Empirical study of the sensitivity of CACLA to sub-optimal parameter setting in learning feedback controllers

Borja Fernandez-Gauna, Igor Ansoategui, Ismael Etxeberria-Agiriano, Manuel Graña

Computational Intelligence Group
University of the Basque Country (UPV/EHU)

SOCO 2013, Salamanca
Outline

1. Introduction
2. Continuous Action-Critic Learning Automaton
3. Computational Experiments
4. Conclusions
Goal: design a feedback controller with minimal input from the designer

Typically, manufacturers employ some kind of Proportional Integrative Derivative (PID) controller
- require manual tuning of parameters

Researchers have started using Reinforcement Learning (RL) as an alternative
- require little input from the designer
- CACLA is considered the state of the art
The ball screw feed drive model

\[\dot{x} = \frac{\tau}{M \cdot \frac{p}{2\pi} + (J_c + J_s + J_m) \left(\frac{2\pi}{P}\right)} \]
Control goal

- The goal of the controller is to minimize the error $e_x(t)$ between the position of the table (x) and the setpoint ($w(t)$)

$$e_x(t) = |x(t) - w(t)|$$
Research question

How robust is CACLA to suboptimally learning tuned parameters?
Markov Decision Process

- General RL methods model environments as MDPs
 - S: set of states (discrete / continuous)
 - A: set of actions (discrete / continuous)
 - P: transition function defined by the model
 - R: reward signal to be maximized, defined by the system designer
Actor-Critic methods

- Two separate learning components are defined:
 - The actor: learns a policy $\pi_a(s)$
 - The critic: estimates the value $\hat{V}_t(s)$ of each state s:

$$\hat{V}_t(s) \approx E^\pi \left\{ \sum_{k=1}^{\infty} r_{t+k} \gamma^{k-1} | s_t = s \right\}$$
Actor-Critic methods

- Each time step
 - The actor observes the state s and selects an action following its policy $\pi_a(s)$
 - The critic observes the new state s', receives the reward r_t and updates its value estimate of s
 - The critic sends a critique δ_t to the actor, and the actor updates accordingly its policy $\pi_a(s)$
CACLA actor

- Instead of directly using the output of the policy $\pi_a(s)$, some disturbance signal $\eta(t)$ is added in order to explore unknown policies: $a_t = \pi_a(s) + \eta(t)$

- The update rule used by the actor is:

 $$\text{if } \delta_t > 0 : \quad \pi_t^a(s_t) \leftarrow \pi_t^a(s_t) + \alpha_t \cdot (a_t - \pi_a(s_t))$$

- This means
 - the policy is only updated if an improvement is observed
 - the update is proportional to the distance in action space from the actually taken action a_t to the output of the policy $\pi_a(s)$
We have used a standard $TD(\lambda)$ critic, which is similar to $TD(0)$:

$$\hat{V}_t(s_t) \leftarrow \hat{V}_{t-1}(s_t) + \alpha_t \left(r_t + \gamma \hat{V}_t(s_t) - \hat{V}_t(s_{t-1}) \right)$$
Experiments

- One experiment with each of the design parameters:
 - Experiment A: the reward signal
 - Experiment B: the number of features used to approximate the value function and policy (Gaussian RBF)
 - Experiment C: the learning gain α

- Performance measurement
 - Average absolute off-set error:

 $$e_T(t) = \frac{1}{T} \sum_{t=0}^{T} e_x(t).$$
Experiment A: reward signals

http://www.ehu.es/ccwintco (Computational Intelligence Group University of the Basque Country (UPV/EHU))

Empirical study of the sensitivity of CA CL A to sub-optimal parameter setting in learning feedback controllers

SOCO 2013 13 / 18
Experiment A: results

![Graph showing average offset error over episodes for different parameter settings](image-url)

- $R_1(s, 0.005)$
- $R_1(s, 0.05)$
- $R_1(s, 0.5)$
- $R_2(s, 0.005)$
- $R_2(s, 0.05)$
- $R_2(s, 0.5)$
Experiment B: number of features

- Different number of features n_f to represent both the policy and the value function: $n_f = \{ 10, 25, 50, 75, 100 \}$
Experiment C: learning gain

- Different gains were tested: $\alpha = \{0.005, 0.025, 0.05, 0.075, 0.1\}$
Conclusions

- CACLA offers an interesting alternative to classic PID controllers in feedback control processes
 - minimal input required from the designer
 - robust behavior to suboptimal parameters
Thanks

Thank you very much for your attention.

Contact:
- Borja Fernández Gauna.
- Computational Intelligence Group.
- University of the Basque Country (UPV/EHU).
- E-mail: borja.fernandez@ehu.es
- Web page: http://www.ehu.es/computationalintelligence