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SPM, “Statistical Parametric Mapping”

1 Raw data collected as a group of voxels

2 Each voxel is independtly analysed

3 Creation of statistical “maps” coming from these independent
statistical analysis: SPMs (“T maps” or “F maps”)
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SPM analysis process

SPM software ...

1 independently analyses variance for each voxel

2 creates t statistics for each voxel (data → t)

3 finds an equivalent Z score for t (t → Z )

4 shows t maps (SPM99) or Z maps (SPM96)

5 suggests a correction for the significance of t statistics (SPM99) or
Z scores (SPM96) which take account of the multiple comparisons
in the image
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Data analysis process
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What does spatial smoothing?

Spatial smoothing reduces effect of high frequency variation in functional
imaging data (“blurring sharp edges”)
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How to do a spatial smoothing?

Two examples : simple smoothing by a mean and smoothing by a Gauss
kernel
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Simple smoothing by a mean

Remplacement of values in 10-pixels-side squares by the mean of all
values in this square
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Gauss kernel

Typically used in functional imaging, uses a form similar to normal
distribution “bell curve”

FWHM (Full Width at Half Maximum) = σ ·
√

8 · log 2

FG (x) =
1

σ ·
√

2 · π
· exp−

(x−µ)2

2·σ2
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Smoothing by a Gaussian kernel - 2D

The Gauss kernel defines the form of the function successively used to
compute the weighted average of each point (in relation with its
neighbors)
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Smoothing by a Gaussian kernel - 3D
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Smoothing by a Gaussian kernel - 3D
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Why use spatial smoothing?

1 to increase signal-to-noise ratio

2 to enable averaging across subjects

3 to allow use of the RFT for thresholding

Jean-Etienne Poirrier Random Field Theory in fMRI



Introduction
Multiple comparisons

Corrections
Conclusions

Where are we coming from?
Spatial smoothing
Null hypothesis

Spatial smoothing → increases signal-to-nois ratio

Depends on relative size of smoothing kernel and effets to be
detected

Matched filter theorem: smoothing kernel = expected signal

Practically: FWHM ≥ 3· voxel size

May consider varying kernel size if interested in different brain
regions (e.g. hippocampus -vs- parietal cortex)
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Spatial smoothing → enables averaging across subjects

Reduces influence of functional and/or anatomical differences
between subjects

Even after realignment and normalisation, residual between-subject
variability may remain

Smoothing data improves probability of identifying commonalities in
activation between subjects (but trade-off with anatomical
specificity)
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Spatial smoothing → allows use of RFT for thresholding

Assumes error terms are roughly Gaussian form

Requires FWHM to be substantially greater than voxel size

Enables hypothesis testing and dealing with multiple comparison
problem in functional imaging ...
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Null hypothesis in “classical” statistics

Data → statistical value

Null hypothesis: the hypothesis that there is no effect

Null distribution: distribution of statistic values we would expect if
there is no effect

Type I error rate: the chance we take that we are wrong when we
reject the null hypothesis
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Example

Degrees of α
freedom 0.05 0.02 0.01

30 2.042 2.457 2.750
40 2.021 2.423 2.704
60 2.000 2.390 2.660
120 1.980 2.358 2.617
∞ 1.960 2.326 2.576

Jean-Etienne Poirrier Random Field Theory in fMRI



Introduction
Multiple comparisons

Corrections
Conclusions

The multiple comparison problem

1 voxel → is this voxel activation significantly different from zero?

Many voxels → huge amount of statistical values

How to “sort” them all? Where will our effect be?
Evidence against the null hypothesis: the whole observed volume of
values is unlikely to have arison from a null distribution
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From simple stats to functional imaging

Univariate statistics → Functional imaging
1 observed data → many voxels

1 statistical value → family of statistical values
type I error rate → family-wise error rate (FWE)
null hypothesis → family-wise null hypothesis
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Test methods for the family-wise null hypothesis

1 Height threshold
Maximum Test Statistic

Bonferroni correction
Random Field Theory

Maximum spatial extent of the test statistic
False Discovery Rate

2 Set-level inference

3 Cluster-level inference
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Maximum Test Statistic methods

Simple: choose locations where a test statistic Z (T, χ2, ...) is
large, i.e. to threshold the image of Z at a height z

the problem is deferred: how to choose this threshold z to exclude
false positives with a high probability (e.g. 0.95)?
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Height thresholding
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Height threshold and localising power

However, a height threshold that can control family-wise error must take
into account the number of tests!
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Height threshold and localising power

However, a height threshold that can control family-wise error must take
into account the number of tests!
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Bonferroni Correction

Simple method of setting the threshold above which values are
unlikely to have arison by chance

Based on probability rules
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Mathematical expression

For one voxel (all values from a null distribution):

Probability to be greater than the threshold: α

Probability to be smaller than the threshold: (1− α)

∀n
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Mathematical expression of Bonferroni correction

For a family of n values:

Probability that all the n tests being less than α: (1− α)n

Family-wise error rate, PFWE : probability that one or more values
will be greater than α

PFWE = 1− (1− α)n

Since α is small (⇒ αn ≈ 0) : PFWE ≤ n · α

α =
PFWE

n
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Notations

1 value family of values
Number of statistical values n (100 000)

Number of degree of freedom (40)
Error rate p α PFWE

p corrected for the family? no yes
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Bonferroni correction is not often applicable!

