Random Field Theory in fMRI

“SPM for Dummies”

Jean-Etienne Poirrier

Cyclotron Research Center

January 11th, 2006
1 Introduction
   - Where are we coming from?
   - Spatial smoothing
   - Null hypothesis

2 The multiple comparison problem

3 Corrections for multiple comparison
   - Height threshold
   - Bonferroni Correction
   - Random Field Theory
   - More on RFT

4 Conclusions
SPM, “Statistical Parametric Mapping”

1. Raw data collected as a group of voxels
2. Each voxel is independently analysed
3. Creation of statistical “maps” coming from these independent statistical analysis: SPMs (“T maps” or “F maps”)
SPM software ...

1. independently analyses variance for each voxel
2. creates $t$ statistics for each voxel (data $\rightarrow t$)
3. finds an equivalent $Z$ score for $t$ ($t \rightarrow Z$)
4. shows $t$ maps (SPM99) or $Z$ maps (SPM96)
5. suggests a correction for the significance of $t$ statistics (SPM99) or $Z$ scores (SPM96) which take account of the multiple comparisons in the image
Data analysis process

Data analysis

Image time-series → Realignment → Normalisation → Template

Kernel → Smoothing → Design matrix → Parameter estimates

Design matrix → General linear model

Statistical parametric map (SPM) → Statistical inference

Gaussian field theory → p < 0.05
Spatial smoothing reduces effect of high frequency variation in functional imaging data ("blurring sharp edges")
How to do a spatial smoothing?

Two examples: simple smoothing by a mean and smoothing by a Gauss kernel.
Simple smoothing by a mean

Remplacement of values in 10-pixels-side squares by the mean of all values in this square.
Gauss kernel

- Typically used in functional imaging, uses a form similar to normal distribution “bell curve”
- FWHM (Full Width at Half Maximum) = $\sigma \cdot \sqrt{8 \cdot \log 2}$

$$FG(x) = \frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} \cdot \exp\left(-\frac{(x-\mu)^2}{2\cdot\sigma^2}\right)$$
Smoothing by a Gaussian kernel - 2D

The Gauss kernel defines the form of the function successively used to compute the weighted average of each point (in relation with its neighbors).
Smoothing by a Gaussian kernel - 3D
Smoothing by a Gaussian kernel - 3D
Why use spatial smoothing?

- to increase signal-to-noise ratio
- to enable averaging across subjects
- to allow use of the RFT for thresholding
Spatial smoothing $\rightarrow$ increases signal-to-nois ratio

- Depends on relative size of smoothing kernel and effects to be detected
- Matched filter theorem: smoothing kernel = expected signal
- Practically: FWHM $\geq 3 \cdot$ voxel size
- May consider varying kernel size if interested in different brain regions (e.g. hippocampus -vs- parietal cortex)
Spatial smoothing → enables averaging across subjects

- Reduces influence of functional and/or anatomical differences between subjects
- Even after realignment and normalisation, residual between-subject variability may remain
- Smoothing data improves probability of identifying commonalities in activation between subjects (but trade-off with anatomical specificity)
Spatial smoothing → allows use of RFT for thresholding

- Assumes error terms are roughly Gaussian form
- Requires FWHM to be substantially greater than voxel size
- Enables hypothesis testing and dealing with multiple comparison problem in functional imaging ...
Null hypothesis in “classical” statistics

- Data $\rightarrow$ statistical value
- Null hypothesis: the hypothesis that there is no effect
- Null distribution: distribution of statistic values we would expect if there is no effect
- Type I error rate: the chance we take that we are wrong when we reject the null hypothesis
<table>
<thead>
<tr>
<th>Degrees of freedom</th>
<th>$\alpha$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>30</td>
<td>2.042</td>
</tr>
<tr>
<td>40</td>
<td>2.021</td>
</tr>
<tr>
<td>60</td>
<td>2.000</td>
</tr>
<tr>
<td>120</td>
<td>1.980</td>
</tr>
<tr>
<td>$\infty$</td>
<td>1.960</td>
</tr>
</tbody>
</table>
The multiple comparison problem

