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abstract

This PhD Thesis has dealt with two types of sensors, studying their use-
fulness for the development of navigation systems: optical cameras and
3D range finder cameras. Both were used to attack the problems of self-
localization, egomotion and topological and metric map building. Good
results have been obtained using Lattice Computing, Evolution Strate-
gies and Artificial Neural Network techniques. Lattice Computing has
been applied to self-localization in qualitative maps and to visual land-
mark detection using optical cameras. For metric localization tasks with
3D range finder cameras, Competitive Neural Networks and Evolution
Strategies have been used to estimate the transformations between 3D
views, which will provide the estimation of the robot’s movement. Fi-
nally, we have performed a proof-of-concept physical experiment on the
control of Linked Multi-Component Robotic Systems with visual feed-
back.
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Chapter 1

Introduction

In this chapter we will provide a general introduction of the PhD Thesis
Report. Section 1.1 provides some historical background for the PhD Thesis
work. With this background in mind, section 1.2 gives the main motivations
behind the different parts of the work done. Section 1.3 states the objectives
pursued with some degree of specificity. Section 1.4 refers the publications
done while doing the research of this PhD Thesis, and some that are sub-
mitted or will be submitted shortly. Section 1.6 summarizes what we think
of as the major contributions of the PhD Thesis work. Section 1.7 gives a
guide to the structure of the PhD Thesis report in our hands.

1.1 Background

1.1.1 From Archytas’ pigeon to Honda’s Asimo: A short
history of robotics

Nowadays, a few years into the 21st century, robotics has become for the
general public no more than another of the ever evolving technologies that
surrounds us every day. Decades of science-fiction media and extremely suc-
cessful industrial robotics have taken robotic technologies out of the obscure
experts-restricted-area of modern technology. Even though, this “popular-
ization” of the technology has not completely removed the fascination and
surprise from people, who still feels amazed every time that a new Japanese
humanoid robot appears dancing in the T'V. This fascination for the robotics
roots very deep in the human nature. The desire to know and reproduce the
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mechanics of life and animals have been always present in our minds since
the very beginnings of civilization. Also, ancient Greek philosophers like
Aristotle already imagined a world in which mechanical tools would ease or
even prevent human work, thus ending any social injustice based on master-
servant relationships [3]. The fusion of this two desires could be certainly in
the origin of the robotics.

This origin can be traced back to the mechanical automatons of the antiq-
uity. Driven by mainsprings, weights or water, built mostly for amusement
and usually with little practical application, history is full of references of
those automatons. Earliest references connect with mythical origins, like the
golden handmaids of Hephaestus’ workshop mentioned in the Iliad [52] or the
mechanical animals of the Solomon’s throne of the Jewish tradition. More
factual references can be found from ancient Greek mathematicians such as
the works of Archytas of Tarentum (3rd century B.C.) and his flying wooden
pigeon [16], or Hero of Alexandria (1st century A.D.), creator of the first pro-
grammable automaton [103]. Muslim inventors took over from the Greeks in
the middle ages, being Al-Jazari’s automatic musicians band (c. 1206) cred-
ited as the first programmable humanoid automaton [31]. The Renaissance
took back the interest in automatons to Europe, and most European courts
received inventors and their machines. Automatons grew in complexity, from
the Da Vinci’s mechanical knight (c. 1495) [106] to the Vaucauson’s “digest-
ing duck” (1737), capable of imitate the movements of a duck and even to
eat and defecate [90]. Eventually, steam started to be the power source for
automatons, and the industrial revolution changed the orientation of those
inventions to the more practical tools imagined by Aristotle (but not always
with his expected results, though), being the automated weaving machines
the ancestors of modern day industrial robots.

Industry automation saw an enormous development along the 19th cen-
tury, but the modern popular concept of a robot as more than simply an
“automatic machine” came in the first half of the 20th century from the
science-fiction media. The word “robot” itself was coined in 1921 in Karel
Capek’s “R.U.R. (Rossum’s Universal Robots)”|22] and the concept was pop-
ularised in movies like Fritz Lang’s “ Metropolis” or the tales and novels by
Isaac Asimov, who coined the term “robotics” in his short tale “Liar!”. Soon
the real world caught up. Televor, world’s first “robot”, was built in 1926
from an automated electrical substation controller, and the Japanese robot
Gakutensoku impressed audiences in 1928 with its movements and facial ex-
pressions. Those were followed by many other electro-mechanical devices
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Figure 1.1: Examples of automatons: (1.1a) Al-Jazari’s music band, (1.1b)
da Vinci’s knight and (1.1c) Vaucauson’s digesting duck.

Figure 1.2: Electro-mechanical robots. (1.2a) Televox, (1.2b) Gakutensoku,
(1.2¢) Elektro and (1.2d) Elsie.

until the development of the electronics [102], including the popular Elektro
(1938) or Elsie and Elmer (1948), the first autonomous robots. The first
digital and programmable industrial robot, Devold’s Unimate, was built in
1954 and installed in 1961 78], leading to the 70’s explosion on industrial
robotics and later expansion to other areas. It can be said that intelligent
robotics started properly with SRI's Shakey the Robot, the first robot able to
reason about its actions and its surroundings [77].

Today, robots are used, or there are attempts to use them, in most of
the human activities. Robots have substituted humans on most of the hard,
repetitive and dangerous tasks on heavy industries. In some industrial sec-
tors, like car industry, humans are almost relegated to mere supervision tasks.
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Figure 1.3: Early electronic robots. (1.3a) Unimate, (1.3b) Shakey the Robot
and (1.3c) Lunokhod 1 lunar rover.

Robots explore the deeps of the sea [72]. Robots have been our first ambas-
sadors to other worlds, from the soviet era automatic probes Luna 9 (first
probe to ever land in another celestial body, the Moon, in 1966 |[74]) and
Venera 7 (first probe to land in another planet, landing in Venus in 1970
[75]), to the modern Spirit and Opportunity Mars rovers [73]. Robots are
taking their place in our houses as waiters [71]| or automatic vacuum cleaners
[55]. Robots are being developed to assists the elderly [104] and help sur-
geons in the operating room [5]. Last developments serve to find and rescue
victims of disasters [18], to fight fires [1], to drive cars [17] and to dispose
dangerous wastes [84].

This scenario lead us to think of a future in which, as Aristotle imag-
ined, humans are relieved from their work as more and more complex robots
are introduced until they take over every work humans do not like to do
themselves. But, quoting the physicist Michio Kaku, “Our most advanced
robots have the intelligence of a retarded cockroach”. As impressive as they
can look, today’s robots are simply evolved descendants of the ancient au-
tomatons, with limited capabilities, even the fully programmable ones, and
mostly dedicated to repetitive tasks in static environments with very strictly
controlled interaction with their surroundings.

In the current state of development in robotics there is a gap between the
physical capabilities of the robots and their real capabilities. Most mechan-
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Figure 1.4: Nowadays robots: (1.4a) Opportunity Mars rover. (1.4b) Stan-
ford’s Stanley, winner of the 2005 DARPA Grand Challenge. (1.4c) iRobot
Roomba robotic vacuum cleaner. (1.4d) Honda Asimo.
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ical problems of robots have been solved to some degree. Today there are
robots, like Honda’s Asimo [97], that can physically move like a person. How-
ever, they fail when they try to replicate more complex human behaviours,
as they lack the necessary feedback and adaptation mechanisms to react to
changes in their surroundings. There is still plenty of work to do in the
mechanical aspects of robotics, but currently the most challenging research
in robotics focus in the computational aspects. We have made robots that
walk. Now we want robots that are able to walk among people. To interact
with them. To recognise and learn new places. Robots need to perceive
and interact with their environment, as living beings do, in order to be able
to accomplish tasks more complex than “move this box between two fixed
points”. And is in this context in which this PhD Thesis works takes place.
We have explored new ways of how robots can perceive their environment
and use this information to learn it, in order to be able to interact with it.

1.1.2 Perceiving the world outside: how robots obtain
information of their surroundings

As stated above, robots need to perceive their environment in order to be
able to interact with it and to adapt to changes in it. In other words, robots
need to “sense” the world. That means that robots not only need actuators,
which allow them to move and carry out their task, but also a variety of
sensors, which will allow them to know how can they move and carry out
their task inside an environment.

Depending on the environment in which the robot is going to be placed
and the task it is expected to perform, different types of sensors can be
used. The most basic sensors simply measure the internal state of the robots
themselves. In a typical industrial robotic arm, the operation of the robot is
going to be limited to a fixed, well known, static and usually small area. The
position of the robot in reference with the environment is know, so the robot
does not need to sense the world outside, but it only has to know its own
configuration. In the same way that a person is able to know the position
of their arms and can turn on the lights of the room he has just entered
without actually looking at the switch, a robot which knows its configuration
can perform simple tasks in a known environment. In robotics, this type of
information is usually provided by the direct measurement of part motion by
the so-called encoders.
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An encoder is basically a sensor that is attached to a moving part of the
robot, generally a rotating part like motors or gears, and measures its rota-
tion. To obtain this measurement, the moving part is “marked” at constant
distances and the measurement is done by merely counting the number of
those marks that pass in front of the sensor as the part moves. In a typi-
cal example of encoder these marks are set at the drive wheels of a robot.
Counting the marks as it turns gives us the position of the wheel. Also, if the
radius of the wheel is known, traveled distance, speed and acceleration are
easily calculated. The estimation of the state of a robot by means of their
self sensing encoders is known as odometry. This estimation is very sensitive
to the precision and robustness of the sensors. For example, one wheel with
360 marks will have a resolution of 1°. That means that each measurement
will have a mean error of 1/360th of the circumference of the wheel, which
will accumulate over time. This accumulation of the encoder measurement
error implies that even in the most controlled environments, robots that de-
pend merely on odometry to operate require very high encoder resolutions
and periodically frequent calibrations.

But encoders are not the only way to self sense the state of a robot.
Gyroscopes, accelerometers, inclinometers or inertial sensors can also be used
to estimate the state of the robot or to mitigate the effects of the error of
the encoders. Usually those sensors are only present in the most advanced
robots due its complexity and cost and, in any case, they can not provide
information of the environment. Most other robots and tasks require of
sensors to perceive the state of their environment. Other means of obtaining
information about the robot status relying in some external reference are the
compass, which can give the robot orientation, and, in open air (outdoor)
environments, a GPS can obtain the robot spatial localization with great
precision.

Robotics usually is inspired by Nature and tries to emulate the solutions
that Nature has evolved over time to perform the same tasks robots try to
do. It does by replicating mechanically their components to build robotic
arms or legs. And it does it also in the way robots try to sense their external
environment. The simplest form animals use for sensing their surroundings is
the sense of touch. Even humans, when deprived of vision, use the touch to
feel their way around. In robots, also, the simplest of those external sensor
is the contact switch. This sensor is nothing more that a switch that closes a
circuit when something pushes it. Typical examples would be the bumpers
of a wheeled robot that tells the robot if it has collided with a wall or the
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mechanical limit switch in the borders of the operation area of a robotic arm
which indicate it when it has reached the limits of its working space. But,
as in Nature, the simplest approach can evolve growing in complexity, and,
therefore, more advanced “touch sensors” are being developed, bio-inspired
in the sense that their design is inspired by the use that some animals like
rats made of their whiskers [83].

Contact sensors have, after all, an obvious limitation: their reach is lim-
ited to the immediate surroundings of the robot, as they can sense only the
part of the world that is in contact with the robot. This limitation can be a
real issue. Starting with, contact sensors prevent any preplanning and only
allow very limited reactive behaviours (i.e. robots can only take immediate
decisions based on direct contact with obstacles). They can not avoid an
obstacle from far away, but merely advance until they touch it and decide
that it is an impossible to follow direction. Also, sensing things only when
they are in touching reach can be just too late. Humans do not want that
robots discover where they are... running over them. In the same way, a
robot moving at a certain speed can sense too late the cliff it is headed to.
Some remote sensing capability is, thus, required.

When sensing the environment, it can be measured in several ways and
not only in a spatial way. Simplest forms of remote sensors consist in passive
devices which measure one characteristic of the environment like its light
intensity, temperature or noise level. Photoelectric cells were the very first
external sensors mounted in autonomous robots. William G. Walter’s “turtle
robots” (Elmer and Elsie robots mentioned above) were equipped with light
and contact sensors and were able to phototaxis (i.e. drive towards the
direction of the light) in a way similar to some microorganisms and lower
life-forms. Similarly, microphones can be used to “listen” the environment
and drive a robot to the source of its commands, or drive it away from loud
noises that can be interpreted as dangerous.

The most valuable information a robot can get from its environment is
spatial. With little exceptions, the information a robot really needs to know
is where things are in its surroundings. Robots which want to interact with
their environment need to know where are the walls they can crash into, the
doors they can pass through, the obstacles they have to avoid, the people
they have to greet and the objects they have to take. In order to have
this knowledge, the environment has to be modeled in some way. Even if
the robot is provided with an a priori model, the robot needs to measure
its surroundings and model those measurements to match them with this a
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priori knowledge. But acquiring spatial information is not an easy task, so
usually this modelling is usually necessarily limited (e.g.: a robot measures
the distances in every direction around it at the height of its head).

Range sensors are a family of sensors that measure distances following the
same principles used in sonar or radar, and are used pretty much in the same
way some animals like bats or dolphins echolocate. They fall in the category
of “active” sensors, since they emit a wave pattern (sinusoidal) in some phys-
ical medium (sound, light...) and measure the returned echoes of this wave
created by the objects around in order to calculate the distances to them.
Range sensors usually are only capable of measuring a distance in a line, or
a very narrow cone, following the sensor orientation, and a reconstruction
of the environment can be done only by integrating different measurements
either obtained sequentially with the sensor oriented to different directions
in time, or simultaneously by mounting several sensors oriented to different
directions, the so-called sensor ring. Depending on the type of range sensor
and the characteristics of the wave pattern and associated physical medium
it uses, precision, range and speed of measurement can be very different,
making each type suitable for different purposes.

IR (Infra-Red) range finders are the most basic of this kind of sensors.
They consist in a pair of infrared LEDs, one of them configured as transmit-
ter and the other as receiver. They use the rebounds of the infrared light
emitted by the transmitter LED to measure distance to objects. Those re-
bounds are captured by the receiver LED, which converts them into a voltage
proportional to the intensity of the light received. This intensity is also pro-
portional to the distance to the object it rebounded from, so the estimation of
the distance is immediate. Some models improve this estimation by means of
triangulation techniques, knowing with precision the position of both trans-
mitter and receiver LEDs. Anyway, those sensors are very limited in their
capabilities. Their range is very short, in the order of tens of centimeters,
with a very low precision. Also, as its measurement depends on the intensity
of the reflected light, it is very sensitive to the reflectivity of the materials
it rebounds from, and the angle of incidence of the irradiated light over the
object’s surface. Despite those problems, IR range finders are still widely
used in robotics, due to its small size, price and power consumption, as close
range secondary sensors, usually as proximity warning sensors.

The next type of range sensors, and probably the most used one until
recently, are the ultrasonic sensors. Those sensors are based on SONAR
(SOund Navigation And Ranging) technology and use sound to measure dis-
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tances. The sensor emits a very high frequency ultrasonic wave and uses
the Time-of-Flight (ToF) principle to estimate distance to objects, measur-
ing the time it takes to the wave emitted to come back to the sensor after
bounding. In contrast to the IR light emitted by the infra-red range finders,
ultrasonic waves can not be focused completely on a point and they have a
wide spread. The measurement provided by the ultrasonic sensors does not
correspond only to the closest point in the directions the sensors are pointed
at, but they receive echoes from surfaces localized within cone shaped areas
of the environment, each one with the corresponding sensor in it’s vertex.
This implies that the spatial resolution of the measurement decreases greatly
with the distance, as echoes from a given distance can be situated in any
point in an arc spanning the width of the cone (e.g. in a sensor with a field
of view of 10°, an echo at a distance of 20 cm can be from an object in any
point into an arc of 3.5 cm. At 1 meter distance, the length of the arc would
be 17.5 c¢cm, an so on). Also, the sensor can get echoes from several sources
(e.g. two separate obstacles in the width of the cone) or several rebounds
from the same source (e.g. rebounds from a wall). Another consequence of
this cone shaped field of view is that, when used as part of a sensor ring,
different sensors can not be fired simultaneously. Instead, they have to be
fired in a precise sequence in order to avoid receiving interferences from sig-
nals emitted by other sensors in the ring. Other sources of uncertainty came
from the characteristics of the objects ultrasonic waves are incident into, like
their shape or their capacity to absorb or reflect sound waves (e.g. sound-
absorbing isolating materials versus hard flat surfaces). Anyway, ultrasonic
sensors keep being the de facto standard range sensors, since they precision
and range surpasses IR range finders, while being quite more low-priced and
less bulky than laser range sensors.