Still used in some functional imaging analysis

In other cases: too conservative

Because most functional imaging data have some degree of spatial
correlation (correlation between neighbouring statistic values). So:

Number of independant values < number of voxels
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Spatial correlation

The value of any voxel in a functional image tends to be similar to those
of neighbouring voxels. Some degree of spatial correlation is almost
universally present in these data.

Multiple reasons :

the way that the scanner collects and reconstructs the image (see
point spread function)

physiological signal

spatial preprocessing applied to data before statistical analysis
(realignment, spatial normalisation, resampling, smoothing)
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Mathematical implication of spatial correlation

Values of independent probability (Bonferroni) :
PFWE = 1− (1− α)n

If n → number of independent observations ni :

PFWE = 1− (1− α)ni

α =
PFWE

ni
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Example (1/3)

100 x 100 random number from a normal distribution

= 10 000 scores Z. For PFWE = 0.05,
αBonferroni = 0.05

10000 = 0.000005 → score Z of 4.42
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Example (2/3)

Previous image where we applied a simple spatial correlation (simple
smoothing)

Still 10 000 scores Z but only 100 independent values! For PFWE = 0.05,
αBonferroni = 0.05

100 = 0.0005 → score Z of 3.29
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Example (3/3)

First image where we applied a complex spatial correlation (smoothing by
a Gaussian kernel, FWHM of 10 pixels)

Still 10 000 scores Z but how many independent values? Probably less
than 10 000 ; but how many? If we don’t have ni , how can we find
PFWE ?
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Random Field Theory

Recent body of mathematics defining theoretical results for smooth
statistical maps

Allows to find a threshold in a set of data where it’s not easy (or
even impossible) to find the number of independent variables

Uses the expected Euler characteristic (EC density)

expected EC → number of clusters above the threshold → height threshold

1 Estimation of the smoothness

2 → expected Euler characteristic

3 Calculation of the threshold

Jean-Etienne Poirrier Random Field Theory in fMRI



Introduction
Multiple comparisons

Corrections
Conclusions

Height threshold
Bonferroni Correction
Random Field Theory
More on RFT

Smoothness & resels

Smoothness

unknown for SPMs because of the initial spatial correlation +
treatments (→ see some slides after this one)

known for our map of independent random number... “width of the
smoothing kernel”

Resels (resolution elements)

a measure of the number of “resolution elements”

a bloc of values that is the same size as the FWHM

the number of resels only depends on smoothness (FWHM) and the
total number of pixels (voxels)
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Smoothness

unknown for SPMs because of the initial spatial correlation +
treatments (→ see some slides after this one)

known for our map of independent random number... “width of the
smoothing kernel”

Resels (resolution elements)

a measure of the number of “resolution elements”

a bloc of values that is the same size as the FWHM

the number of resels only depends on smoothness (FWHM) and the
total number of pixels (voxels)
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Euler characteristic

property of an image after it has been thresholded

can be seen as the number of blobs in an image after thresholding

at high threshold, EC = 0 ou 1 ⇒ mean or expected EC:
E[EC ] ≈ PFWE
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Expected Euler characteristic formula

E[EC ] = R · (4 loge 2) · (2π)−
2
3 · Zt · e−

1
2 Z 2

t

2 dimensions image

R = number of resels

Zt = threshold of score Z

Jean-Etienne Poirrier Random Field Theory in fMRI



Introduction
Multiple comparisons

Corrections
Conclusions

Height threshold
Bonferroni Correction
Random Field Theory
More on RFT

Euler Characteristic in our example

For 100 resels, the equation gives E[EC ] = 0.049 for a threshold Z of 3.8:
the probability of getting one or more blobs where Z is greater than 3.8
is 0.049

α
number of resels Bonferroni RFT

in the image threshold score Z score Z

0.05 100
0.05
100 3.3

3.8
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P with RFT

P(maxZ > z) ≈
D∑

d=0

Reselsd · ECd(z)

D, number of dimensions in the search region

ReselsD , number of d-dimensional resels

ECd , d-dimensional Euler characteristics density

The left hand side of the equation is the exact expectation of the Euler
characteristic of the region above threshold z .
This approximation is accurate for search regions of any size, even a
single point, but it is best for search regions that are not too concave.
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The size of search region

P(maxZ > z) ≈
D∑

d=0

Reselsd · ECd(z)