- 1 voxel $\rightarrow$ is this voxel activation significantly different from zero?
- Many voxels $\rightarrow$ huge amount of statistical values

How to “sort” them all? Where will our effect be?
Evidence against the null hypothesis: the whole observed volume of values is unlikely to have arisen from a null distribution
From simple stats to functional imaging

<table>
<thead>
<tr>
<th>Univariate statistics</th>
<th>Functional imaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 observed data</td>
<td>many voxels</td>
</tr>
<tr>
<td>1 statistical value</td>
<td>family of statistical values</td>
</tr>
<tr>
<td>type I error rate</td>
<td>family-wise error rate (FWE)</td>
</tr>
<tr>
<td>null hypothesis</td>
<td>family-wise null hypothesis</td>
</tr>
</tbody>
</table>
Test methods for the family-wise null hypothesis

1. Height threshold
   - Maximum Test Statistic
     - Bonferroni correction
     - Random Field Theory
   - Maximum spatial extent of the test statistic
   - False Discovery Rate

2. Set-level inference

3. Cluster-level inference
Maximum Test Statistic methods

- Simple: choose locations where a test statistic $Z(T, \chi^2, ...)$ is large, i.e. to threshold the image of $Z$ at a height $z$
- the problem is deferred: how to choose this threshold $z$ to exclude false positives with a high probability (e.g. 0.95)?
Height thresholding
However, a height threshold that can control family-wise error must take into account the number of tests!
However, a height threshold that can control family-wise error must take into account the number of tests!
Bonferroni Correction

- Simple method of setting the threshold above which values are unlikely to have arisen by chance
- Based on probability rules

Jean-Etienne Poirrier
Mathematical expression

For one voxel (all values from a null distribution):

- Probability to be greater than the threshold: $\alpha$
- Probability to be smaller than the threshold: $(1 - \alpha)$

$\forall n$
Mathematical expression of Bonferroni correction

For a family of $n$ values:

- Probability that all the $n$ tests being less than $\alpha$: $(1 - \alpha)^n$
- Family-wise error rate, $P_{FWE}$: probability that one or more values will be greater than $\alpha$
- $P_{FWE} = 1 - (1 - \alpha)^n$
- Since $\alpha$ is small ($\Rightarrow \alpha^n \approx 0$): $P_{FWE} \leq n \cdot \alpha$

$$\alpha = \frac{P_{FWE}}{n}$$
<table>
<thead>
<tr>
<th>Number of statistical values</th>
<th>1 value</th>
<th>family of values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of degree of freedom</td>
<td>$n$</td>
<td>(100 000)</td>
</tr>
<tr>
<td>Error rate $p$</td>
<td>$\alpha$</td>
<td>$p_F^{FWE}$</td>
</tr>
<tr>
<td>$p$ corrected for the family?</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>
Bonferroni correction is not often applicable!

- Still used in some functional imaging analysis
- In other cases: **too conservative**
- Because most functional imaging data have some degree of spatial correlation (correlation between neighbouring statistic values). So:

  Number of independant values < number of voxels
Spatial correlation

The value of any voxel in a functional image tends to be similar to those of neighbouring voxels. Some degree of spatial correlation is almost universally present in these data.