Laser range finders are the most precise and have the longest reach of all
the range sensors used in robotics. The ones used for LIDAR (Light Detection
and Ranging) usually use the same ToF principle as the ultrasonic sensors,
but sending a laser pulse instead a ultrasonic wave. They have a very large
range which, depending on the application, can be from hundreds of meters
up to several kilometers, and they are even used to measure the distance to
objects in space like artificial satellites or even the Moon. The laser beam
is very narrow, so it does not have the same spatial resolution problems of
the ultrasonic sensors. Laser beams can be affected by atmospheric condi-
tions like temperature gradients or hot air bubbles, but those problems arise
at distances over hundred of meters. Robotics oriented laser range finders
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are usually designed to operate at ranges of tens of meters, in which those
problems have very little measurable effect in their precision. Their effective
range will be determined mainly by the power of the laser used and their
precision by the speed of the hardware used to measure the time of the re-
bounds, due the extremely high speed of light beams. For other applications
in which the highest precision is required other techniques like triangulation
or multiple frequency phase shift can be used. The typical laser rig used in
robotics consists in a laser range finder and a rotating mirror which points
the beam at different orientations. Each full rotation of the mirror provides
measurements at specified angle intervals in a wide field of view of more than
180° and a resolution of less than 1°, with scan rates of around 30-50 Hz. As
they ranging capacities are excellent, drawbacks of those systems for mobile
robotics come from their bulky size (usually weighting several kilograms),
high power consumptions and very high price (in the order of several thou-
sand euros). Recently new highly mobile robotics oriented laser range finder
rigs have been started to be released, offering lightweight devices but with
much less range, and still at high prices.

Finally, the last widely used type of sensors are optical sensors: video
cameras mounted on a robot which capture images of the robot’s surround-
ings. The simplest installation is a front faced camera that records the scene
that there is just in front of the robot, and the most common one is with
the camera mounted on a Pan-Tilt unit that enables the camera to “look
around”. Different ways of mounting and combining cameras with other el-
ements provide different optical information. Omnidirectional cameras are
mounted vertically with a conic mirror that allows them to obtain an image
covering 360° around the robot. Binocular and trinocular rigs provide stereo
vision that allows obtaining depth information from the images. Recently,
some IR cameras which combine characteristics of traditional optical cameras
and range sensors have been introduced. Since digital camera technology is
widespread and almost any commercial camera is suitable to be mounted on
a mobile robot, optical cameras are cheap, small and widely available, and
are of very common use in mobile robotics.
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Figure 1.5: Mobile Robots’ Pioneer DX robots showing a variety of sensors.
(a) Bumpers, (b) ultrasonic sensor ring, (c) laser range finder and optical
cameras on a (d) pan-tilt unit and (e) binocular stereo rig.

1.1.3 Getting an image of the world: computer vision
in mobile robotics

It has been stated that robotics try to emulate Nature. In Nature visual
perception is a privileged way for animals to obtain information from its
surroundings. Almost any superior animal (except the ones living in en-
vironments in complete darkness, without any source of light) depends on
vision. Even the ones which have developed alternative ways of sensing the
world, like bats or dolphins, still made use of their eyes to perceive it in
some way. Millions of years of evolution have refined a visual system capable
of obtaining huge quantities of useful information of the surroundings like
depth, color, shape or motion.

But, although for us vision is a very natural way of perceiving our en-
vironment, the processing required for extracting that useful information is
far from trivial. The way visual information is processed in animal brains
is largely unknown, and research in the area has not been extensive until
late 70’s, when computers started to spread, allowing the processing of the
large quantities of data required for those studies and opening a new field of
research: computer vision.
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“Computer vision is the science that develops the theoretical and algorith-
mic basis by which useful information about the world can be automatically
extracted and analyzed from an observed image” [51], where image is defined
as the projection of an object or scene, with the goal of making useful deci-
sions about those real physical objects and scenes [101]. Although initially
applied only to optical images, computer vision techniques have also been
extended to the processing of more complex types of images, like volumes
obtained from MRI or hyperspectral images, and other image-like data not
obtained with optical systems. Also, although it would seem there is only
a problem to solve in computer vision (i.e. “to see”), there are actually a
large amount of different problems to solve, depending on the kind of infor-
mation we want to obtain from the images. Since no global solution have
been found for “the vision problem”; individual computer vision problems
like object recognition, motion estimation or scene reconstruction have to be
solved with specific methods and techniques. This abundance of data types,
problems and techniques to solve them makes that the boundaries of com-
puter vision are not clearly established and they blur and overlap with other
research areas like signal and image processing or pattern recognition, up to
the extent of not being clear if they are actually different fields or just an
specific area inside a wider research field, as most of the methods used in
them are common.

Despite the variety of methods and problems, most computer vision ap-
plications are composed of several processing steps, from the raw image data
acquisition to the most higher-level processing:

e Image acquisition: The process of obtaining a digital image from the
sensors. Depending on the kind of sensor used it can have the form of a
2D array or a 3D volume, each data unit representing light intensities in
several (gray-scale cameras) or one (RGB and hyperspectral cameras)
wavelengths, distances (LiDAR, RADAR), nuclear magnetic resonance
(MRI) or other types of data. This task is mainly hardware related.

e Preprocessing: Raw image data usually has to be processed in order
to be possible to apply other methods to extract useful information
from it. The acquisition hardware used to capture the image data can
introduce noise or artifacts in the image which have to be cleaned to
avoid interference with other processes. Examples of this problem can
be the specular light reflections or chromatic noise in digital optical
cameras, inhomogeneities in MRI or pixels excited by cosmic rays in
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astronomical imaging. Other required preprocessing can be oriented to
enhancing images to ease further processing, like contrast or exposition
correction.

e Segmentation: It is the process of dividing the image into its con-
stituent regions or objects [36] in order to reduce the regions which
require further processing or to identify desired elements in the image.
Segmentation is one of the most crucial tasks in image processing, since
its precision can determine the success of further methods applied to
segmented regions.

e Feature extraction: To obtain the useful information from the im-
ages. Desired features can be of very different types, including shapes,
lines, edges, invariant points, corners, color regions, textures, optical
flow, etc.

e High-level processing: The use of extracted features to perform an
specific task. Typical tasks could be face detection, object detection
and classification, motion estimation or distance estimation.

The application of computer vision to robotics is usually known as Robot
Vision. Robot vision can be applied to most of the tasks in which a robot
has to interact with its environment. There are, however, several task in
which most of the research have been focused. Most of those representative
tasks are specific of mobile robotics and try to allow them to recognize, learn
and move inside an environment. In any case, visual data processing methods
and techniques are the same as that for other computer vision applications, so
the differences with other applications are mainly in the high-level processing.
Some typical robot vision tasks are:

e Tracking: Detection of objects and continuously measure their posi-
tion in the sensor’s reference system. Used to detect and track possible
obstacles or find task goals.

e Visual servoing: The direct embedding of visual error information
into the control feedback loop, in order to move a robot or an actuator
towards a tracked target or keep a relative position with respect to it.
Typical examples could be moving a robotic arm to pick up an object
or drive a robot towards a door.
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e Ego-motion: It is the estimation of the relative camera spatial move-
ment between two consecutive images. Integrating several of those
estimations the path followed by the movement of the robot can be
reconstructed.

e Self-Localization: Estimation of the position of the robot inside an
environment using its own sensorial information. In the case of visual
information some image features or the whole images may be used as
landmarks. FEach landmark has a known corresponding spatial posi-
tion, which allows the robot which has detected it to reference its own
position in a world model. This landmark spatial position implies an
a priori knowledge of the environment in the form of a map. Localiza-
tion is not always a continuous process, but sometimes it is performed
instead only at specific time steps, keeping track of the position of the
robot between steps by dead-reckoning techniques like odometry.

e Map building: It is the process of building a model of the environ-
ment the robot is moving along. It implies the detection of landmarks
and the correct estimation of their position in order to integrate them
with previous measurements. Maps can take several forms, like occu-
pancy grids, metrical or topological maps. Map building can be an
independent task, but when it is performed simultaneously with local-
ization the resulting process is known as Simultaneous Localization and
Mapping (SLAM).

e Navigation: The ability of a robot to move inside an environment
with a specific purpose [13], guided by visual information. It makes
use of other robot vision techniques in order to perform its entrusted
task. The robot needs to locate itself into the environment and to
have a map of it in order to perform path planning to reach its goal.
Obstacles in its path have to be detected and tracked in order to avoid
them, and visual servoing can be used once the final goal is detected.

As can be appreciated from the above task definitions, robot vision appli-
cations are not completely independent and usually relate and depend on
others. For example, the task of self-localization relies on the detection and
tracking of visual landmarks, so basically uses the same methods that track-
ing applications use. Robot vision applications usually have to repeat a task
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Figure 1.6: Robot Vision Cycle.

in a closed cycle [53], which can also have some feedbacks to the next itera-
tion, like definition of regions of interests for tracking tasks or dynamic color
thresholds for segmentation (figure 1.6).

Robot vision is a wide research field, covering a great number of applica-
tions and techniques. The works presented here center in the more general
navigation problem, focusing mainly on applying new Computational Intelli-
gence based Artificial Vision techniques to the localization and map-building
tasks.

1.2 Motivation and general orientation of the
PhD work

The works in this PhD Thesis have been devoted to explore the use of in-
novative Computational Intelligence techniques for vision based localization
and mapping for mobile robots. In particular, the two main computational
approaches proposed and tested during this PhD works were

e The ones based on Lattice Computing [37], in the form of several ap-
plications of Lattice Associative Memories, and

e The ones based on Hybrid Systems combining Competitive Neural Net-
works and Evolution Strategies.
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We have also proposed and realized a proof-of-concept physical experience
on the vision based control of a Linked Multi-Component Robotic System
(MCRS), where the innovation is not in the image processing but in the kind
of system realized. Before going into detailed comments on the motivation
of each of the approaches pursued during this PhD works, some words about
the general orientation and methodology of the work must be said. We have
always tried to bring the ideas to their physical realizations on the available
robotic platforms, which will be described elsewhere, therefore there is a
long and unrewarding amount of work behind each experiment reported in
the following pages. There are additional obstacles which are common place
in mobile robotics that have been also present in the development of the
Thesis works:

e The lack of reproducibility of the results because of the many uncon-
trollable factors that converge in each experiment.

e The difficulty of measuring the behavior of the robots.

e The hidden efforts invested in the maintenance of the equipment and
the setting of the experimental fields.

e The need to perform the experiments at night hours or profiting from
exceptional circumstances, like the precise moment when a classroom
will be emptied because of the general refurbishing of the Facultad de
Informatica building.

From a methodological point of view, we have shifted from the early attempts
to obtain on-line real time results by implementing and installing our soft-
ware on the robot’s on board computer to the realization of computational
experiments on field gathered data. The main reason for that shift is the
need to factor out random effects of the environment in our evaluations of
the algorithms. That is, we needed to be able to reproduce the same results
and to identify the variations due to changes in our algorithms, in order to
be able to improve and debug them. As a result of our efforts, we have also
produced some collections of sensor and odometry data that we have made
public for two reasons:

(1) to contribute to the community pool of data for validation of algorithms,
and



CHAPTER 1. INTRODUCTION 18

(2) to allow the independent reproducibility of our own results by other
research groups.

In some cases, like the multi-robot transportation of a hose in chapter 4,
we think that the successful realization of the experiment is by itself an
interesting contribution, although it can be difficult to reproduce by other
research groups.

1.2.1 Lattice Computing approaches to localization and
mapping

In recent years, the Lattice Theory has been identified as a central concept
for a whole family of methods and applications in Computational Intelligence
[56, 57]. One of those Lattice Computing based methods are the Lattice
Associative Memories (LAM), first introduced in [95, 91| as Morphological
Associative Memories. LAMs were initially proposed for the storage of bi-
nary and gray patterns, with the aim of recovering the original clean image
from noisy copies. This pattern storage and retrieval capacity could also be
used in a robotic mapping context as a way of storing individual views that
identify map positions. This approach was first explored in |85, 87|, approach
we continue in the works reported in section 2.3. LAMs are also been used
for spectral unmixing of hyperspectral images [42, 43|, leading to the use
of the convex coordinates produced by the unmixing process as features for
classification purposes, approach we apply for map building and localization
in the works reported in section 2.4. In the hyperspectral image processing
context, the idea of endmember is that they represent instances of pure el-
ements. In a robotic mapping context, those endmembers could correspond
to the distinct views which could be used as landmarks. This is the approach
we propose and test in section 2.5.

1.2.2 Localization from 3D imaging

Until recently, acquisition of 3D measures in an environment was restricted to
the range sensors described earlier or to large and complex LiDAR rigs used
for 3D object reconstruction or geodesic surveying, which were not suitable
for a standard mobile robotic platform. However, a new type of sensor able to
acquire this type of information has been added to the spectra of sensors for
mobile robots. The recent market introduction of lightweight Time of Flight
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(ToF) 3D cameras |79] has opened a broad new spectrum of possibilities.
Those cameras blend some characteristics of traditional range sensors with
those of video cameras, providing depth information covering a wide field of
view not restricted to a narrow line or cone. The data generated by them can
be processed both with artificial vision techniques and other techniques used
with laser range finders or LIDAR. Following the main thread of this PhD
Thesis works, we wanted to try Computational Intelligence approaches which
made use of the 3D measuring this kind of cameras provide for applications
to the Simultaneous Localization and Mapping (SLAM) paradigm. As a first
step, we have developed an hybrid neuro-evolutionary egomotion algorithm
which estimates the robot’s trajectory from the measures of the ToF camera,
which is reported in chapter 3.

1.2.3 Multi-robot visual control

Multi-robot systems have surged as a way to fulfil more efficiently a task by
cooperation between several robots. One of the objectives that multi-robot
systems try to face is the operation in big, unstructured and very dynamic en-
vironments in which a multi-robot system possesses several advantages from
a single robot. Also, in those environments, like shipyards or large civil en-
gineering constructions, a typical task to be performed is the transportation
of fluids with hoses. A multi-robot system designed to fulfil those tasks, in
the form of a robotic hose transportation system, is the paradigmatic case of
Linked System [26], with several robots attached or grabbing the hose they
have to tow. Recently, the efforts in our research group have been focused
towards the study of one multi-robot systems designed to perform that task.
Following the main thread of this PhD Thesis, we have realized a vision based
control for one such systems, opening a wide new field for further research.

1.3 Objectives

The stated goal of this PhD Thesis works is to explore the use of innova-
tive Computational Intelligence techniques for vision based localization and
mapping for mobile robots. Beyond this general objective statement, there
are several more specific objectives that we wanted to fulfil. It should be
noted that those specific objectives were not completely established at the
start of this PhD Thesis, as we were exploring some recently, at the time,
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arisen paradigms and new possible objectives emerged from the results of
the previously explored ones, which resulted interesting enough to be also
explored.

1.3.1 Operational objectives

As other robotics related researches, the works in this PhD Thesis required of
the establishing and maintenance of a complex experimental environment in
order to validate the proposed approaches. This experimental environment
involves different robotic platforms and software tools which operation needs
to be learned. There were, thus, several operational objectives that, although
scientifically unproductive, should be fulfilled before and throughout the PhD
Thesis:

e Learn how to operate the different robotic platforms.

e Learn how to operate the data acquisition hardware.

Learn and develop the appropriate software tools to implement pro-
posed approaches.

Design adequate experiments to validate proposed approaches.

Acquire adequate datasets to allow reproducibility of the results pro-
duced.

1.3.2 Scientific objectives

The specific scientific objectives of the works in this PhD Thesis relate to
each of the Computational Intelligence approaches we wanted to explore:

e Test the capacity of LAMs for view storing and recognition through
retrieval in a real robot implementation.

e Test the usefulness of the convex coordinates extracted with LAMs as
feature vectors for view classification in a robotic mapping context.

e Test the usefulness of the endmembers induced with LAMs as land-
marks in an SLAM context, developing the adequate tools for its on-line
use.
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e Develop an hybrid approach to the use of 3D data provided by innova-
tive 3D ToF cameras for ego-motion estimation.

e Demonstrate a physical realization of vision based control for a multi-
robot linked system in the form of a hose transportation system.

1.4 Publications resulted from this PhD Thesis
works

The works in this PhD Thesis have been submitted to several conferences
and journals for peer review. This has resulted in the following publications:

Related to Lattice Computing approaches to localization and map-
ping:

1. Ivan Villaverde, Sergio Ibaniez, Francisco Xabier Albizuri and Manuel
Grana. Morphological Neural Networks for real-time vision based self
localization. In Ajith Abrham, Y. Dote, T. Furuhashi, M. K&épen, A.
Ohuchi, and Y. Ohsawa, editors, Soft Computing as transdisciplinary
Science and Techonology, Proc. WSTST’05, volume 29/2005 of Ad-
vances in Soft Computing, pages 70-79. Springer-Verlag, 2005. ISBN
3-540-25055-7. [123]

2. Ivan Villaverde, Manuel Grana and Alicia D’Anjou. Morphological
Neural Networks for localization and mapping. In Proceedings of the
IEEE International Conference on Computational Intelligence for Mea-
surement Systems and Applications (CIMSA 06), pages 9-14. IEEE
Press, 2006. ISBN 1-4244-0245-X. [120]

3. Ivan Villaverde, Manuel Grana and Alicia D’Anjou. Morphological
Neural Networks and vision based mobile robot navigation. In Arti-
ficial Neural Networks - ICANN 2006, volume 4131 of Lecture Notes
in Computer Science, pages 878-887. Springer-Verlag, 2006. ISBN
3-540-38625-4. [119]

4. Manuel Grana, Ivan Villaverde, Ramén Moreno and Francisco Xabier
Albizuri. Computational Intelligence Based on Lattice Theory, chapter
Convex Coordinates From Lattice Independent Sets for Visual Pattern
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Recognition, pages 99-126. Springer-Verlag, 2007. ISBN 978-3-540-
72686-9. [46]

5. Ivan Villaverde, Manuel Grana and Alicia D’Anjou. Morphological
Independence for landmark detection in vision based SLAM. In F.
Sandoval, A. Prieto, J. Cabestany, and M. Grana, editors, Proc. of
IWANN 2007, volume 4507 of Lecture Notes in Computer Science,
pages 847-854. Springer-Verlag, 2007. ISBN 3-540-73006-0. [121]

6. Ivan Villaverde, Manuel Grana and Jose Luis Jiménez. Lattice Inde-
pendence and vision based mobile robot navigation. In Bruno Apol-
loni, Robert J. Howlett, and Lakhmi Jain, editors, Knowledge-Based
Intelligent Information and Engineering Systems, KES 2007, volume
4693/2009 of Lecture Notes in Artificial Inteligence, pages 1196-1203.
Springer-Verlag, 2007. ISBN 978-3-540-74826-7. [122]

7. Ivan Villaverde, Alicia D’Anjou and Manuel Grana. Morphological
Neural Networks and vision based simultaneous localization and map-
ing. Integrated Computer-Aided Engineering, 14(4)(14):355-363, 2007.
IOS Press. [114]

8. Ivan Villaverde and Manuel Grana. A Lattice neurocomputing ap-
proach to visual landmark identification for mobile robot navigation.
Neural Processing Letters (in preparation, stimated submission Novem-
ber 2009).

