intra-modality deformable registration, the Insight Toolkit pro-
vides an implementation of Thirion’s “demons” algorithm. In this implementation,
each image is viewed as a set of iso-intensity contours. The main idea is that a reg-
ular grid of forces deform an image by pushing the contours in the normal direction.
However, the most widely used algorith for this purpose in ITK is the one based in
BSpline transform. The major difference is that this algorithm can manage a large
number of degrees of freedom.

B.4. Process Pipeline

Next we show the computational pipeline designed for the segmentation and regis-
tration process of the aortic lumen.
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Figure B.1.: Pipeline of the processes involved in the segmentation and registration
process. (Image 1: Lumen in the 1st study, Image 2: Lumen in the 2nd study,
Image 1*: Thrombus in the 1st study, Image 2*: Thrombus in the 2nd study)
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