Multiple reasons:

- the way that the scanner collects and reconstructs the image (see point spread function)
- physiological signal
- spatial preprocessing applied to data before statistical analysis (realignement, spatial normalisation, resampling, smoothing)
Mathematical implication of spatial correlation

- Values of independent probability (Bonferroni):
  \[ P^{FWE} = 1 - (1 - \alpha)^n \]
- If \( n \rightarrow \) number of independent observations \( n_i \):
  \[ P^{FWE} = 1 - (1 - \alpha)^{n_i} \]

\[ \alpha = \frac{P^{FWE}}{n_i} \]
100 x 100 random number from a normal distribution

\[ Z = 10000 \text{ scores } \]

For \( P^{FWE} = 0.05 \),

\[ \alpha_{\text{Bonferroni}} = \frac{0.05}{10000} = 0.000005 \rightarrow \text{score } Z \text{ of } 4.42 \]
Example (2/3)

Previous image where we applied a simple spatial correlation (simple smoothing)

Still 10 000 scores $Z$ but only 100 independent values! For $P_{FWE} = 0.05$, $\alpha_{\text{Bonferroni}} = \frac{0.05}{100} = 0.0005 \rightarrow$ score $Z$ of 3.29
Example (3/3)

First image where we applied a complex spatial correlation (smoothing by a Gaussian kernel, FWHM of 10 pixels)

Still 10 000 scores $Z$ but how many independent values? Probably less than 10 000; but *how many*? If we don't have $n_i$, how can we find $P^{FWE}$?
Random Field Theory

- Recent body of mathematics defining theoretical results for smooth statistical maps
- Allows to find a threshold in a set of data where it’s not easy (or even impossible) to find the number of independent variables
- Uses the expected Euler characteristic (EC density)

$\text{expected EC} \rightarrow \text{number of clusters above the threshold} \rightarrow \text{height threshold}$

1. Estimation of the smoothness
2. $\rightarrow \text{expected Euler characteristic}$
3. Calculation of the threshold
Smoothness

- unknown for SPMs because of the initial spatial correlation + treatments (→ see some slides after this one)
- known for our map of independent random number... “width of the smoothing kernel”
Smoothness & resels

Smoothness

- unknown for SPMs because of the initial spatial correlation + treatments (→ see some slides after this one)
- known for our map of independent random number... “width of the smoothing kernel”

Resels (resolution elements)

- a measure of the number of “resolution elements”
- a bloc of values that is the same size as the FWHM
- the number of resels only depends on smoothness (FWHM) and the total number of pixels (voxels)
Euler characteristic

- property of an image after it has been thresholded
- can be seen as the number of blobs in an image after thresholding
- at high threshold, $EC = 0 \text{ ou } 1 \Rightarrow$ mean or expected $EC$: $E[EC] \approx P^{FWE}$

$Euler$ $characteristic$
Expected Euler characteristic formula

\[ E[EC] = R \cdot (4 \log_e 2) \cdot (2\pi)^{-\frac{2}{3}} \cdot Z_t \cdot e^{-\frac{1}{2}Z_t^2} \]

- 2 dimensions image
- \( R = \) number of resels
- \( Z_t = \) threshold of score \( Z \)
Euler Characteristic in our example

For 100 resels, the equation gives $E[EC] = 0.049$ for a threshold $Z$ of 3.8: the probability of getting one or more blobs where $Z$ is greater than 3.8 is 0.049.

<table>
<thead>
<tr>
<th>$\alpha$</th>
<th>number of resels in the image</th>
<th>Bonferroni threshold</th>
<th>Bonferroni score $Z$</th>
<th>RFT score $Z$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>100</td>
<td>0.05/100</td>
<td>3.3</td>
<td>3.8</td>
</tr>
</tbody>
</table>
P with RFT

\[ P(\max Z > z) \approx \sum_{d=0}^{D} \text{Resels}_d \cdot \text{EC}_d(z) \]

- \(D\), number of dimensions in the search region
- \(\text{Resels}_D\), number of \(d\)-dimensional resels
- \(\text{EC}_d\), \(d\)-dimensional Euler characteristics density

The left hand side of the equation is the exact expectation of the Euler characteristic of the region above threshold \(z\).