Related to 3D localization:

1. Ivan Villaverde. 3D Camera for Mobile Robot SLAM. Ramén Moreno
Jiménez, Miguel A. Veganzones, Maria Teresa Garcia-Sebastian (Eds.)
Actas de las I Jornadas de Inteligencia Computacional - JIC’07, pages
248-253, Basque Country University Editorial (2007); ISBN 978-84-
9860-019-3 [113]

2. Ivan Villaverde, Zelmar Echegoyen and Manuel Grana. Neuro-evolutive
system for ego-motion estimation with a 3D camera. In M. Koppen,
editor, Advances in Neuro-Information Processing, volume 5506/2009
of Lecture Notes in Computer Sciences, pages 1021-1028. Springer-
Verlag, 2009. [116]
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3. Ivan Villaverde and Manuel Grana. A hybrid intelligent system for
robot ego-motion estimation with a 3D camera. In Emilio Corchado,
Ajith Abraham, and Witold Pedrycz, editors, Hybrid Artificial Intel
ligence Systems, volume 5271 of Lecture Notes in Artificial Inteligence,
pages 657-664. Springer-Verlag, 2008. [117]

4. Ivan Villaverde, Zelmar Echegoyen and Manuel Grana. Neuro-evolutive
system for ego-motion estimation with a 3D camera. Australian Jour-
nal of Intelligent Information Systems, 10(1):59-70, 2008. ISSN 1321-
2133. [115]

5. Ivan Villaverde and Manuel Grana. An improved evolutionary ap-
proach for egomotion estimation with a 3D TOF camera. In J. Mira et
al., editors, Bioinspired Applications in Artificial and Natural Compu-
tation, volume 5602/2009 of Lecture Notes in Computer Science, pages
390-398. Springer, 2009. ISBN 978-3-642-02266-1. [118]

6. Ivan Villaverde and Manuel Grana. Neuro-Evolutionary mobile robot
egomotion estimation with a 3D ToF camera. Neural Computing and
Applications (submitted).

Related to multi-robot visual control:

1. Zelmar Echegoyen, Alicia D’Anjou, Ivan Villaverde and Manuel Grana.
Towards the adaptive control of a multirobot system for an elastic hose.
In Advances in Neuro-Information Processing, volume 5506,/2009 of
Lecture Notes in Computer Science, pages 1045-1052. Springer, 2009.
28]

2. Zelmar Echegoyen, Ivan Villaverde, Ramon Moreno, Manuel Grana,
Alicia d’Anjou. Linked mobile robot control: the hose manipulation
problem. Robotics and Autonomous System (in preparation, estimated
submission November 2009).

Collaborations related with issues of the PhD Thesis:

1. Manuel Grana, Maite Garcia-Sebastian, Ivan Villaverde and Elsa Fer-
nandez. Proceedings of the Lattice-Based Modeling Workshop, in con-
junction with The Sixth International Conference on Concept Lattices
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and Their Applications, chapter An approach from Lattice Computing
to fMRI analysis, pages 33-44. 2008. ISBN 978-80-244-2112-4 [41]

2. Manuel Grana, Ivan Villaverde, Jose Manuel Lopez Guede and Borja
Fernédndez. Review of hybridizations of Kalman filters with fuzzy and
neural computing for mobile robot navigation. In E. Corchado, E.
Oja X. Wu, A. Herrero, and B. Baruque, editors, Hybrid Artificial
Intelligence Systems, volume 5572/2009 of Lecture Notes in Computer
Science, pages 121-128. Springer, 2009. [44]

3. Manuel Grana, Ivan Villaverde, Jose Orlando Maldonado and Car-
men Hernandez. Two Lattice Computing approaches for the unsuper-

vised segmentation of hyperspectral images. Neurocomputing, 72(10-
12):2111- 2120, 2009. [45]

1.5 Research projects

During the PhD Thesis works the candidate has been involved in several
research projects focused on vision based mobile robotics, and has also col-
laborated in other projects where some of the techniques employed in some
parts of the PhD Thesis works were also applied.

1. Estudio de métodos de vision artificial para navegacion de sistemas
autonomos. Universidad del Pais Vasco (UPV-EHU), 2003. Duracion:
9 meses. Referencia: TIC2000-0739-C4-02.

2. Sistemas GIS y clasificacion de imagenes hiperespectrales no super-
visadas. Universidad del Pais Vasco (UPV-EHU), 2004. Duracion: 12

meses.

3. Percepcion artificial y control de caos para robotica modular en en-
tornos dindmicos y no estructurados (McRobs), Ministerio de Edu-
cacion y Ciencia, 2006. Investigador Principal: Manuel Grana Romay.
Entidades colaboradoras: Ciencias de la Computacion e Inteligencia
Artificial (UPV/EHU), Universidad de A Coruna, Inteligencia Artifi-
cial (UPM). Duraciéon: 36 meses. Referencia: DP12006-15346-C03-03.
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1.6 Contributions of the PhD Thesis

The works carried out during the course of this PhD Thesis have resulted in
several original contributions to the state of the art in vision based robotics.
Those contributions are, in the same order in which they are presented in
this report:

e Lattice Associative Memories (LAM) for visual mapping and localiza-
tion: We proposed the use of LAMs for storing and identifying visual
landmarks. The proposed approach was implemented and tested on
a real robotic platform, and it proved to be viable for real-time self-
localization even in a mildly unstructured environment.

e LAMs for feature extraction in landmark recognition: We proposed a
Lattice approach using LAMs to feature extraction, using the extracted
Convex Coordinates from an induced endmember set as feature vectors
to identify views as landmarks. Results obtained are comparable to
PCA approaches, with stronger dimensionality reduction.

e LAMs for unsupervised landmark selection in mapping: We proposed to
use as visual landmarks the endmembers extracted by the Endmember
Induction Heuristic Algorithm (EIHA). The approach proposed was
able to obtain a good partition of the space, placing landmarks well
distributed along mapped paths.

e Neuro-Evolutionary system for egomotion estimation using 3D ToF
cameras: We proposed an approach for using 3D information from new
ToF cameras for mobile robot ego-motion estimation. The acquired 3D
point cloud was fit using Competitive Neural Networks. A registration
technique based on an Evolution Strategy was developed for motion
estimation. The ES was compared with other well known registration
algorithms. The system’s performance was comparable to the robot’s
odometry.

e In the field of multi-robot systems we have demonstrated the physical
realization of the vision based control of a multi-robot system manipu-
lating a hose, which falls in the class of linked multi-component robot
systems, opening some new avenues for experimentation.

e Several experimental datasets have been compiled and made available
to the robotics community:
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— Optical images dataset: A compilation of optical images obtained
by a mobile robot’s camera while performing several walks along
the corridors of our building.

— 3D ToF camera dataset: A compilation of 3D images covering
exhaustively two rooms of our building, recorded with a 3D ToF
camera mounted on a mobile robot.

1.7 Structure of the PhD Thesis report

This PhD Thesis report is structured following the different approaches and
problems which have been explored along the works of the PhD Thesis. The
main contents are divided in three chapters, reporting in each one a Com-
putational Intelligence approach to solve a different specific problem of the
more general mobile robot navigation problem. Several appendices provide
additional information with the theoretical foundations of the approaches
proposed, as long as descriptions of some side products of the works carried
out that need to be documented. The contents of each chapter in the PhD
Thesis are briefly described below:

e Chapter 2 is devoted to the application of Lattice Computing tech-
niques based on Lattice Associative Memories (LAM) to the problems
of robot self-localization and map building, both off-line and following
the SLAM paradigm. The chapter has three main sections in which
different applications of the LAM are proposed and experimentally val-
idated:

— Lattice Heteroassociative Memories (LHAM) for visual mapping
and localization. LHAM are used to build a map, storing views
as landmarks. LHAM Recall is used as the landmark recognition
tool.

— Lattice Autoassociative Memories (LAAMs) for feature extraction
in landmark recognition. LAAMs are used to compute the con-
vex coordinates from the endmembers of the images the robot
acquires. Those convex coordinates are used as feature vectors for
landmark recognition as a classification problem.

— LAAMs for unsupervised landmark selection for topological SLAM.
LAAMs are used to select on-line the most adequate views to be
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used as landmarks in a topological SLAM system.

e Chapter 3 is devoted to the application of hybridization techniques,
combining a Competitive Neural Network and an Evolution Strategy,
to the egomotion of a mobile robot using the 3D data acquired by
a ToF camera. A description of the system is presented, describing
the purpose of the different method used. Some experimental results
are given, along with comparisons with other techniques found in the
literature.

e Chapter 4 is devoted to the physical realization of visual control for a
multi-robot hose manipulation system. An experiment with our first
attempts to build a vision based multi-robot system for that purpose
is reported.

e Appendix A gathers the formal definitions of the Linear Mixing Model,
Lattice Associative Memories and several endmember induction algo-
rithms which are the theoretical foundations of the approaches reported
in chapter 2.

e Appendix B gathers the formal definitions of the Computational Intel-
ligence tools used in chapter 3.

e Appendix C contains a description of the hardware and software tools
used in this PhD Thesis works, along with descriptions of the particu-
lar configurations of the experimental settings of the tests reported in
chapters 2, 3 and 4.

e Appendix D contains a description of the optical image datasets recorded
and used in chapter 2.

e Appendix E contains a description of the datasets recorded with the
3D ToF camera and used in chapter 3.

1.7.1 About the conclusions sections

Each of the main chapters in this PhD Thesis report represents a different
track of research, ending with a particular conclusions section. Therefore,
there is no specific chapter devoted to conclusions for the whole report.






Chapter 2

Lattice Computing approaches to
localization and mapping

In this chapter we report the works done applying Lattice Computing ap-
proaches to visual localization and mapping tasks for mobile robots. We
follow the historical path of our attempts to apply Lattice Associative Mem-
ories (LAM) (early called Morphological Associative Memories) to the tasks
of self-localization and map building using visual information provided by
the on-board video camera. The work is mainly of an experimental nature,
as the theoretical foundations have been developed outside the scope of this
PhD Thesis, which is more focused on physical realizations and applications
of the Lattice Computation ideas.

The structure of this chapter is as follows: In section 2.1 a brief review
of approaches to vision based navigation and the motivation of the approach
taken is given. In section 2.2 we recall the tools and robots used in the
experiments. The following three sections, 2.3, 2.4 and 2.5, present the suc-
cessive approaches that we have tested during this PhD works. Each one of
those sections will contain a brief introduction to the specific problem which
is faced, a description of the approach and some experimental validation.
Finally some conclusions and final remarks will be given in section 2.6. Ad-
ditionally, appendix A contains the theoretical basis of the tools used, namely
the Linear Mixing Model, Lattice Associative Memories and the endmember
induction algorithms used in the experiments.

29
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2.1 Background and motivation

As said in the introduction, navigation is the ability of an agent to move
around its environment with a specific purpose [13|. It implies some knowl-
edge of the environment, be it topological or not. A necessary ability for
navigation is self-localization: the capacity of the robot to ascertain, more
or less accurately, “where it is” from the information provided by its sen-
sors. This knowledge makes possible other navigation related tasks like path
planning. The basic self-localization procedure is odometry: self-sensing and
keeping track of motion commands. However the uncertainties related to
the environment and the robot internal status call for sensor based external
confirmation of the position internal estimation.

Self-localization based on low range external sensors has been formu-
lated in a probabilistic framework [32]. Vision based [21] and mixed [80, 96]
systems are proposed to increase the sensing range and robustness. Vi-
sual self-localization methods usually are based on landmark recognition
[81, 4, 11, 64, 67, 47, 99, 89|. For instance, the system described in [4]
computes for each stored view a graph model representation of salient points
in the image as measured by the information content of a neighborhood of
the point in a gradient image. To recognize the view, the salient points in
the current image are compared to the stored models. Model matching as
performed in [4] is not invariant or robust against translations and rotations.
Therefore each view is only recognized when the robot is within a small
neighborhood of the physical position and orientation where the landmark
was detected originally. Recognition in this case is not continuous, unless the
stored views built up a dense map.

For the development of truly autonomous mobile robots, SLAM (Simul-
taneous Localization And Mapping) is a key problem for autonomous navi-
gation [2, 23, 110], and it is nowadays one of the most alive research subjects
in the robotics research community. SLAM can be defined as the ability
of an agent to, starting from an unknown position in an unknown environ-
ment, build up a map of this environment and, simultaneously, self-locate
inside that map. SLAM requires both automatic landmark selection while
wandering [68] and robust association between observed and stored data [76].

From the computational point of view, Kalman filters are often used
as basis for SLAM algorithms, but some works use Expectation Maximiza-
tion techniques [109]. Maps are built using hierarchical schemes in |29, 33].
Kalman filter simplifications are proposed in [48, 49| in order to get real time
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performance in outdoor environments. In [111] an extended Kalman filter is
mixed with a topological map. Generalized Voronoi Graph (GVG) is used in
[14] for localization and generation of a control law that guarantees complete
exploration of free space.

SLAM approaches have been developed based on a wide variety of sensors,
from the classical ultrasonic sensor [23] to the more modern and precise laser
range finder [29, 109, 111, 12, 66]. Also, a wide variety of vision based sensors
have been used, using single [19], stereo [82] or trinocular [76] vision systems.
However, until recently the application of visual techniques in SLAM has been
compromised by the requirements of real time operation, that are not easily
meet by the computationally expensive computer vision methods.

Because of the computational cost of robust image segmentation and
feature extraction processes, there is a trend towards the use of the image
as a whole or after some (linear) transformation that does not impose great
computational requirements. Such approaches are called “appearance based”.
In this chapter we report our attempts to follow this philosophy using Lattice
Heteroassociative Memories (LHAM) and Lattice Autoassociative Memories
(LAAM) as the main computational tools. We will try to use the images
with minimal processing for the tasks of detemining the actual position of
the robot and of building a topological map of the environment.

2.2 Experimental settings

Across the chapter works we have used the same kind of mobile robotic plat-
form, the Mobile Robots’ Pioneer platform, in two of its versions: a Pioneer
2 DXE and a Pioneer 3 DX. Both robots are a highly mobile platform, with a
inboard computer, a PTZ controlled camera, sonar and other sensors. Some
of the works have given as a side-product collections of images and data pre-
sented in the appendices D and E, which we have made public thorough the
group’s wiki. A detailed description of the resources used and the experi-
mental settings can be found in appendix C.

2.3 LHAM for visual mapping and localization

The initial works of this PhD Thesis were a continuation of the initial work of
[85, 87|, where the use of Lattice Associative Memories (called Morphological
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Associative Memories at that time) to solve the self-localization problem was
proposed for the first time. Experimental results reported there [85, 87| on a
set of images recorded from a robot did show the feasibility of the approach.
We followed a brute force approach trying to use the LAM as an storage
device for the views as the robot was advancing. The essence of the approach
followed in [85, 87| was that the robot would recognize the view obtained in a
spatial position while it is located near it. Therefore map building proceeds
as follows: the first view is memorized, the robot advances and while the
same (some) view is recognized it does not store any new view. When the
system does not recognize the current view, a new input-output pair it is
stored in the LHAM. The approach is holistic, because it treats the image
as a unit, and appearance based, because it does not try to analyze it or
extract further information from the camera image. However it has a limited
capacity given by the predefined size of the output binary vector.

In the works of this PhD Thesis, a similar approach has been implemented
on a Mobile Robots Inc. (formerly ActivMedia) Pioneer 2 DX mobile robotic
platform. In this section some recognition results obtained in real time op-
eration of the robot are presented. The real time operation requires more
robustness than the off-line experiments, therefore the approach in [85, 87|
has been modified. Dual LHAM’s are introduced in order to reduce confu-
sion between landmark views. A modular incremental approach is used, that
assigns a couple of LHAM to each stored image. Besides, dual binary images
are obtained to speed up the computation process, and they are computed in
a way that enhances the robustness of the recognition by the corresponding
LHAM storing them.

