Ciraçao de uma interface amigavel para Forest-BGC

Miguel A. Veganzones

Computational Intelligence Group Basque Country University

Pensar (e investigar) os povamentos mistos em Portugal, Oeiras 2009

Outline

Location

Dac

Re-Implementation

Summary

San Sebastian

http://www.ehu.es/ccwintco

Oeiras 2009 4 / 19

People

- The group has been evaluated as a Level 'A' University Researching Group (the maximum possible level) by the Education, Universities and Research Department of the Basque Government.
- More than 20 professors.
- About 10-15 PhD students.
- Two spin-offs:
 - Innovae Vision
 - Nesplora
- Collaboration with national and international institutions, industry, ...

Background

- Computer vision: robotics, medical imagery, remote sensing, quality processes...
- Neural networks, chaos-based cryptography and control systems.
- Statistical machine learning.
- Speech and emotions analysis.
- Social networks, technology for neurosciences, avatars, 3D modelization ...

Forest-BGC

- - The Forest-BGC (Bio-Geochemical Cycles) was developed by Running and Coughlan on 1998.
 - Calculates key processes involved in the carbon, nitrogen and water cycles in forest ecosystems.
 - There are a hundred of variables of input required for the functioning of the model.

Leaf Area Index (LAI)

- Represents the ratio of leaf area per unit groud area.
 - Probably, the most important independent variable used by the model for measuring vegetation structure over large areas.
 - Most ecosystems process models that simulate carbon and hydrologic cycles require LAI as an input data.

Motivation

- - To use remote sensing imagery to estimate NPP values for large areas.
 - To use remote sensing LAI products as input of the Forest-BGC algorithm.
 - To obtain NPP images as a final result -> estimates of carbon fixation.

Coughlan's implementation

- SIMLAT 5 (1998): implemented in Turbo Pascal.
 - Very rudimentary, console-based interface.
 - Only available for Microsoft Windows.
- It doesn't allow automatic multiple NPP estimates.

Simlat 5

- - Inputs:
 - Climate data (.clm file).
 - Study area information (.dat file).
 - Outputs:
 - Respiration and Gross Primary Production.
 - NPP = GPP Respiration.

San

LAI data

Fichero	Laicar Pormatar Ajuda	
Ama01.	CONTINE	
1	START = START SIMULATION LOOP COUNTER	
365	TOP = STOP SIMULATION LOOP, DAY	
ĩ	RW OUTPUT CONTROL: 1 MEANS YES: 0 MEANS NO	
0	NG OUTPUT CONTROL: 1 MEANS YES; 0 MEANS NO	
5	PRINT = IF KPRINT = 10 THEN OUTPUT ONCE EVERY 10 ITERATIONS	
365	.00P = LOOP TO THE CARBON/NIT SUBMODEL EVERY XX DAYS	
0	IFE CYCLE REDEFINE B CONSTANTS WITH LOOP # (1=YES, 0=NO, *.LIF FILE)	
0	EASONALLY REDEFINE B CONSTANTS WITH YEARDAY (1=YES, 0=NO, ".SEA FILE)	
20	NUMX = NUMBER OF X VALUES TO READ	
0.0	X(1) SNOWPACK (M**3)	
1500.0	X(2) SOIL WATER CONTENT (M**3) X(2) WATER OUTELOW (M**3)	
0.0	X 4) TRANSPIRATION (M**3)	
0.0	×(5) EVAPORATION (M**3)	
0.0	X(D) PSN (KG)	
2066	X(8) LEAF CARBON (KG)	
25677	X(9) STEM CARBON (KG)	
0.0	X(11) LEAF/ROOT LITTER CARBON (KG)	
0.0	X(12) RESPIRATION DECOMP, C (KG)	
0.0	X(13) SOIL CARBON (KG)	
70.0	X(15) LEAF NITROGEN(1.5% OF X8)(KG)	
0.0	X(16) STEM NITROGEN (KG)	
0.0	X(17) ROOT NITROGEN(.75% OF XLUE KG) X(18) L/R LITTER NITROGEN 1%X11(KG)	
0.0	X(19) SOIL NITROGEN (KG) T	
0.0	X(20) NITROGEN LOSS (KG)	
8.3	B(1) SPECIFIC LEAF AREA (M**2/KG C)	
-0.6	B(2) CANOPY LIGHT EXTINCTION COEFFICIENT	
11500.0	B(3) SOIL WATER CAPACITY (M**3)	

http://www.ehu.es/ccwintco

= 990

Goals

- Try to automatize the process of using Forest-BGC algorithm to estimate NPP values for multiple LAI values.
- Get the results as usable information (images, excell files, ...).

Approaches

- Encapsulate Coughlan's implementation in a new program.
- Ø Modify Coughlan's implementation.
- 3 Reimplement Forest-BGC.

Current implementation

- - Reimplements part of the Forest-BGC algorithm.
 - Made in Java >= 1.5: multiplatform.
 - Easy to use and fully automatic.
 - Reuse climate and data files.
 - Tested against Coughlan's implementation.

Interface

LET SEE IT IN ACTION -> problable demo effect!!

Future work

- Introduce more features of the Forest-BGC model if needed: any suggestion?
- Improve input/output data files.
- Improve interface.

Summary

- - Forest-BGC allows estimation of NPP values using climate and study area information.
 - LAI is one of the most important variables of the model.
 - Estimate NPP values for large areas using LAI remote sensing products (like MODIS).
 - Reimplementation of Forest-BGC to improve usability.

Appendix

Questions?

Thank you very much for your attention.

- Contact:
 - Miguel Angel Veganzones
 - Computational Intelligence Group
 - Basque Country University (Spain)
 - E-mail: miguelangel.veganzones@ehu.es
 - Web page: http://www.ehu.es/computationalintelligence