This approximation is accurate for search regions of any size, even a single point, but it is best for search regions that are not too concave.
The size of search region

\[ P(\max Z > z) \approx \sum_{d=0}^{D} \text{Resels}_d \cdot \text{EC}_d(z) \]

- Large search regions: the last term \((D = d)\) is the most important. The number of resels is:

\[ \text{Resels}_D = \frac{V}{\text{FWHM}^D} \]

- Small search regions: the lower dimensional terms \((d < D)\) become important
E[EC] for a $T$ statistic image

\[
EC_3(z) = \left( \frac{4 \log_2 2}{(2\pi)^2} \right)^{\frac{2}{3}} \left( \frac{\nu - 1}{\nu} z^2 - 1 \right) \left( 1 + \frac{z^2}{\nu} \right)^{-\frac{1}{2}(\nu-1)}
\]

$\nu = \text{number of degree of freedom}$
RFT and 3D functional imaging

- EC is the number of 3D blobs of Z scores above a certain threshold
- A resel is a cube of voxels of size (FWHM) in x, y et z
- The equation for E[EC] is different but still only depends on resels in image
- Equivalent results available for RF of t, F and $\chi^2$ scores

Smoothness of a statistic volume from functional imaging? Calculated using the residual values from the statistical analysis...
Shape and volume are important!

- Volume of resels $\gg$ size of a voxel: $E[EC]$ only depends on the number of resels inside the volume considered.
- Other cases: $E[EC]$ depends on
  - the number of resels
  - the volume
  - the surface area and
  - the diameter of the search region

![Image showing a 2D representation of a search region with pixel positions indicated.]
Shape and volume

![Graph showing threshold for corrected p-values vs sphere radius.](image)
Regional hypotheses

One never practically work on the whole brain volume

- Hypothetised region = 1 voxel $\rightarrow$ inference could be made using an uncorrected p-value
- Hypothetised = many voxels ($\approx$ spheres or boxes) $\rightarrow$ inference must be made using a p-value that has been appropriately corrected
The error fields are a reasonable lattice approximation to an underlying random field with a multivariate Gaussian distribution.

The error fields are continuous, with a twice-differentiable autocorrelation function (not necessarily Gaussian).

If the data have been sufficiently smoothed and the General Linear Model correctly specified (so that the errors are indeed Gaussian) then the RFT assumptions will be met. Otherwise ...
Example: Random effect analysis with a small number of subjects
Solutions:

1. to reduce the voxel size by sub-sampling
2. other inference procedures:
   1. nonparametric framework (ch. 16)
   2. False Discovery Rate
   3. bayesian inference (ch. 17)
More on RFT

- Maximum spatial extend of the test statistic
- Searching in small regions
- Estimating the FWHM
- False Discovery Rate
Maximum spatial extend of the test statistic

Method based on the spatial extend of clusters of connected components of supra threshold voxels where $Z > z \approx 3$

Idea to approximate the shape of the image by a quadratic with a peak at the local maximum

For a Gaussian random field, the spatial extend $S$ is...

$$S \approx cH^\frac{D}{2}$$

...
Searching in small regions

For small pre-defined search regions, the P-values for the maximum test statistic are very well estimated, except for the previous method → Friston have proposed a method that avoids the awkward problem of pre-specifying a small region altogether.

1. thresholding of the image of test statistic $z$
2. pick the nearest peak to a point or region of interest
3. identification on spatial location → no need to correct for searching over all peaks
1. The only 2 data-dependent component required: Resels$_D$ et FWHM
2. FWHM often depends on the location $\rightarrow$ random field not isotropic
3. Estimating the FWHM separately at each voxel

\[ \text{FWHM} = (4 \log 2)^{\frac{1}{2}} |\mathbf{u}'\mathbf{u}|^{\frac{-1}{2D}} \]

\[ \text{Resels}_D = \sum_{\text{volume}} \text{FWHM}^{-D} \nu \]

...
False Discovery Rate

Procedure for controlling the expected proportion of false positives amongst those voxels declared positive:

1. Calculate the uncorrected P-value for each voxel.
2. Order them so that $P_1 \leq P_2 \leq P_3 \leq \cdots \leq P_N$.
3. To control the FDR at $\alpha$, find the largest value $k$ so that:

$$P_k < \frac{\alpha k}{N}$$

- This procedure is conservative if the voxels are positively dependent.
- The resulting threshold, corresponding to the value of $Z$ for $P_k$, depends on the amount of signal in the data (and not on the number of voxels or the smoothness).
- Interpretation is différent!
Which correction method to use?