2.3.1 Description of the approach

The stated goal is to recognize, with some degree of robustness, several pre-
determined robot placements and orientations based on the recognition of the
visual information captured by the robot. We can associate to each position
an area of the physical environment where the robot recognizes this position,
like in [4, 64]. The robot is supposed to wander looking forward, taking
images at a steady rate. Each image corresponds to a view of the world,
characterized by a physical position and orientation. Images are analyzed
continuously and when a scene is recognized a certain spatial position is as-
sumed for the robot. Robustness must cope with some variations in lighting
and small rotations and translations of the camera due to the uncertainty of
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the robot position, which, in its turn, is due to the uncertainties in the mo-
tion of the robot. The resulting set of positions and stored views constitute
a topological map, one that may serve the robot to identify its location as
a discrete position in space, assuming some uncertainty, but that does not
allow to give metric information about the relation between the robot and
other parts of the environment.

In this approach to visual self-localization, the focus is put on LHAMs
because its size grows only linearly with the size of the input patterns, while
the LAAM size grows quadratically with the size of the input patterns, which
makes them not very useful for real time processing of moderate size images.
The sensitivity of the LHAM to specific kinds of noise has been established
[95, 91, 105], being the M memory is sensitive to erosion (which corresponds
to darkening a grayscale image) while the W memory is sensitive to dilation
(which corresponds to brightening the image). That means that the M mem-
ory will produce perfect recall of the desired output if the input is perturbed
only by dilative noise, and will not when the input is perturbed even partially
by erosive noise. The dual statement is true for the W memory. *

In [85, 87] it was proposed to apply structured erosions and dilations to
the input patterns to increase the robustness of the recalling process. To
build up a robust M memory the eroded input patterns are stored to ensure
that most of the test patterns will be dilations of the corresponding stored
ones. Besides, it is proposed to perform a dilation of the test pattern prior to
test the recall of the memory. Again, the dual operations are applied when
dealing with the W memory.

We profit on the duality of the LHAM memories to increase the robustness
of our approach as follows: we use two dual LHAM to store two binary images
obtained from the scene to be stored. The thresholds that define these binary
dual images are set in order to increase their robustness to noise, having
implicit dual erosive and dilative effects. In other words, these dual binary
images are equivalent to an erosion and a dilation of a single binary image,
although not a proper morphological erosion or dilation because there is no
structural element.

In order to develop a system that could produce successful real-time re-
sults, it was necessary to take into account various problems. The most

!Erosive noise means that the noisy pattern is below the original pattern. Dilative
noise means that the noisy pattern is above the original pattern. Common additive noise
is both erosive and dilative, hence the difficulties of LAM to deal with the common sources
of noise.
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important ones were the limitation in the size of the LHAM that store the
landmark images, the reduction of the computational cost, the image pre-
processing and landmark selection, and the robustness against displacements
and illumination changes. Each one will be discussed in turn below.

LHAM size limitation

The number of views that will be stored when building a map usually is not
defined beforehand: it will depend on the speed of the robot motion, the
power of the on-board computer, and the experimental path. In the original
approach [85, 87|, each view is encoded with an output vector selected from
a set of orthogonal binary vectors. This implies that the size of the LHAM
would have to be set prior to any processing. Therefore, either we decide on
a maximum number of views that can be stored or we resort to a modular
approach that would allow adding as many views as desired.

The proposed, implemented and tested method consists in building up a
set of memories, each one storing a unique landmark image, whose output is
a scalar binary variable taking {0, 1} values. In this way, we obtain a system
of unrestricted capacity that, instead of giving only one answer encoding
the position, gives an affirmative or negative answer for each of the stored
positions. This structure is equivalent to a single LHAM with orthogonal
binary output vectors, if we decide that no position has been recognized
when more than one module gives a positive response.

This kind of decomposition of the problem is not very original. It does fol-
low the same philosophy of classifiers built and trained independently with a
likelihood measure. An example of this kind of systems are the speech recog-
nition processes, where words are modeled by independent Hidden Markov
Models (HMM). Trained is performed independently for each HMM maxi-
mizing the likelihood of the correct response. In operation, the decision of
which word has been recognized goes to the HMM with the maximum re-
sponse. In our approach we have two disadvantages: (1) Output is binary,
therefore we can not act as if the output is some kind of likelihood measure.
(2) we do not have any means to break ties, so when several units give a
positive response we can not select one in an optimal sense.
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Preprocessing and Landmark selection

To obtain real-time performance of the self-localization process, we decide to
work with binary images instead of the grayscale originals, because the binary
images are easier and faster to process, and the LHAM with binary inputs
were better understood at the time. Also, it was decided to use dual M and W
memories simultaneously to enhance the accuracy of the detection. The goal
is to reduce the number of conflicting recognitions. It was noticed that the M
memories recognize the views by their dark spots, while the W memories do
it by their bright spots. In terms of the basic results for LAM, M memories
are robust to erosive noise, therefore dark spots are natural kernels for robust
recognition. Dually, W memories are robust to dilative noise, therefore the
white spots are the natural kernels for robust recognition. The size of these
spots (blobs) are important to ensure the robust recognition against several
noise sources. The images are processed as follows in order to enhance their
recognition by the dual memories.

Given an input image X = {z(7,7)} and thresholds 6, y 6, the dual
binary (0 = black, 1 = white) images are processed applying the thresholds
as follows:

X = {‘rl (Z7j) = 1|I (27.7) > 01}; Xy = {‘rQ (Z7j) = 1|I (27.7) > 02}7 (21)

where thresholds 6, y 5 are computed as follows:

0,=7—S; Oy=7+S5, (2.2)

where ¥ is the arithmetic mean of the intensity of image X and S is its
standard deviation. This selection of the thresholds ensures that the binary
images have a significant amount useful data. Image X; detects the darkest
spots of the image as black regions, while X5 detects the lighter spots as white
regions. According to the approach developed in [85, 87| X; will be stored
in a Mx,; memory, while Xy will be stored in a Wx,; memory. This method
doubles the computational cost. However, the significant improvement in the
results makes acceptable this excess of cost.

When an input test image is presented, both memories must give their
recognition to declare the view recognized as the stored scene. The current
view is declared recognized if there is one and only one positive response
from the collection of scenes memorized in the current set of pairs of dual
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LHAM memories {(MX{CI, WX§1> sk=1,.., M} If the current view is not
recognized because there is not a positive response from any of the LHAM
couples, then it becomes a new stored scene (M XM+ WX§4+11 .

Since variable size maps are the most likely result of this approach, check-
ing each input image against each of the stored landmark images to determine
the current location, the cost of the self-localization will increase with the
size of the map. For a big size map, the real-time constraint may be compro-
mised. To alleviate this problem, we test each input image only with LHAM
storing images that have similar luminosity, that is, the ones that have sim-
ilar average intensity. That way we obtain a steady 2.5-3.5 fps frame rate
processing on a K6-II processor at 400MHz which is the CPU of the old
Pioneer’s on board computer.

Robustness

There are two main situations that can cause missing the recognition of a
view stored from a given position when the robot is again in a nearby position:

1. There have happened illumination changes in the environment.

2. There are physical displacements from position where the stored view
was taken.

The first problem, illumination changes, is already mitigated by the dynamic
definition of the thresholds defined in equation 2.2, it is expected that the
resulting binary images will remain also invariant to some degree of illumi-
nation changes.

When facing the second problem, two contradictory requirements col-
lide regarding the robustness of the view recognition to position uncertainty.
Recognition must be sensitive enough to discriminate between views from
well-separated physical positions. At the same time, recognition must be
robust to allow the identification of a position from close-by positions and
illumination conditions. To ensure this kind of robustness the system profits
from the LHAM’s sensitivity to erosions and dilations. The erosion and dila-
tion implied by the dual thresholds have the effect of extending the regions of
the image that act as anchors for the recognition. This has a double effect: in
one hand it increases robustness against translation and rotation relative to
the reference position, and, on the other hand, it increases the probability of
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Figure 2.1: Map landmark image storage for a given robot position.

conflicting recognition. Conflicting recognition is partially solved by the use
of dual memories discussed before. To erase small regions, which are unlikely
to be matched, we apply a morphological closing and opening filters on the
input binary images before they are compared with the stored memories.

Map creation process and self-localization

In summary, the topological map creation involves two dual processes on the
image taken from each map position.

e First, to generate the dark and bright binary image landmarks to be
stored by the dual LHAM modules, input grayscale images will be
binarized using the thresholds defined in equation 2.1.

e Next, those binary images will be subject to the morphological opera-
tions discussed before.

e Finally, the closed dark and opened bright image will be used to build
a couple of memories (fol, WX§1> (figure 2.1).

During the self-localization process, each new image view is compared
with each pair of dual memories. Each input image will go through pro-
cesses dual to those performed for the memory building: The input image is
binarized to emphasize the dark (bright) elements and the resulting binary
image is opened (closed), and then tested with the W (M) memory. If the
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Figure 2.2: Map position recognition. P; denotes the response from the i-th
position and & is the XOR binary operator.

Figure 2.3: A non exhaustive map may have gaps of unknown response by
the system.

response from both memories is equal to 1, the localization on that position
is considered as positive (figure 2.2).

We build up a topological map taking reference positions at fixed dis-
tances, measured by odometry. Due the discrete LHAM binary response, the
system may not give positive recognition when the robot is placed in posi-
tions that lie between positions whose views have been stored. The system
could detect when the robot enters and departs the neighbourhood area of
a stored position. The topological map will be composed, then, of a series
of positions, each identified by an image which models a region around to
the position where the image was taken. The map is not exhaustive and the
represented regions could be adjacent, overlap or have gaps between them,
as is shown in figure 2.3.
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2.3.2 Experimental validation

The processes above explained were implemented on a Pioneer 2 DX robot, to
perform real life experimental evaluation of the proposed approach on a real
robot. The details of the implementation can be found in the appendix C.
Each experiment consists in the definition of a path through our laboratory,
which must be covered by the robot several times, at a speed of 250 mm /sec.
In the first walk, the robot generates a map as described before. In the
next walks, the robot tries to perform the self-localization based on the map
generated in the first walk without any stop in its movement.

Map positions are consecutive and numbered increasingly from position 1.
The visualization of the empirical results consists in the plot of the sequence
of recognized positions versus time. In this representation, localization errors
will be easily perceptible at first sight: a correct localization process will show
a staircase growing graph, where the localization errors appear as sudden
peaks and valleys.

For each view the output of the localization system can be one of four
possible results:

1. It recognizes one unique position, which corresponds to the correct one.
2. It recognizes one unique wrong position.

3. It recognizes multiple positions.

4. It does not recognize any position.

The fourth case happens mostly when the robot is moving between two
mapped positions. The second and third cases will be considered as lo-
calization errors and, finally, the first case will be considered as a correct
localization. Below we present the results obtained on two experimental
paths. In those examples, map position views were taken with a constant
separation of 60 cm, as measured by odometry. The use of odometry already
introduces noise in the map building process.

The first experiment consists of a straight path 3 meters long, travelled
in both directions, inside the laboratory (figure 2.4). A 10 positions map was
generated. Figure 2.5 shows some images corresponding to views taken by
the robot while traversing the path. Notice that there is no structure in the
environment, which is a relatively chaotic working laboratory environment
with boxes, tables and chairs in the robot’s line of sight.
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Figure 2.4: First experimental path over the plan of the laboratory.

40

Figure 2.5: Sample images as taken by the robot in one traversal of the first

experimental path.
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Figure 2.6: First test results graph.

In the graph of figure 2.6 overlaid plotting results from 5 test wanderings
on the experimental path are shown. The values plotted in the figure have
the following interpretation:

e A value of -1 means that the view was not associated with any stored
position.

e A value of 0 means that the view was associated with more than one
stored position.

e Remaining values are identification of the recognized stored map posi-
tions.

The growing staircase graph in figure 2.6 must be interpreted as a notable
success in the localization. The wide zone without localization in the middle
of the path (images 40 to 50) corresponds with the physical turning point of
the robot’s path. The clear shape of the overlaid plot demonstrates that the
system robustly recognizes the same stored positions in the neighbourhood
of the same physical test positions in all 5 attempts.
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Figure 2.7: Second experimental path over the plan of the laboratory.

Average correct recognition of the mapped positions in the 5 wanderings
is in the 85%-90% range, with a short interval without localizations when the
robot is moving between them. Wrong localization in the worst case was a
10% of the recognition trials, and was in the 1%-5% range in the remaining
cases. Worst case multiple localization errors was 24%, maintaining around
10% in the rest. The frame rate was of about 3 fps.

It can be observed that there is a concentration of both multiple localiza-
tions and wrong localizations at the start of the path. This is explained by
a special characteristic of the experimental environment: at the start of the
path the robot is headed towards a smooth and featureless wall, therefore
the views from the initial positions are almost the same.

For the second experiment a longer path was defined. In this experiment,
the generated map was of greater size than in the first experiment, and the
localization more difficult. This path is formed by an X on the laboratory’s
floor. The cross is made of two arms of 3.6 meters long and two horizontal
lines of 3 meters long (figures 2.7 and 2.8). The map is formed by 22 positions.
In figure 2.9 we can see the graph obtained by overlaying the results of the 5
test wanderings. As before, the growing staircase shape of the graph indicates
the general good behaviour of the localization system.

In this experiment, mapped positions where recognized with an average
90% of success, with localization errors concentrated at the start and the
middle of the path. Wrong localization range between 1%-3% in all passes,
while multiple localization are about 10%. As in the first experiment most of
the localization errors appear at the beginning of the path. The frame rate
was around 2.6 fps, despite that the map’s size was double than before.
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Figure 2.8: Sample images as taken by the robot in one traversal of the
second experimental path.
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Figure 2.9: Second test results graph.
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2.4 LAMs for feature extraction in landmark
recognition

The approach tested in this section can be summarize as follows: we try to
perform the visual recognition of designed landmark positions by a supervis-
edly built classifier. We test two ways to compute feature vectors from the
images: the convex coordinate representation and the Principal Component
Analysis (PCA) [35]. Our innovative approach to characterize the images,
which the robot captures along its movement, consists in the computation of
the coordinates of the image data points relative to the vertices of a convex
region that covers all or most of the points that represent the images in high-
dimensional space: the convexr coordinates. These convex coordinates are the
result of the linear unmixing relative to the vertices of this convex region.
Therefore the dimensionality reduction depends on the degree of detail of
the definition of this convex region: the number of vertices that describe it.
We derived this approach from the unsupervised analysis of hyperspectral
images [40, 43|through the "spectral unmixing” [59] model. Therefore the
use of the name endmember for the convex set vertices. We use results from
the field of LAM to induce these endmembers from the data. In [38, 39]
the convex coordinates of the pixel spectra were used as feature vectors for
supervised classification, with surprising good results. Here we try to extend
this approach to the visual recognition of landmark views for mobile robot
self-localization.

2.4.1 Description of the approach

The proposal contained in this section is a process with the following steps:

1. Extraction of the endmembers of the data sample. They provide an
approximation to the vertices of the minimal convex polytope that
covers the data sample.

2. Feature extraction: the sample data points are represented as linear
combination of the extremal points, the coefficients are the convex co-
ordinates.

3. Some distinguished or landmark positions to be recognized are selected
by hand. The convex coordinates of the views assigned to them are
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the training set for a classifier that learns to recognize them. In this
section, the classifier used is a k-NN classifier.

4. The robot will identify its actual spatial position with the landmark
position whose view is recognized.

First step consists in the induction of the endmembers from the data sample
formed by the set of images captured by a robot along its travelled path.
Those induced endmembers will be, in the second step, the basis for a linear
unmixing of the image data. This linear unmixing will give as a result a
vector or convex coordinates which will be used as feature vector for the
images. We use for the endmembers induction the Endmember Induction

Heuristic Algorithm (EIHA) [45] described in the Appendix A.4.

Map building and localization

This approach requires the full image data set that “describes” the path
which is going to be mapped, which has to be recorded in a training step and
processed afterwards. It is an off-line mapping algorithm. This image data
set will be composed of a sequence of optical images taken at regular spaces
all along the path followed by the robot.

From this training data set several positions are selected to act as land-
marks. Selection of those positions can follow any arbitrary pattern, like tak-
ing positions at fixed distances or selecting positions of practical relevance.
The optical views from these position are transformed into the convex co-
ordinates computed using the endmembers extracted from the whole image
data set of the path by the EIHA described in Appendix A.4. We assume
that the selected positions divide the path into segments or regions, being the
representative (s) (sometimes the center) of each region one or some of the
positions previously selected. These path regions correspond spatial regions
where the reference landmark views are expected to be smoothly recognized?.
Ideally these regions are adjacent and dense. Figure 2.10 illustrates this idea,
where each ellipsoid represents a region of the path that is smoothly recog-
nized. In the validation experiments below, we will, in fact, use this kind
of regions as the ground truth for the classifier. The images shown in each
elipsoid region are the ones selected as representatives of the region in order

2Smooth recognition means that small displacements do not modify catastrophically
the recognition.
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Figure 2.10: Connected regions map.

to build the classifier that will determine that an input image corresponds to
a position inside this region. Map building includes the construction of the
feature vector classifier using these images as the training set.