Large search regions: the last term (D = d) is the most important.
The number of resels is:

ReselsD =
V

FWHMD

Small search regions: the lower dimensional terms (d < D) become
important
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E[EC ] for a T statistic image

EC3(z) =
(4 loge 2)

2
3

(2π)2

(
ν − 1

ν
z2 − 1

) (
1 +

z2

ν

)− 1
2 (ν−1)

ν = number of degree of freedom
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RFT and 3D functional imaging

EC is the number of 3D blobs of Z scores above a certain threshold

A resel is a cube of voxels of size (FWHM) in x, y et z

The equation for E[EC ] is different but still only depends on resels in
image

Equivalent results available for RF of t, F and χ2 scores

Smoothness of a statistic volume from functional imaging? Calculated
using the residual values from the statistical analysis...
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Shape and volume are important!

Volume of resels >> size of a voxel : E[EC ] only depends on the
number of resels inside the volume considered
Other cases : E[EC ] depends on

the number of resels
the volume
the surface area and
the diametre of the search region
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Shape and volume
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Regional hypotheses

One never practically work on the whole brain volume

Hypothetised region = 1 voxel → inference could be made using an
uncorrected p-value

Hypothetised = many voxels (≈ spheres or boxes) → inference must
be made using a p-value that has been appropriately corrected
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Underlying assumptions

1 The error fields are a reasonnable lattice approximation to an
underlying random field with a multivariate Gaussian distribution

2 The error fields are continuous, with a twice-differentiable
autocorrelation function (not necessarily Gaussian)

If the data have been sufficiently smoothed and the General Linear Model
correctly specified (so that the errors are indeed Gaussian) then the RFT
assumptions will be met.
Otherwize ...
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When underlying assumptions are not met

Example: Random effect analysis with a small number of subjects
Solutions:

1 to reduce the voxel size by sub-sampling
2 other inference procedures:

1 nonparametric framework (ch. 16)
2 False Discovery Rate
3 bayesian inference (ch. 17)
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More on RFT

Maximum spatial extend of the test statistic

Searching in small regions

Estimating the FWHM

False Discovery Rate
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Maximum spatial extend of the test statistic

Method based on the spatial extend of clusters of connected components
of supra threshold voxels whereZ > z ≈ 3
Idea to approximate the shape of the image by a quadratic with a peak
at the local maximum
For a Gaussian random field, the spatial extend S is...

S ≈ cH
D
2

...
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Searching in small regions

For small pre-defined search regions, the P-values for the maximum test
statistic are very well estimated, except for the previous method →
Friston have proposed a method that avoids the awkward problem of
pre-specifying a small region altogether.

1 thresholding of the image of test statistic z

2 pick the nearest peak to a point or region of interest

3 identification on spatial location → no need to correct for searching
over all peaks
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Estimating the FWHM

1 The only 2 data-dependent component required: ReselsD et FWHM

2 FWHM often depends on the location → random field not isotropic

3 Estimating the FWHM separately at each voxel

FWHM = (4 log 2)
1
2 |u′u|

−1
2D

ReselsD =
∑

volume

FWHM−Dv

...
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False Discovery Rate

Procedure for controlling the expected proportion of false positives
amongst those voxels declared positive

1 Calculate the uncorrected P-value for each voxel

2 Order them so that P1 ≤ P2 ≤ P3 ≤ · · · ≤ PN

3 To control the FDR at α, find the largest value k so that:

Pk <
αk

N

This procedure is conservative is the voxels are positively dependent

The resulting threshold, corresponding to the value of Z for Pk

depends on the amount of signal in the data (and not on the
number of voxels or the smoothness)

Interpretation is différent!
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Which correction method to use?

FWE (RFT) is the most “correct” method, but FDR may be more
sensitive in some cases

May be a good idea to use whatever method is employed in previous
related studies, to increase comparability

Most important is to decide on correction method a priori, rather
than subjectively adjusting thresholds to give desirable results!
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Where can I find these values?
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Useful links

Useful links:

The Human Brain Function book, chapters 14 and 15

Website Introduction to SPM statistics & Thresholding with
Random Field Theory (Matthew Brett, MRC - CBU)

Website Image processing (computer vision) (David Jacobs, UMD -
CS)

Slides and images of this presentation are available on my website

I thank you for your attention!
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http://www.fil.ion.ucl.ac.uk/spm/doc/books/hbf2/
http://www.mrc-cbu.cam.ac.uk/Imaging/Common/spmstats.shtml
http://www.mrc-cbu.cam.ac.uk/Imaging/Common/randomfields.shtml
http://www.mrc-cbu.cam.ac.uk/Imaging/Common/randomfields.shtml
http://www.cs.umd.edu/~djacobs/CMSC426/CMSC426_Postclass.htm
http://www.poirrier.be/~jean-etienne/presentations/rft/
http://www.poirrier.be/~jean-etienne/
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