- FWE (RFT) is the most “correct” method, but FDR may be more sensitive in some cases.
- May be a good idea to use whatever method is employed in previous related studies, to increase comparability.

Most important is to decide on correction method a priori, rather than subjectively adjusting thresholds to give desirable results!
Where can I find these values?

P values & statistics:

<table>
<thead>
<tr>
<th>cluster level</th>
<th>voxel level</th>
<th>spatial level</th>
<th>tstat</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>2186</td>
<td>0.0002</td>
<td>0.0023</td>
<td>14.37</td>
<td>42</td>
</tr>
<tr>
<td>356</td>
<td>0.0002</td>
<td>0.0023</td>
<td>11.51</td>
<td>45</td>
</tr>
<tr>
<td>367</td>
<td>0.0002</td>
<td>0.0023</td>
<td>10.07</td>
<td>42</td>
</tr>
<tr>
<td>92</td>
<td>0.0002</td>
<td>0.0023</td>
<td>8.42</td>
<td>24</td>
</tr>
<tr>
<td>63</td>
<td>0.0002</td>
<td>0.0023</td>
<td>7.98</td>
<td>17</td>
</tr>
<tr>
<td>33</td>
<td>0.0002</td>
<td>0.0023</td>
<td>7.31</td>
<td>17</td>
</tr>
<tr>
<td>10</td>
<td>0.0002</td>
<td>0.0023</td>
<td>6.17</td>
<td>17</td>
</tr>
<tr>
<td>29</td>
<td>0.0002</td>
<td>0.0023</td>
<td>6.08</td>
<td>17</td>
</tr>
<tr>
<td>187</td>
<td>0.0002</td>
<td>0.0023</td>
<td>6.67</td>
<td>17</td>
</tr>
</tbody>
</table>

Where can I find these values?
### $p$ values & statistics:

<table>
<thead>
<tr>
<th>$k$</th>
<th>$p_{FWE-corr}$</th>
<th>$p_{FDR-corr}$</th>
<th>Pseudo-t</th>
<th>$p_{uncorrected}$</th>
<th>$x$, $y$, $z$ mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>2386</td>
<td>0.0002</td>
<td>0.0023</td>
<td>14.37</td>
<td>0.0002</td>
<td>42, -48, -30</td>
</tr>
<tr>
<td></td>
<td>0.0002</td>
<td>0.0023</td>
<td>11.51</td>
<td>0.0002</td>
<td>45, -60, -27</td>
</tr>
<tr>
<td></td>
<td>0.0002</td>
<td>0.0023</td>
<td>11.33</td>
<td>0.0002</td>
<td>-33, -60, -24</td>
</tr>
<tr>
<td>356</td>
<td>0.0002</td>
<td>0.0023</td>
<td>10.57</td>
<td>0.0002</td>
<td>3, 15, 45</td>
</tr>
<tr>
<td>367</td>
<td>0.0002</td>
<td>0.0023</td>
<td>10.07</td>
<td>0.0002</td>
<td>12, -15, 3</td>
</tr>
</tbody>
</table>

Where can I find these values?
Useful links:

- The Human Brain Function book, chapters 14 and 15
- Website Introduction to SPM statistics & Thresholding with Random Field Theory (Matthew Brett, MRC - CBU)
- Website Image processing (computer vision) (David Jacobs, UMD - CS)
- Slides and images of this presentation are available on my website

I thank you for your attention!