The robot self-localization process will be, thus, produced by the classifi-
cation of new acquired images in one of the regions previously defined using
the stored images as representatives of the region. For an input image the
process is as follows:

1. Perform the linear unmixing of the image with the basis of endmem-
bers computed from the training path image collection. The convex
coordinates are the feature vector.

2. Classify the image feature vector with the classifier trained with the
feature vectors of the landmark representative images.

3. When performing validation, count as success if the actual robot posi-
tion falls in the region defined by the landmark classifier.

This mapping approach produces a topological map, because no metric infor-
mation is stored or retrieved form the map, and the robot only uses relative,
non-precise positioning.

2.4.2 Experimental validation

The experimental setup is as follows. First, a path was defined from the
research group’s laboratory to the stairs hall on the 3rd floor of our building.
The mobile robot platform was guided manually six times following this path.
In each of those trips, the odometry was recorded and the images taken from
the camera, at an average of 10 frames per second, were also recorded. This
process is described in detail in appendices C and D.
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In the computational experiments that follow, the first trip was used to
train the system parameters, and the five remaining trips were used as test
sequences, simulating a real trip after the map building process. The task
to perform is to recognize a hand selected set of spatial landmark positions
given their respective views of the world as taken by the robot’s camera.
The landmark positions were selected on the floor plane, selecting places of
practical relevancy, like doors to other laboratories, and the corresponding
landmark views were extracted from the first trip image sequence based on
odometry readings. Figure 2.11 shows the selected landmark positions as
well as the paths traversed by the robot gathering the experimental data, and
figure2.12 shows the landmark views as extracted from the image sequence.

Classes of images are identified for each of the selected landmark position,
assigning the images in the sequences to the closest landmark map position
according to its corresponding robot odometry reading. This image labelling
is the ground truth for the ensuing processes. Therefore the task becomes
the classification of the images into one of the map classes. The classification
was done using a k-NN classifier. Each class is composed of images from the
training sequence taken in robot path positions before and after the landmark
map position for which it is the closest map position.

From the image sequence of the first trip a PCA transformation consisting
of the first 230 eigenvectors was computed. All the following computations
were done on the PCA coefficients of the images. The EIHA was applied
several times to the PCA coefficients of the different image sequences. The
noise tolerance parameter with best results was set, after some tuning, to
a = 5. An instance of the endmembers selected with this value is given
in figure 2.13. Despite their similarity to the collection of images shown in
figure 2.12, these are obtained from a completely unsupervised process, while
those in figure 2.12 correspond to a human made landmark selection. An
interesting question raised from those results was whether this approach could
be used as an automatic landmark position identification whose landmark
views correspond to the extrema found by the EIHA. This question guided
the works presented in next section 2.5.

As the different EIHA runs may give different results, we give data from
several repetitions of the algorithm in the tables below. Initially, for the test
trips each image was classified on the map classes using 1-NN. Table 2.1 shows
the landmark recognition results with our convex features, while results using
PCA as features for classification are shown in table 2.2. Our convex feature
approach provided a big reduction on the number of features used with some
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Figure 2.11: Reference positions for region partitioning. (1) Laboratory. (2)
Laboratory door. (3) Laboratory door. (4) Laboratory door. (5) Printers.
(6) Laboratory doors. (7) Corridor door. (8) Laboratory door. (9) Router
closet. (10) Couch & coffee. (11) Crossing. (12) Hall.
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Figure 2.12: The landmark views corresponding to the positions selected to
build up the map.

Figure 2.13: The views corresponding to the endmembers selected in one
instance of the execution of the EIHA.
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improvement sometimes and comparable global average recognition results.
Ensuing computational experiments were done using 3-NN classifiers,
with noticeable improvements in the results. Table 2.4 and table 2.5 show
the classification success ratios for each of the sequences on the convex coor-
dinates computed from the endmembers found by the algorithm after each
run, with different values of a. The last column shows the number of ex-
trema found at each run. Notice that the success ratio decreases as the image
sequence is farther in time from the initial one used for training. Notice also
that the number of extrema is in the order of 10 for the best results, meaning
a dimension reduction from 230 to O(10). The Av. column shows the aver-
age success for each image sequence, including the training image sequence.
For comparison we perform some further dimension reduction on the PCA
coefficient vectors selecting the most significant eigenvectors for the trans-
formation. The average results of the image classification are given in table
2.3, the average being computed as in the last column of the other tables.

Table 2.1: Landmark recognition success rate based on the convex coordi-
nates representation of the navigation images for several runs of the EIHA
with @ = 5 and using 1-NN.

Run | Train | Pass 1 | Pass 2 | Pass 3 | Pass 4 | Pass 5 | Av. | #endmember
1 0.76 0.62 0.59 0.55 0.56 0.49 | 0.595 14
2 0.78 0.63 0.62 0.54 0.56 0.44 | 0.595 13
3 0.78 0.62 0.63 0.57 0.61 0.49 | 0.617 12
4 0.75 0.62 0.60 0.56 0.60 0.48 | 0.602 12
5) 0.73 0.61 0.61 0.55 0.54 0.50 0.59 14
6 0.75 0.63 0.59 0.55 0.59 0.47 | 0.597 13
7 0.78 0.65 0.64 0.53 0.56 0.48 | 0.607 12
8 0.75 0.63 0.59 0.51 0.51 0.49 0.58 11
9 0.74 0.63 0.61 0.54 0.57 0.46 | 0.592 10
10 | 0.73 0.58 0.58 0.51 0.53 0.43 0.56 11

| Av. | 0.755 | 0.622 | 0.606 | 0.541 | 0.563 | 0.473 | 0.594 |

The approach to endmember extraction described in the algorithm A.3
described in appendix A.6 was also tested. Table 2.6 shows the results of the
convex coordinate approach with varying number of endmembers selected
applying the algorithm A.3. The best results are obtained when selecting 10
and 15 extrema, which give results comparable to the PCA. Contrary to the
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Table 2.2: Landmark recognition averaged success rates based on the PCA
representation of the navigation images for several sets of eigenvectors se-
lected, using 1-NN.

PCA 197 | PCA 150 | PCA 100 | PCA 50 | PCA 30 | PCA 10
0.61 0.59 0.60 0.61 0.62 0.61

Table 2.3: Landmark recognition success rate based on the PCA representa-
tion of the navigation images for several sets of eigenvectors selected, using
3-NN.

Set Train | Pass 1 | Pass 2 | Pass 3 | Pass 4 | Pass 5 | Av.
PCA 197 | 0.95 0.84 0.76 0.65 0.79 0.77 | 0.793
PCA 150 | 0.95 0.84 0.76 0.65 0.78 0.76 0.79
PCA 100 | 0.95 0.85 0.76 0.65 0.79 0.76 | 0.793
PCA 50 | 0.95 0.85 0.76 0.65 0.78 0.78 | 0.795
PCA 30 | 0.96 0.87 0.77 0.64 0.78 0.78 0.8
PCA 10 | 0.96 0.86 0.78 0.66 0.76 0.73 | 0.792

Av. 0.953 | 0.852 | 0.765 0.65 0.78 0.763 | 0.794

Table 2.4: Landmark recognition success rate based on the convex coordi-
nates representation of the navigation images for several runs of the EIHA
with a = 6 and using 3-NN.

Run | Train | Pass 1 | Pass 2 | Pass 3 | Pass 4 | Pass 5 | Av. | #endmember

0.92 0.78 0.74 0.66 0.68 0.62 | 0.733 8

0.95 0.77 0.73 0.74 0.72 0.62 | 0.755

0.95 0.83 0.73 0.67 0.72 0.64 | 0.757

094 | 0.78 0.71 0.67 0.69 0.64 |0.738

0.93 0.76 0.71 0.65 0.67 0.62 | 0.723

0.93 0.77 0.72 0.69 0.68 0.57 | 0.727

0.95 0.78 0.70 0.61 0.66 0.62 | 0.72

0.95 0.78 0.69 0.58 0.69 0.62 | 0.718

OO0 | O T b= W[ DO —

0.93 0.80 0.73 0.70 0.73 0.63 | 0.753

©| 00| CO| 00| GO | 3| 0|

10 | 094 | 0.80 0.73 0.65 0.69 0.67 | 0.747

| Av. [ 0.939 [ 0.785 | 0.719 | 0.662 | 0.693 | 0.625 [ 0.737 |
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Table 2.5: Landmark recognition success rate based on the convex coordi-
nates representation of the navigation images for several runs of the EIHA
with @ = 5 and using 3-NN.

Run | Train | Pass 1 | Pass 2 | Pass 3 | Pass 4 | Pass 5 | Av. | #endmember
1 0.94 0.81 0.76 0.72 0.73 0.67 | 0.772 13
2 0.94 0.85 0.77 0.69 0.78 0.71 0.79 14
3 0.94 0.84 0.75 0.70 0.75 0.74 | 0.787 13
4 0.94 0.83 0.71 0.63 0.73 0.67 | 0.752 14
5) 0.94 0.85 0.79 0.69 0.78 0.72 |0.795 12
6 0.93 0.80 0.70 0.67 0.69 0.70 | 0.748 12
7 0.94 0.83 0.71 0.59 0.70 0.66 | 0.738 12
8 0.93 0.82 0.76 0.69 0.74 0.66 | 0.767 12
9 0.94 0.79 0.73 0.64 0.70 0.63 | 0.738 14
10 | 0.92 0.79 0.70 0.63 0.65 0.60 | 0.715 12

| Av. | 0.936 | 0.821 | 0.738 | 0.665 | 0.725 | 0.676 | 0.76 |

ETHA, this algorithm does not have any random component, so there is no
need to repeat the computation. Also the number of extrema is a parameter
of the algorithm. The results with both algorithms are very similar.

The comparison of the results in tables 2.4, 2.5, 2.6 and 2.3 shows that
there is at least an instance of the convex coordinates features which improves
the best results of the PCA, and that the convex coordinates are comparable
or improve the results of the PCA with a the same or much stronger dimen-
sionality reduction. Although these results are much less spectacular than
the ones reported in [38, 39|, they confirm the potential usefulness of convex
coordinates as a feature selection algorithm.

2.5 LADMs for unsupervised landmark selection
for SLAM

In this section we try to approach the problem of visual SLAM as a coupled
problem of automatic visual landmark extraction and classification of the
robot camera views. The approach is non metric in the sense that precise
spatial information is not extracted from the images. As in the previous
section, the result of the process is a topological map where nodes are given



CHAPTER 2. LATTICE COMP. FOR LOCAL. AND MAPPING 93

Table 2.6: Landmark recognition success rate based on the convex coor-
dinates representation of the navigation images for several numbers of end-
members extracted and using 3-NN and the algorithm A.3.

#endmember | Train | Pass 1 | Pass 2 | Pass 3 | Pass 4 | Pass 5 | Av.
5 0.96 | 0.79 0.74 0.64 0.71 0.61 | 0.742
10 0.96 | 0.80 0.76 0.61 0.80 0.72 | 0.775
15 0.96 | 0.80 0.74 0.66 0.79 0.69 | 0.773
20 0.96 | 0.80 0.76 0.65 0.81 0.67 | 0.775
25 0.96 | 0.78 0.72 0.62 0.74 0.68 | 0.75
30 0.96 | 0.81 0.73 0.60 0.75 0.69 | 0.757

| Av. | 0.96 | 0.797 | 0.742 [ 0.63 | 0.767 | 0.677 [ 0.762 |

by the landmark images and the transitions between nodes happen when a
landmark view is either discovered or recognized. This approach is a step
ahead towards autonomous systems relative to the works presented in the
previous section.

In this new approach, we will not compute the convex coordinates for
two reasons. First, the main interest here is the usefulness of the endmem-
bers obtained by this approach as landmarks for SLAM. Landmarks are the
nodes of a qualitative map which is constructed as the robot moves on, as
in previous sections. Once the landmarks are identified, the localization of
the robot is performed computing the distance from the present view to the
landmark views. This distance is computed on the raw image feature space.
The second reason is that because of the on-line nature of the SLAM process
it is not possible to use statistical information or information that could be
obtained from a representative data sample. That means that we can not
use PCA or convex coordinate features, because re-estimation will modify
the representation of the images and invalidate previous decisions about the
landmark selection. The on-line condition also forces modifications in the
algorithm for endmember induction from the data, which are specified in
section A.5 of Appendix A.

2.5.1 Experimental validation

The stated goal is to automatically detect from the visual data stream a
set of views that can be considered as landmarks for visual SLAM. To have
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some experimental setting where the experiments would be reproducible and
the effects of algorithm design could be assessed, the works have been done
on the same recorded image sequences than in 2.4, described in appendix
D. The robot platform used is a Pioneer 2 DX, as in previous works, with
detailed description of the experimental settings in appendix C. In more
general terms, the experimental setup is as follows:

First, five paths on different floors of our building were selected. The
mobile robot platform was guided manually six times following this path.
During each of those wanderings, the robot recorded the odometry and the
images taken from its camera, at an average of 1 frames each 5-6 cm. Figure
2.14 shows the first wandering on each path overlaid to the floor plan. Second
and third paths correspond to traveling in the opposite direction of the same
path. Fourth and fifth path are also opposite direction traveling.

Although odometry introduces some errors, we can associate for valida-
tion purposes the selected views and an area of influence where the robot
would recognize this position. This association may be used as the ground
truth for quantitative evaluations. Usually the views that must be assigned
to a given landmark view are the ones corresponding to positions closer to
the landmark position according to the euclidean distance between positions.
This introduces some bias in the validation, because the landmarks were not
selected trying to minimize this classification error. Classification results
interpretation must take this bias into account. The qualitative validation
consists on the inspection of the assignment of images to landmarks. Plotting
this assignment, the best result is a pure staircase shape, meaning that no
confusion between views have been detected, once a view is recognized the
robot continues steadily to recognize it until the new landmark is recognized.

In section 2.4 the PCA transformation of the images was performed, al-
lowing dimension reduction and introducing some additional robustness, be-
cause the PCA dimensional reduction implies some noise cleaning. For the
used algorithm, PCA dimension reduction had the advantage of removing ir-
relevant morphological independence due to small translations in the image.
It is therefore desirable to have some dimension reduction algorithm applied
on the data. However, in this case the PCA can not be computed, because we
can neither estimate the mean and covariance matrix from a prior: informa-
tion, nor use an adaptive estimation. Instead, the Discrete Cosine Transform
(DCT) of the images was computed as feature extraction, keeping the 10x10
lower frequency coefficients, located on the upper left corner of the transform.
This feature extraction does not depend on image stream statistics and the
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Table 2.7: Landmark recognition success rate based on the DCT low fre-
quencies and the assignment of images to landmarks based on the odometry.

W1 | W2 | W3 | W4 | W5 | W6
Path 1 | 0.83 | 0.75 | 0.76 | 0.60 | 0.69 | 0.64
Path 2 | 0.84 | 0.68 | 0.74 | 0.76 | 0.59 | 0.67
Path 3 | 0.80 | 0.66 | 0.48 | 0.76 | 0.71 | 0.65
Path 4 | 0.80 | 0.49 { 0.39 | 0.76 | 0.41 | 0.67
Path 5 | 0.81 | 0.72 | 0.69 | 0.77 | 0.63 | 0.57

resulting feature vector components can also be accepted to move around
zero, allowing the application of endmember extraction algorithm without
an estimation of the population mean.

To obtain the landmark positions shown as red circles in figure 2.14, the
modified endmember extraction algorithm was applied to the feature vec-
tors of the images in the first wandering from each path. The feature vectors
consist of the 10x10 lower frequency coefficients of the Discrete Cosine Trans-
form of each image. Figures 2.15 to 2.19 show the images corresponding to
landmarks detected in the five paths tested. To obtain a qualitative vali-
dation of the approach we plot the closest landmark to each image in the
recorded sequence, computed over the euclidean distance of the feature vec-
tors. These plots appear in figure 2.20 for each of the selected paths. The
staircase shape of the plots demonstrates qualitatively that the selected land-
marks adequately characterize the path allowing for a steady recognition of
each landmark image along the first wandering on the path.

For SLAM purposes it is necessary that the landmarks selected will be
recognized in the future, so that the robot could be able to detect its po-
sition relative to the qualitative non metric map constructed from the first
wandering on the path. The recognition rate was computed based on the
assignment of images to landmarks according to the odometric information.
As commented before, this introduces some bias, because the landmarks were
not selected to perform this task, however we think that this recognition ratio
across wanderings is informative of the future self localization of the robot
based on the selected landmarks.

The first appreciation about the results in table 2.7 is a degradation of
the recognition as the time between the capture of the sequence used for the
landmark selection and the sequence used for the actual recognition increases.
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Figure 2.14: The first wandering on each path. Red circles correspond with
the position of each view detected as a landmark.
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Figure 2.15: Images corresponding to the landmarks detected in first path
shown in figure 2.14a.

Table 2.8: Landmark recognition success rate based on the DCT low fre-
quencies and the assignment of images to landmarks based on the odometry.
Filtering of the decision as described in the text.

W1 | W2 | W3 | W4 | W5 | W6
Path 1 | 0.86 | 0.80 | 0.81 | 0.70 | 0.77 | 0.78
Path 2 | 0.87 | 0.75 | 0.82 ] 0.83 | 0.70 | 0.75
Path 3 | 0.83 | 0.71 | 0.51 | 0.79 | 0.78 | 0.74
Path 4 | 0.82 | 0.51 | 0.39 | 0.80 | 0.41 | 0.77
Path 5 | 0.85 | 0.77 | 0.75 | 0.81 | 0.73 | 0.60




CHAPTER 2. LATTICE COMP. FOR LOCAL. AND MAPPING o8

Figure 2.16: Images corresponding to the landmarks detected in first path
shown in figure 2.14b.
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Figure 2.17: Images corresponding to the landmarks detected in first path
shown in figure 2.14c.
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Figure 2.18: Images corresponding to the landmarks detected in first path
shown in figure 2.14d.
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Figure 2.19: Images corresponding to the landmarks detected in first path
shown in figure 2.14e.
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Figure 2.20: Plot of the landmark recognition for the first wandering of each
path.
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The results decrease for the successive wanderings. This is consistent with
the classification results of previous sections. Overall the results in table
2.7 may appear to be low from a pure classification point of view. However,
several factors must be taken into account in order to moderate these negative
conclussions. The first is that the ground truth partition of the images has
been done on the basis of the odometry dividing the path into segments where
the landmark lies in the middle. The landmark selection was not meant to
be optimal for this setting. In fact, the results for the first wanderings are
rather low, despite the fact that the landmarks perform a good partition of
the image sequence for each path, as shown in figure 2.14. The second factor
is the different illumination conditions that prevailed in some wanderings over
some paths. Paths 1 to 3 were more stable regarding illumination conditions.
In fact path 1 was recorded during the night with artificial light. Accordingly
it is the most stable of all paths. Path 4 and 5 were recorded during a windy
and cloudy day, so that the illumination conditions vary widely between
wanderings. This explains the big fluctuations on the results for path 4. The
use of illumination invariant features probably would help to alleviate the
problem.

The results of table 2.7 may be improved as shown in table 2.8 by the
introduction of a simple mechanism similar to a discrete Kalman filter or a
naive Hidden Markov Model. The mechanism performs the voting between
the three last recognitions (not to be confused with the 3-NN classification
of the current image). The winning landmark is the one recognized. If we
visualize the landmark based map as a graph, whose nodes are the landmark
views and the arcs the transitions between recognition, then we restrict the
transitions to those between neighboring nodes whose index distance is two
or less. This simple process improves the recognition results in almost all
cases. The most important effect is that the recognition degradation with
time is lower than in the original classification. That is, the decreases in
recognition for successive wanderings on a path are smaller than in table 2.7.

2.6 Summary and conclusions

The works reported in this chapter follow a historical sequence, going from
first brute force attempts into more sophisticated applications of the LAMs.
First we report in section 2.3 on the real-time experimental results on the use
of LHAM for landmark image storage and recognition confirming theoretical
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and simulation results of previous works [85, 87]. The system responded well
on most situations, failing only on quite hard conditions. It has a very low
computational cost that allows its implementation on the on-board computer
of the Pioneer robot (AMD K6-II, 400MHz). It seems that it can be useful
on less structured environments, and embedded in more complex navigation
systems of autonomous mobile robots.

In order to build up more exhaustive maps to obtain spatially dense
recognition, it was needed to devise an unsupervised method. While the
robot is map-making, instead of taking positions at fixed distances, new
ones could be stored when the new view does not match with any other
stored one, avoiding also very similar conflicting memories. This eliminated
much of the discontinuity of the map (when it goes out of a recognized
position to an unrecognized one, it will immediately store it) and reduced
the problem of recognizing multiple stored positions from one view, since
stored locations’ difference will be assured and the intersection between the
physical recognition areas will be minimized.

Results in section 2.4 show that the convex coordinates of the data points
based on the endmembers induced by the EIHA algorithm can be used as
features for pattern classification. Mobile robot self-localization is stated
there as the classification of images taken from the robot’s camera by a
classifier trained on the feature vectors of hand selected landmark positions.
PCA and convex coordinates feature vectors are used for such classification.
Results show that this approach improves the PCA one in some runs, while on
average performs similarly like most PCA with different eigenvector selections
tried. However a big decrease of the number of features needed to obtain the
results can be appreciated using convex coordinates as feature vectors. Also,
as a result from the observation of the selected endmember sets, the use of the
ETHA for the detection of endmembers as an automatic landmark selection
tool was explored, leading to the works reported in section 2.5.

In that last section, the algorithm for endmember induction has been
modified to serve for the automatic detection of image landmarks from the
image stream provided by the on-board camera while the mobile robot is
moving. The recognition of these landmarks allow for the future self local-
ization of the robot. The approach is not metric, because we do not obtain
spatial measurements from the images, instead it can be considered as a
topological map.

This approach has been tested over a set of five paths, which the robot
has covered six times. The qualitative results given by the plot of the assign-
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ment of images taken on the path to the selected landmarks are good. The
quantitative results, given by the recognition rate against a ground truth
classification based on odometry, are encouraging. As the main problems
seem to arise from varying illumination conditions, further work must be
addressed to incorporate illumination robust features into the system.






Chapter 3

Localization from 3D imaging

In this chapter, we report the works made in this PhD thesis towards an
innovative neuro-evolutionary system for egomotion estimation with a 3D
Time of Flight (ToF) camera. This system is composed of two main modules
following a preprocessing step. The first module is a Competitive Neural
Network which computes a Vector Quantization of the preprocessed camera
3D point cloud. The second module is an Evolution Strategy which estimates
the robot motion parameters by performing a registration process, searching
on the space of linear transformations, restricted to the translation and ro-
tation, between the codebooks obtained for successive camera readings. The
fitness function is the matching error between the predicted and the observed
codebook corresponding to the next camera readings.

The structure of this chapter is as follows: In section 3.1 some background
and motivations will be given. In the following section 3.2, the proposed
system is described. The system is tested in section 3.3, where several ex-
periments are presented with comparisons between our and other well known
registration algorithms, and their results discussed. Finally, some conclusions
are provided in section 3.4.

3.1 Background and motivation

In spite of impressive development and improvements in robotics, both in
hardware and algorithm and techniques, few changes have happen in the
spectra of available of sensors used in mobile robotics, which still are more
or less the same as in the origins of the field. Video cameras, laser range
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finders, sonar or infra-red sensors keep being the main ways to obtain in-
formation about the robots environment, with improvements based mainly
in augmented range, reductions on its size, weight or consumption or new
ways of processing acquired information thanks to the higher computational
power of newer hardware.

The recent market introduction of lightweight Time of Flight (ToF) 3D
cameras |79] which can be mounted on mobile robots opens a broad new spec-
trum of possibilities. Those cameras blend some characteristics of traditional
range sensors with those of video cameras, providing depth information cov-
ering a wide field of view not restricted to a narrow line or cone. The data
generated by them can be processed both with artificial vision techniques and
other techniques used with laser range finders or LiDAR. The use of these
cameras in mobile robotics is still a mostly unexplored area, with very few
pioneering efforts like [124], where the Swissranger 3000 is used to extract
edges to build symbolic representations of the environment, or [50]|, where
Local Linear Embedding is used to model the geometry of data points as a
way of generating view invariant references.

We are focusing our efforts on the use of ToF 3D cameras to perform
Simultaneous Localization and Mapping (SLAM) |23, 110]. The first step
toward this objective is the robot egomotion estimation from the 3D camera
readings. The registration of 3D data has a long tradition in computer graph-
ics and geoscience for surface reconstruction [98|. Point clouds are matched in
order to obtain an estimation of the camera displacement, so several partial
views of the surface could be accurately integrated in order to achieve a full
model reconstruction. Since the basic problem is similar to the egomotion
estimation problem in mobile robotics, we have studied the development of
a neuro-evolutionary system which is able to perform real time registration
of the 3D camera data in order to estimate the trajectory of a robot.

Our neuro-evolutionary system is composed of two main modules plus
a preprocessing step. The first module computes the approximation of the
preprocessed camera 3D data by means of a Competitive Neural Network
(CNN). This approximation is a Vector Quantization of the 3D data encoded
by a codebook composed of a set of 3D codevectors. We have evaluated the
Self-Organizing Map (SOM) and the Neural Gas (NG) neural architectures
for this task and we have found that the NG is more appropriate. The sec-
ond module is an Evolution Strategy (ES) |9, 88| which performs the task of
estimating the motion parameters by searching on the space of linear trans-
formations restricted to the translation and rotation, akin to the registration
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problem, applied on the codebooks obtained by the CNN on the point clouds
given by successive camera readings. The fitness function is the matching
error between the predicted and the observed codebook corresponding to the
next camera readings.

3.2 Description of the system

Our approach is composed of several modules, which will be described next.
The first module is a preprocessing step, described in section 3.2.1, along with
a brief overview of the ToF camera, the data it provides and the justification
of this preprocessing. Next a module that fits a codebook over the data by
means of a Competitive Neural Network will be presented in section 3.2.2.
That codebook will be used as input for the egomotion estimation performed
by an Evolution Strategy, as described in section 3.2.3. The algorithm 3.1
specifies one time step in the path estimation of the robot by the proposed
neuro-evolutionary system.

3.2.1 Sensor data and preprocessing

In our work, the 3D data required for the egomotion estimation is obtained
through a Swissranger SR-3000 [79] 3D camera mounted on a Pioneer 3 robot.
A more complete description of this camera and its working principle can be
found in section C.2.4 of appendix C. Some of its characteristics determine
how its data must be processed. The SR-3000 is based on phase-measuring
Time of Flight principle [62]. It uses an array of near-infrared LEDs in order
to illuminate the scene. Knowing the amplitude of the wavelength of the light
emitted, it can determine the distance to objects measuring the phase of the
reflected light, within a distance range determined by the wavelength and the
frequency at which IR pulses are emitted. Objects lying farther than this
distance may be detected as close to the camera, due to the periodic nature of
the illumination source. This kind of ambiguous readings must be removed.
Figure 3.1 shows the conventional visible wavelength image obtained from
a specific robot position and orientation. Data from this position will be
used in the following illustrations. Figure 3.2 shows the raw data provided
by the 3D camera, which consists of two matrices storing at each pixel site
1 the measured distance D; and the intensity I; of the reflected infrared
light. Since the optical characteristics of the camera are known, each pixel
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Figure 3.2: Near-infrared Intensity (left) and
distance (right) images from the 3D camera.
Figure 3.1: Reference visi-  Note that the distance measured beyond the
ble wavelength image from  door is very low (dark blue) due an ambiguous
the optical camera view. reading.

has corresponding fixed azimuth and zenith angles in spherical coordinates.
Thus, we can transform the distance image to more appropriate Cartesian
coordinates (shown in figure 3.3) and obtain a cloud of 25344 3D points,
representing the camera measurements in its field of view of 47.5 x 39.6
degrees.

This 3D point cloud is extremely noisy and it is necessary a specific
filtering process in order to retain really informational points. As can be seen
in figures 3.2 and 3.3, most of the noise comes from measurements beyond the
non-ambiguity distance range: far away surfaces (like those from the space
that is through the door) appear to be very close to the camera, forming
a dense cone near the vertex of the point cloud. Also, pixels without any
object in their line of sight present measurements spread along all distances,
caused by specular reflections. As both types of points are supposed to be far
away, the reflection intensity should be very low. Taking this into account,
we define a reliability coefficient R; for each pixel 7, computed as:

Filtering of the point cloud is based on the following observation: nearby
surfaces reflect light with more strength than a far away one, so it can be
expected some kind of balance which will keep the values of R; of valid
measurements clustered while ambiguous measurements will have outlying
low values of R;. In figure 3.4 we show the result of applying this kind of
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Figure 3.3: Plotting of the cloud of points in 3D Cartesian coordinates ex-
tracted from the distance image provided by the ToF 3D camera.
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Figure 3.4: Plotting of the cloud of points in 3D Cartesian coordinates ex-
tracted from the distance image provided by the TOF 3D camera after fil-
tering out ambiguous readings. Relevant surfaces can be appreciated.

filtering to the data in figure 3.3. It can be appreciated that most ambiguous
measurements have been successfully filtered.

A final minor optimization was done in the data preprocessing step. Since
the floor does not provide any useful matching information (the floor is a
featureless uniform surface in which new viewed parts are indistinguishable
from the ones just left behind), we remove it. It has the additional benefit
of increasing the density of codevectors in the areas of interests computed by
the CNN module. The floor filtering is performed just by eliminating every
point below a safe height. In this case, an height of 10 mm. was chosen,
since any object of this height can be easily overran by the robot.

3.2.2 Competitive Neural Network module

The point cloud size resulting from the above filtering process is usually still
greater than 15.000 points. Processing a point cloud this size is too costly
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for real-time operation, therefore some data reduction technique is required.
Also, the surfaces in the point cloud have some uncertainty, which increases
with distance, which should be desired to avoid. That is, we need a procedure
that both reduces that problem size and smooths the data, removing additive
noise.

The way to face both problems simultaneously came by the use of com-
petitive neural networks that perform some Vector Quantization process to
fit the point cloud. The objective of this system’s module was to obtain a
codebook that (1) kept the spatial shape of the point cloud and, hopefully,
of the objects in the environment, and (2) at the same time reduces the size
of the data set to a fixed, manageable, number of points. The codebook ob-
tained will be the input data used for the spatial transformation estimation
module.

For this purpose we have tried first the Self-Organizing Map (SOM) [61].
Figure 3.5 shows a SOM generated by fitting a filtered point cloud acquired by
the 3D camera at a given position. This approach, however presented several
strong shortcomings. In the maps calculated by the SOM, nodes lie in a fixed
grid. After training, some of those nodes can fall in spaces in which there
are no actual surface points in the real environment, because of the topology
preservation property of the SOM. On the positive side, we may work under
the assumption that the same node in the two SOMs extracted from two
consecutive data captures will roughly correspond to the same spatial region
of the 3D surface, which makes a lot easier the computation of the matching
distance between grids as a node-to-node distance. This assumption will
only hold if the movement is smooth enough. In fact, it needs to be so
smooth that the approach becomes useless in the practice. Robot motion is
therefore as additional source of problems. Since we are acquiring the 3D
measurements from a mobile robot, traveling at a reasonable speed, some of
the measurements in each frame corresponds to environment surfaces patches
that were out of range in the previous frame, while some of the previously
measured surface patches would fall behind in the new frame. That is, the
physical surfaces imaged in two consecutive frames may overlap only partially,
thus the ToF 3D Camera readings will inevitably have only optimal partial
matches.

We have found that all the issues raised by the use of SOM are better
tackled with the use of Neural Gas (NG) networks |69, 70|. The NG networks
were developed in an attempt to achieve an optimal utilization of all neural
units and as a flexible network able to quantize those topologically hetero-
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Figure 3.5: A grid of 20x20 nodes trained by SOM to quantize the reference
position filtered point cloud shown in 3.4.
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Figure 3.6: A codebook of 200 nodes trained by NG to quantize the position
filtered point cloud shown in figure 3.4.

geneous structured data while at the same time learning the relationships
between the input signals without specifying a network topology.

In figure 3.6 can be seen the point cloud generated by fitting a 200 node
NG to the reference position measures. It can be appreciated that physical
surfaces can be easily identified. In the following only results based on the
NG approximation of the 3D camera point cloud will be reported.

The main drawback of this data fitting and reduction process is its compu-
tational cost. While it allows the Evolution Strategy of the following module
to run real-time, the cost of fitting each point cloud somehow hinders the
real-time operation of the complete system. Since the computational exper-
iments reported below where made using a free SOM Toolbox for Matlab
[112] with default parameters, we expect that a compiled version of the code
will reduce this computation time to fit into real-time constraints.
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3.2.3 Evolution Strategy module

The input data for the egomotion parameter estimation consists of a sequence
of codebooks S; = {wy,...,wy} ¢t = 0,1,... computed by the NG module
over the sequence of ToF 3D camera captures. These codebooks give an
approximation of the 3D shape of the environment in front of the robot at
each time instant. The robot is described by its position and orientation at
each time instant t given by a real position P, = (zy,y:,0;), an estimated
position P, = (it,g)t,ét) and the codebook S;. At the next time instant
t 4+ 1, we obtain S;;; from the application of the NG to the camera data.
Our objective is to compute an accurate estimation of the position PtH
from the knowledge of the codebook S;;; and the previous estimation of
the position P, at time t. We assume that, from two consecutive positions,
the view of the environment is approximately the same, but from a slightly
different point of view (i.e., the robot is viewing roughly the same things,
but from other position). The way to calculate this new position estimation
is to calculate the transformation 7; that gives the best prediction 5}“ of
Sii1 given S;. In other words, the estimation of the motion of the robot is
stated as the following optimization problem: search for the parameters of
T; which minimize the matching distance between S;iq and the prediction
Sip1 =T, - S

Tt = arg mTin {d (St+17 StJrl)} .

This search is made by means of an (u/p+ A)-ES Evolution Strategy
[9, 88]. Since we are looking for the transformation matrix 7; between the
ToF camera data at times t and ¢ + 1, the traits of the ES individuals will
encode the parameters of T;. Although the data consists of clouds of 3D
points, the robot is moving only along the plane of the floor, so we only need
the parameters necessary for the transformation within that plane. Each
individual would be an hypothesis h; = (Ax;, Ay;, Ab;), where Ax;, Ay;
and A@; are the hypothesis about the translation and rotation parameters of
the transformation matrix hypothesis Ti, which specifies the motion between
the relative positions P; and P;y;.

) cos(AG;) —sin(ANG;) Az,
T, = | sin(A6;) cos(Ab;) Ay | . (3.2)
0 0 1
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Figure 3.7: Offspring generation from a couple of parents. White traits from
each parent go to the first offspring, gray ones to the second.

For each hypothesis h; encoded by an ES individual we have a prediction

(St+1)i = Tz X S, (3.3)

which is used to calculate the fitness function F'(h;) as a matching distance
between codebooks.

An initial population Hy of 30 individuals is randomly built by ran-
dom mutation from one initial hypothesis assumed to be the null hypothesis
ho = (0,0,0) (i.e., no transformation: the robot has not moved from previous
position). Each generation k a new parent population is built selecting the
one third individuals from the previous population Hy_; (g = 10, in this
case) with the best fitness function values. Random couples (p = 2) are se-
lected from those best fitted individuals and their traits are exchanged by a
crossover operator generating A = u x 2 offspring (A = 20 in this implemen-
tation). The crossover operator works in a deterministic way, alternating the
parent traits between the offsprings as shown in figure 3.7. Two offsprings
(01, 09) are generated from each parent couple (p1, p2) as follows:

01 = (A'Z'pu Aypz? A9?1)
02 = (A$p27 Aypu Aepz)

The traits of the offspring are mutated by adding Gaussian perturbations.
No adaptive mutation was used.

With the obtained transformations, we can estimate the egomotion of the
robot. Starting from initial position Fy, and given an estimated transforma-
tions sequence 17, ..., T}, the robot’s position at time step ¢ will be calculated
applying consecutively the transformations to the starting position:
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P=T,-..-T,- P, (3.4)

The full egomotion process is outlined in algorithm 3.1.

Fitness function

Matching two point clouds is done finding the matching point in the target
point cloud S;, of each point in the matching point cloud Sj. The matching
point is the one at minimum distance in the Euclidean distance sense:

j = argmin {]1S; — Sel}.

The matching distance is the Euclidean distance between the matched points
di = [|Sjx — Sk||. The goal of the minimization performed by the ES is to
look for a distribution of the matching distances maximizing the number of
points whose matching distance is close to zero (i.e. maximizes the number
of points which have a correspondence in both point clouds). We have tested
the mean of the matching distances as the fitness function F (h;):

F(h):%de.
k

This approach has some inconveniences shared by other classical registration
algorithms like ICP [8], caused by the non-overlapping points in the point
clouds, which can be considered outliers. The use of the mean as the value
to minimize will only find an optimal solution if the distribution is centered
around zero. When some data is matched against some model from which is
a subset, as is required by the ICP algorithm, it can still provide that optimal
solution. However, the presence of outliers in the distribution will introduce
a bias in the mean of any possible distribution, thus preventing the algorithm
from reaching an optimal solution. We have found better results (as will be
shown below) using the distance distribution median as the fitness function:

where P, (.) denotes the empirical distribution of matching distances.

Minimizing the median will increase the points with matching distance
close to zero, being quite robust against the presence of outliers. This ap-
proach is similar to the genetic algorithm used by Chow et al. [15].
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Algorithm 3.1 One step of the egomotion estimation algorithm.

Given the previous position estimation I5t.
The robot moves to a new physical position F;;

1. Take measurements from the camera.
2. Filter the cloud of 3D points.

3. Obtain Sy fitting the Neural Gas network to the cloud of filtered 3D
points.

4. Generate an initial population Hy.

5. Iterate until stopping condition, k& is the generation index:

(a) Select a parent population H!' from population Hj_;.

(b) Stop if convergence conditions in equations (3.5) and (3.6) are
matched. Continue otherwise.

(c) Generate the X offsprings H} by recombination (p = 2) and mu-
tation.

(d) For each h; € H}.

i. Build 7} from h; and compute the prediction (§t+1>i from S;.

ii. Calculate fitness [ (h;) as the matching distance between
(St+1)i and S;;.

(e) Build population Hy = H}' |J H}.

6. Build the estimation of the transformation matrix Tt from the best h;
in the last population.

7. Compute position estimation P, at time ¢ + 1 using equation (3.4).
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To reduce the computational cost of searching for the matching point
we use the nearest neighbor search realized with kd-trees [6], which are a
special sub-case of BSP-trees that partition a k-dimensional space. Each
non-leaf node generates an hyperplane orthogonal to one of the coordinate
axis partitioning the space into in two subspaces. The partitioning follows
some convention in the order in which the coordinate axis are considered
while descending in the tree. Typically, the points used as non-leaf nodes are
the median points in the partitioned axis. This technique provides nearest
neighbor search (minimum distance search for points) with a cost in the
order of O(log(n)). The use of this technique provides a couple of orders of
magnitude improvement in speed in our application.

Stopping condition

Usually an ES converges fast to the space close to the optimal solution. How-
ever, when close to the global optimum, full convergence of the population
can take a great number of generations. As execution time is a crucial issue,
a compromise between result optimality and the time employed to obtain it
is necessary. So, instead of waiting for full convergence of the population, the
ES will stop when the population has stabilized around some value. This is
achieved by establishing a distance threshold J, as a maximum Euclidean dis-
tance between the individuals of the last parent population. In experimental
implementations this threshold was set in the unit. This threshold does not
take into account the third trait of the individuals, the angle increment A6.
However, this third trait fully converges very quickly, so waiting for it does
not involve any additional delay. Stopping condition will be achieved, then,
when the two conditions are matched:

max ||h; — hjl| <9, 4,5=1..,pu (3.5)

N0 =Ny = ... = A6, (3.6)

3.3 Experimental validation

Experiments on this approach have been done off-line in order to guarantee
that the results could be reproducible. Several data sets containing sequences
of point clouds given by 3D camera measurements where recorded in series
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of walks across the corridors and rooms of our building, as described in sec-
tion C.4.2 of appendix C. These datasets are described in appendix E. The
objective of the experiment was to check how well the egomotion algorithm
could reconstruct the paths followed by the robot in those walks using the
recorded data. We report here the results obtained over one of those recorded
walks. This walk consists in a wall-following tour around one big sized (88
m?) empty room. This sample was selected since it presented some charac-
teristics that we expected could be troublesome for the effectiveness of the
algorithm, which will be discussed below. The nominal trajectory of the
robot was estimated approximately by measuring the path followed by the
robot in the room’s floor. This nominal path will be used to compute the
path estimation error of the different algorithms tested.

In figure 3.8 a comparison of the robot trajectories estimated by the ego-
motion algorithm using median and mean as fitness functions is shown, along
with the path reconstruction performed by the odometry and the nominal
path. The trajectories estimated by our system do not follow any kind of cor-
rection algorithm. It can be appreciated that the deviation from the path in
the case of the median fitness function is lower than for the mean fitness func-
tion, and that, in spite of the accumulated error, in both cases the estimated
path keeps the shape of the real one, obtaining an estimation comparable to
the one provided by the odometry. In general, odometry obtains a better
estimation on the pure lineal displacement sections of the path, as it has no
disturbing effects. On the other hand, where there are turning angles the true
path is better estimated by our system. Notice the loop artifacts shown in
the right-turning corners of the ES estimated trajectories. They are caused
by the installation of the camera on top of the robot, which was mounted
in a position to the right of the physical rotating axis of the robot. Because
of that, when the robot performs a closed turn to the right, the position of
the camera actually moves back and left from its former position. Since our
egomotion system estimates the position of the camera, those small loops
shown in the corners correspond to the true motion of the camera. Also it
must be noticed that when there are left-turn corners in the path this artifact
does not appear.

The use of kd-trees for searching matching points allows for bigger code-
books to be trained. In figure 3.9, egomotion estimations using 100 and
400 codebooks are shown. The improvements obtained by using a 400 code-
book does not justify the increase in computation time shown in table 3.2.
Therefore, further experiments were performed with a codebooks of size 100.
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Figure 3.8: Comparison between estimated egomotion with mean and median
fitness function of the ES module. Odometry and approximate real paths are
shown as reference.
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Figure 3.9: Comparison between estimated egomotion with 100 and 400 code-
books.
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Some registration algorithms found in the literature where tested on our
data for comparison with our ES approach, using Matlab code provided by
[98]. Results were quite surprising to us. In general, the classical algorithms
tested gave quite bad results. The best qualitative result was given by a
variation of ICP developed by Zinsser [126], shown in figure 3.10 against
our ES and the other algorithms tested. We were expecting much better re-
sults, since all of the algorithms are recognized in the literature, with proven
registration efficiency. Our interpretation of the results is that, as those algo-
rithms perform full 3D registration, they are very sensitive to small variations
of the camera position. Small errors in the mounting of the camera (e.g., be-
ing it lightly tilted or rotated in respect of the longitudinal or transverse axis
of the robot) or produced by the movement of the robot (e.g., small tilts
of the camera if the frame is captured while accelerating or braking), could
induce rotations in X or Y axis which could be disastrous for the egomo-
tion estimation, when only Z axis rotations are expected. It seems that our
approach, while maybe unable to provide an optimal registration in a more
general situation, is more robust and able to cope with those issues more
satisfactorily.

A comparative table of the error for the registration algorithms tested,
odometry included, is shown in table 3.1. The error is calculated against the
nominal trajectory of the robot. Mean error along the path, accumulated
error and final position error are shown in millimeters. It can be appreciated
that our system obtains results comparable to the odometry, with a better
final position estimation. The other tested registration algorithms diverge
greatly from the real path, as is seen in the big mean error. The low final
error of the Besl and Chow algorithms is easily explained by the closed loop
shape of the path: as they are unable to reconstruct the path, they do not
move far from the starting point, remaining always close to the final point.

Figure 3.11 shows the evolution of the error along the path for all the
egomotion estimation algorithms tested. It can be observed that the error
in both odometry and our ES grows smooth and slowly. On the other hand,
the other approaches diverge very fast initially but later decrease at the end
of the path, as the path gets closer back to the origin.

Our neuro-evolutionary system still suffers from a drawback coming from
the matching of the codebooks. If the overlapping areas of the consecutive
frames cover less than 50% of the points in the set, the algorithm will be
unable to achieve an optimal solution. This is a problem common to any
registration algorithm, but in this setting the problem can worsen if the
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Figure 3.10: Comparison between estimated egomotion with ES and Zinsser.

’ Algorithm ‘ Mean error ‘ Acc. error ‘ Final error ‘

Odometry 2585 695602 5255
ES 2952 794266 3881
Zinsser 12711 3419386 10291
Besl 9300 2501695 3017
Chow 6893 1854391 2999
Jost 8738 2350702 8478

Table 3.1: Mean, accumulated and final position error in mm. for the esti-
mated path by different registration algorithms, plus the odometry.
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Figure 3.11: Error evolution along the path estimated by different registra-
tion algorithms.
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’ Algorithm \ 100 Codevectors \ 400 Codevectors ‘

Besl 84 394
Chow 5224 14936
ES 9564 N/A

ES kd-trees 277 964

Jost 63 257

Zinsser 50 389

87

Table 3.2: Execution times (in seconds) of different registration algorithms
for the sample path of 269 frames.

relation between motion speed and capture rate is not controlled properly
(i.e., if the robot moves 'too much’ from one frame to the next), considering
that the field of view of the used camera is relatively narrow. Depending on
the kind of robot operation or control model this can become a serious issue.

Another annoying detected issue is pervasive of the typical scenarios that
a mobile robot has to face in indoor environments. When following a wall,
distance and angle from the wall are properly calculated, but correct estima-
tion of the forward linear motion is difficult to obtain. As happens with the
floor, a typical wall is a featureless uniform structure in which, when moving
along, new viewed parts are indistinguishable from parts left behind, thus
making extremely difficult to estimate how much wall have been traveled.
In absence of other objects in the field of view this estimation has to come
from small features in the walls or from far away front-faced walls, which do
not provide optimal matching features. This problem is equivalent to the
aperture problem present in many other computer vision techniques, when
only a featureless patch of the surface of an object is visible.

In the execution times for the sample path shown in table 3.2 for several
registration algorithms, it can be seen that our first approach is the slowest
one. The use of kd-trees for closest point search improves performance more
than 30 times using 100 codevector codebooks, getting closer to the other
algorithms and outperforming significantly the other evolutionary approach
present, the GA from Chow. Even though other registration techniques are
faster, they do not give a good egomotion estimation. As the ES with kd-
trees, while slow, is fast enough to real-time operation, it seems to be the
overall better suited approach to this problem.
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3.4 Summary and conclusions

In this chapter, we have reported our advances towards a new mobile robot
egomotion estimation neuro-evolutionary algorithm, based on information
obtained from a 3D camera and a system composed of a NG and an ES. The
3D camera provides information about the distances to the objects in the
robot environment. This information is translated into a point cloud, which
is filtered to remove wrong measurements and approximated with a NG, in
order to obtain a codebook that maintains the shape of the objects in the near
environment of the robot. Those codebooks are used to estimate the spatial
transformation leading to the next position by an ES, evolving a population
of hypothesised positions using a matching distance as fitness function. Some
experimental results have also been presented and its shortcomings discussed.

Results obtained show that the egomotion estimation system by itself
provides a path reconstruction comparable to or even improving the one pro-
vided by odometry. We have also shown that the use of the median of the
minimum distances between points of the codebooks improves the results of
the registration process. Also, the use of kd-trees to search for the closest
point reduces computation times manifold. The use of bigger sized codebooks
does not seem to improve the results, while increasing notably computation
time. Qualitative and quantitative comparisons with other registration al-
gorithms have been also reported. While those algorithms have been shown
to be faster that the NG-ES approach, our system has resulted in the best
egomotion estimation.

Several drawbacks of our egomotion neuro-evolutionary system have been
identified, namely the problem with the slightly overlapping consecutive
frames and the aperture problem with long uniform featureless structures.
Both problems derive from the very nature of the data used. Our most imme-
diate future work will be to try to overcome those issues by the integration
of the neuro-evolutionary system into a Kalman or particle filter architec-
ture. Also, fusion of the 3D data with the optical information provided by
the robot’s video camera could be used to face the problems inherent to the
registration approach.



Chapter 4

Multi-robot Visual Control

This chapter contains the description of an experimental proof-of-concept of
a new paradigm in the general field of Multi-component Robotic Systems
(MCRS) [26]. Our efforts are focused on the visual control of a specific kind
of MCRS, called Linked MCRS in [26], characterized by the existence of a
passive link between active agents. Specifically, we are trying to develop
the tools and techniques necessary to build a MCRS able to displace a hose
along an unstructured environment. In section 4.1 we give a short overview
of multi-robot systems in order to motivate the experimental work described
below, and a definition of the hose manipulation problem that will be ad-
dressed in this chapter. Section 4.2 will detail the guidelines of the proof of
concept which implementation will be described in the following section 4.3.
Finally some conclusions will be discussed in section 4.4.

4.1 Multi-robot systems

Multi-Component robotic systems, or multi-robot systems, have been pro-
posed in several application domains as a way to fulfill more efficiently a
task by cooperation between several robots. Also, there are complex tasks
that can not be accomplished by a single robot and must be performed nec-
essarily by a multi agent system [25]. We are not interested, however, in
systems which are a mere collection of robots performing a fixed task in a
static environment, like the industrial robots of a production line. The kind
of multi-robot systems we are interested in has to be composed by a vari-
ety of interacting, cooperating autonomous agents with physical embodiment

89
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that impose restrictions on what they can do, but also give them power to
do some specific things, and specific ways to contribute to the collective be-
havior for the realization of tasks [26]. For instance, the swarm-bots [24]
are able to grasp one another to build specific morphological configurations
of the whole system that allow them to overcome obstacles like trenches or
bumps which can not be overcome by a single robot. Multi-robot systems
have been proposed for the operation in big, unstructured and very dynamic
environments. In this type of environments, a multi-robot system possesses
several advantages from a single robot. For instance, while a single robot can
only perceive a very limited portion of the environment, a group or robots
communicating between them cover a much wider space, allowing them to
respond better to changes in that dynamic environment, as those changes
are perceived earlier and transmitted to the other members of the group.

In the last two decades, a lot of effort has been put in transferring the
multi-agent paradigm to mobile robotics. However, it is still difficult to prop-
erly categorize this research field, as the same nature of the paradigm, with
almost limitless possibilities in configurations and objective tasks, does not
impose any clear distinction between different approaches. There are several
reviews giving different categorizations [25, 10, 54, 30, 26|, focusing in dif-
ferent aspects of the multi-robot systems. For instance, in [25] a taxonomy
of multi-robot systems was created focusing on the size of the robot group,
their communications range, topology and bandwidth, reconfigurability of
the system, processing abilities of the individuals and the homogeneity of
the group. In [10] several axes were defined for this classification. Those
axes represented the group architecture, the conflict resolving mechanism,
origins of cooperation, learning and adaptability of the system and the geo-
metric problems the system is tied to due its physical capabilities. Both [54]
and [30] proposed a taxonomy based in four layers: cooperation, knowledge,
coordination and organization. Finally, in [26] a categorization of MCRS is
done focusing in the coupling of the individuals, their morphology, the tasks
they have to perform and the environment in which have to be carried out,
the control of the system and the perception used to obtain feedback from
the actions taken an their effects. Focusing in the morphological properties of
the robot, the way they are physically connected, three main types of MCRS
were identified: Distributed, Linked and Modular:

e The Distributed MCRS correspond to groups of robots without physical
connection, performing tasks such following the leader, herding objects,
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etc.

e The Modular MCRS correspond to groups of modular robotic elements
attached with rigid, strong links to assume a given morphology which
can be task-dependent.

e The Linked MCRS corresponds to groups of autonomous robots linked
through a passive non-rigid linking element. This passive element in-
troduces dynamic problems and restrictions that may greatly influence
the control of the whole robot ensemble.

The Distributed and Modular MCRS are familiar concepts, however the
Linked MCRS is a new category, not previously identified in the literature.
For instance, if we consider the task of self-perception, the ability to measure
the configuration of the system, it differs greatly in the case of the Linked
MCRS from the other kinds. The Modular MCRS may sense its configuration
through the state of its rigid links between modules. The Distributed MCRS
may estimate it from the information gathered by the individual robots by
themselves. The Linked MCRS, however, need to make (visual) observations
on the configuration of the passive linking element. If we consider the prob-
lem of defining (computing) control rules, the Modular MCRS may rely in the
rigidity of its joints between modules in order to solve the inverse kinemat-
ics problem. The Distributed MCRS need only to command the individual
robots, without taking into account interaction other than avoiding avoiding
collision and traffic jams. The Linked MCRS needs to model the behavior
of the passive linking element, which may depend on some physical parame-
ters such as elasticity or weight, and to take it into account to compute the
individual robots control commands. The control on the linking element is
indirect and its response can be highly non-linear. These kinds of problems
are new in the robotics literature, and we are starting to deal with them
from several points of view. In a companion PhD Thesis, Zelmar Echegoyen
deals with the problem of modelling and derive the formal inverse kinematics
and dynamics of this kind of robots. In this PhD dissertation we dwell more
on the physical realization of a proof-of-concept of a Linked MCRS with a
concrete set of robots and a piece of electric cable as the passive linking
element.
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4.1.1 Control of a Linked MCRS for hose transportation

The transportation, deployment and manipulation of a long! almost uni-
dimensional object is a nice example of a task that can not be performed by
a single robot. It needs the cooperative works of a team of robots.

In some wildly unstructured environments like shipyards or large civil
engineering constructions a typical required task is the transportation of fluid
materials through cables, pipes or hoses. The manipulation of these objects
is a paradigmatic example of a Linked MCRS, where the carrier robot team
will have to adapt to changes in the dynamic environment, avoiding mobile
obstacles and adapting its shape to the changing path until it reaches its
destination.

The general structure and composition of this hose transportation MCRS
system would be that of a group of robots attached to the hose at fixed or
varying points. The robots would search for space positions in order to
force the hose to adopt a certain shape that adapts to the environment,
while trying to lead the head of the hose to a goal destination where the
corresponding fluid will be used for some operation. In figure 4.1 we give a
rough illustration of this problem. The pipe at the lower left corner represents
the fluid source, the hose is represented by the black thick line, and the small
robots attached to it try to move it so that its head (attached to a robot)
reaches the goal represented by the red circle. The other objects in the scene
represent changing environment conditions that may force changes in the
hose spatial disposition. This general form can take multiple implementations
depending on several elements of its design:

e Robot-hose attachment: Robots could be fixed to a point of the hose,
they can move along it, or they can pull it through special gripping
mechanisms.

e There can be a centralised control which determines the positions of
each of the robots or it can be decentralised, taking each robot its own
control decision.

e Robots can be homogeneous or heterogeneous, having different con-
figurations and tasks (e.g., “pulling” robots, which tow the hose, and

IThe adjective “Long” used here is relative to the size of the individual robots. The
object’s length must be some order of magnitude greater than the robot’s size.
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Figure 4.1: Hose transportation and deployment by three robots between
starting and goal positions avoiding obstacles.

“cornering” robots, which take fixed positions and give shape to the
hose).

e Perception can be global, with some agent acquiring a global view of
the system, or local, with every robot acquiring information of its close
surrounding, which can share with the remaining robots or not.

Our research group is actively involved in studying the hose manipulation
problem from diverse points of view producing modelling and simulation of
the hose-robots dynamics, and some problem characterizations [28, 65, 27].
As a starting point to achieve this system on a real robotic platform, we have
made a physical realization using real robots of a vision controlled MCRS
which faces the basic issues in this hose transportation problem.

4.2 Proof of concept experiment

In order to perform a proof-of-concept physical realization we have defined as
the basic simplest problem that of controlling a MCRS linked system whose
objective is to perform is the transportation of the hose in a straight line in an
environment without obstacles from an arbitrary configuration of hose and



CHAPTER 4. MULTI-ROBOT VISUAL CONTROL 94

robots. In the case of having freely attached robots, being each one powerful
enough to pull the hose, this task would be trivial. Only one robot would be
needed to pull the hose head towards the objective position, being the only
issue to cope with the drag caused by the hose. However, in the case that
the robots are fixed to the hose or that an individual robot is not powerful
enough to pull it or the initial configuration of the hose is arbitrary, this task
has to be necessarily performed by several robots. Then, the control gets
more complex, as there are several robots that need to guarantee a certain
hose configuration and each individual robot motion has to be controlled in
order to keep a desired formation. Thus, although the task is the simplest
one that can be defined, it poses several problems that are the basic stones
of the solution of more sophisticated tasks. Besides, we will need to deal
with the embodiment problem: in a physical implementation the real robots
and other systems that are being used impose restrictions and conditions
that must be coped with in order to obtain a working system realizing the
proposed task. In the following we define with precision the task imposed to
the MCRS systems.

4.2.1 Task statement

A hose of 2 meters long has to be transported in straight line by three robots.
The robots are attached to the hose with a rotating coupling which allows
them to freely rotate below the hose. Each robot will take a fixed position
in the hose. The leader and last robot will be in both ends of the hose, while
the second robot will be fixed in the middle of it.

Starting conditions Robots and hose could be in any configuration which
keeps the following restrictions:

e Leader robot has to be more advanced than the second robot, and this
has to be more advanced than the last robot.

e The hose can be folded, but not so much as to block its nearest robot
when it starts moving.

e Robots should be able to start moving without obstacles (e.g. with
enough separation from the wall).
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Experiment stopping condition The leader reaches a stated goal or goes
out of the camera’s field of view.

Hose transportation conditions
e Robots must follow the direction of the leader.
e Robots must be separated enough to avoid that the hose forms loops.

e Robots must be close enough to avoid the hose tightening and causing
dragging between robots.

Perception Centralised perception, provided by an USB camera in a high
position (approximately 2.5 meters high). It should be pointed to the floor
in an angle that covers at least 2 meters of it, in order to be able of view the
tree robots at the same time when the hose is fully extended.

Control

e The leader robot’s orientation is controlled manually, its speed is con-
trolled autonomously.

e Second and third robot are controlled autonomously.

e The control commands are computed by a centralising agent which also
processes the perception.

Communication The communication of the central control agent and the
hose carrying robots is a two way wireless connection, over a shared channel.
Robots are identified by the central control in a round-robin schema.

4.3 Embodiment, tools and solutions

The task defined above has rather diverse solutions depending on the embodi-
ment of the task, that is, the actual robots employed and the actual physical
features of the passive element. In this section we give an account of the
hardware used, the image analysis procedures applied to obtain the visual
feedback and the control heuristic applied to define the control strategies.
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Figure 4.2: Snapshot of the Robot-hose transportation system.

4.3.1 Hardware

The experimental solution to this problem was implemented using three small
SR1 robots (see section C.1.2 in appendix C). Each robot was attached
to an electrical cable of 1 cm. of diameter, which takes the place of the
hose (figure 4.2), by means of a bearing which allow the robot to rotate
freely. One camera was placed in a 2.5 meters high mobile stand, facing
down in an angle of around 60° and capturing about 2-3 meters of the floor
in front of it. The camera was attached to one laptop PC which performed
the centralised perception and control. Control commands were sent to the
robots using RF wireless communications, as detailed in section C.4.3 of
appendix C. The robot’s compass information is used in the follow the
leader strategy described below. This is a minimal sensorisation for the
task at hand, however this sensor is quite sensitive to the magnetic fields
that abound in laboratory environments.

4.3.2 Perception

The centralised perception is provided by a single camera that captures the
scene encompassing the three robots and the hose. The images acquired are
segmented in search for the three robots and the hose. This segmentation
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process assumes several conditions on the environment’s configuration:
1. Uniform floor of bright color, close to the white color.
2. Blue colored robots.
3. Non-blue, dark colored hose.

4. White, uniform illumination, which may produce strong reflections as
can be appreciate in figure 4.2.

Image segmentation will be composed of two separated processes for the
detection of the robots and of the hose, each fit for each kind of object.

Robot’s segmentation For the segmentation of the robots we are
mainly interested in avoiding the effect of strong reflections on the floor and
enhance the image color contrast in order to bring out the blue robots from
the bright floor. This is achieved by means of a preprocessing step in which a
Specular Free (SF) image [107] is created. Assuming the Dichromatic Reflec-
tion Model (DRM) [100], images are the sum of two components: the diffuse
component (which models the chromacity of the observed surfaces) and the
specular component (which models the chromacity of the light source which
illuminates the scene). This model implies that the pixels with the reflec-
tions we want to avoid have a specular component. A Specular Free image
is, then, an image geometrically identical to the original one but with its
specular component removed. Several algorithms have been proposed in the
literature for computing SF images [34, 108, 125]. One important step in
those algorithms is the estimation of the chromacity of the source of illu-
mination. As we already know this chromacity, because we assume a white
light source, we have used a custom algorithm to obtain a SF image adapted
to our needs.

Using a white light source, in this algorithm we profit from the charac-
teristics of the RGB cube, as pixels corresponding to reflections (and bright
surfaces close to white color) will be very close to the axis that goes from
point (0,0,0) to point (1,1,1) of the RGB space while pixels corresponding to
diffuse components in the image will move away from it and will be closer
to the pure color axes. This property is used to reduce the intensity of the
specular pixels and improve the intensity of the diffuse ones proportionally
to their distance with the axis (0,0,0)(1,1,1). Given an input RGB image
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Figure 4.3: Specular Free image computation. Original (4.3a) and resulting
SF (4.3b) images.

s

X ={x(i,))}, where z (i, 5) = {4, 9i, bi; }, an intensity image I = {d (4, 7)}
is computed as

d (i,7) = max {ri;, gij, bij } — min{ri;, gi;, bi; } , (4.1)
in this equation, white/gray pixels will have value d (i, j) close to zero, while
colored regions, corresponding to diffuse components, will be greater than
Zero.

The RGB image is then transformed to HSV space and its intensity chan-
nel is replaced with the computed intensity image I, so that white/gray pixels
become black ones. This HSV image is then transformed back to RGB space.
The result of this process can be appreciated in figure 4.3. Since we are look-
ing for blue robots, they can be easily found in the SF image looking for the
regions with highest intensities in the B channel. The result of this step is a
collection of boxes R = { Ry, ..., R,,} giving the location of the robots. When
processing a sequence of images, the robot detection process is done in the
neighborhood of the previous image detected boxes.

Hose’s segmentation The segmentation of the hose profits from the
strong contrast of a dark object over a bright floor. Given the original RGB
frame and the regions obtained from the robot’s segmentation, hose’s seg-
mentation is performed by the following processing steps:
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1. The image is binarized, white pixels code the hose detection.

2. The binary image is skeletonized.

3. Regions of the skeletonized binary image are identified and labeles.
4. Discard regions with very few pixels.

5. Discard regions that do not connect two of the boxes found before
containing a robot

Each region obtained after this process is considered a segment of the hose,
we denote them S = {5, ..., S,_1} where segment S; connects robot boxes
Ri and R/L'Jrl.

In summary, the outputs of the visual perception system are the rect-
angular regions R = {Ry, ..., R,} of the image where the locations of the n
robots are detected (robot position p; will be the centroid of that region) and
several connected components S = {51, ..., S,,_1} corresponding to detected
hose segments. Those hose segments are checked to make sure that they con-
nect two robots. Segments that do not connect two robots are discarded. At
each new image, the previous detections are used as the basis for the search
of the new detections. The full perception process is outlined in algorithm
4.1.

4.3.3 Control heuristic

Although the control is centralised because the actions are determined by
a central agent installed on a specific separate computer and then commu-
nicated to the robots, each of the actions of the robots are computed inde-
pendently, without taking into account the state of the other robots, that is,
each robot is an autonomous agent acting as slave to the central controller.
Each robot control will be determined only by the segment of the hose that
is immediately ahead of him, and the information about the orientation of
the leader. In this way the system is very scalable and can be extended to
any number of robots.

The trajectory of the robots will be controlled by a “follow the leader”
strategy. The leader will be remotely controlled and the remaining robots
will follow its orientation: at each time step, the tema robots will check if
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Algorithm 4.1 Perception step of the robot-hose transportation system.
For each step k, given an input RGB image X and the regions Ry ; =
{le_l, e Rfjl} containing the n robots in the previous step:

1. Define a region of interest (ROI;) in X}, centered in Ry_; where the
new positions of the k-th robot will be searched.

2. Detection of the robot locations:

(a) Compute the intensity image I for each ROI (equation 4.1).

(b) Transform each ROI, to HSV, replace intensity channel with Iy,
transform back to RGB, obtaining an image SFj}.

(¢) Obtain new regions Ry, = { R}, ..., RF'} as the regions with highest
intensity in the B channel of SF} and close to Ry_1.

3. Detection of hose segments:

(a) Binarize the original RGB image looking for black pixels.

(b) Skeletonize and discard small and isolated regions.

(c) Label connected components,

(d) Discard connected components not connecting two regions in Ry.
)

(e) Return resulting Sy = {Sf, e Sﬁ_l} regions as detected hose seg-
ments.




CHAPTER 4. MULTI-ROBOT VISUAL CONTROL 101

they have the same orientation as the leader, using their compasses. They
will reorient themselves trying to align with the leader in case they are not.

Each robot’s speed will be given by a control heuristic that takes into
account the state of the hose segment ahead of it. This state is a function
of the curvature of the hose segment. This heuristic undelying reasonoing is
that if two robots are too close, the hose segment between them will shrink
and increase its curvature, with the risk of forming loops. As only the robot
at the hose segment’s rear will adapt its behavior to the segment state, to
increase the distance between robots the only possible policy is to reduce
the speed of this robot. On the other hand, if the two robots attached the
hose segment are separated enough the curvature of the segment will be very
close to the straight line. This can state also a problem, since a too tightly
stretched segment will produce dragging between the robots, which should
be avoided. In this case, the rear robot should accelerate to ease the tension
of the hose.

Having a perfectly zenithal camera watching the scene the state of the
hose could be easily estimated by measuring the distance between the robots.
However, as we have a tilted camera in order that our field of view cov-
ers enough space for the observation of a significant behavior, the perspec-
tive projection may cause some problems when measuring distances between
robots placed at different distances from the camera’s stand. Given a hose
segment S = {si,..., S}, where s; is a pixel site coordinates belonging to
the connected component S, we define the curvature ¢ of the segment S as
the proportion between the maximum distance dj, from the hose segment
points s; to the line L, ,, that crosses both robot’s positions (p;, p2) and
the distance between the robots d,:

'y (4.2)
where
dh = miaX ||51 - Lp17p2|| )

d, = ||p1 — p2|| -

This is equivalent to obtain the ratio of the sides of the rectangle that
encloses the hose segment and has the length of the distance between the
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Figure 4.4: Hose state calculation. The proportion between the width and
length of the green box will be the measure of the state of the hose segment.

robots (figure 4.4) . Being it a ratio value, it is not so influenced by the per-
spective. Three rules determining the consequent robot speed where defined
over the values of this proportion c:

e ¢ < 0.15: The hose segment has stretched too much. The rear Robot
takes fast speed trying to shrink the hose to avoid dragging the front
robot.

e ¢ > 0.30: The hose segment has shrink too much. The rear Robot
stops while the front robot continues its motion and waits for the hose
to stretch to avoid the formation of loops.

e ¢ > 0.15 & ¢ < 0.30: The hose has the correct length. The rear Robot
takes cruise speed and continues advancing.

The Control heuristic executed at the central agent is outlined in algorithm
4.2.

4.3.4 Experiment realization

In figure 4.2 an example of the realization of the hose transportation task
defined above is shown. In each frame, the robots are marked with their
state (advancing, stretching, shrinking) and the curvature of their respective
hose segment. Detected hose segments are marked in red. The six frames
are extracted from the video generated in the test and shows how the system
reacts to the different states that the hose takes:
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Algorithm 4.2 One step of the robot control heuristic.

Each time step k:

1. Capture a frame from the global camera.

2. Extract robot positions R, and hose segments S, = {S{ﬂ ey

from the frame as described in algorithm 4.1.

3. For each i-th robot, 1 =2,...,n

Sn1}

(a) Get the curvature c;_; of the hose segment ahead S¥ | (equation

4.2).
i. If ¢;_1 < 0.15 then shrink the hose.
A. Set i-th robot’s speed at fast.
ii. If ¢;_1 > 0.30 then stretch the hose.
A. Set i-th robot’s speed at stop.

iii. If ¢;_1 > 0.15 and ¢;_; < 0.30 then keep advancing

A. Set i-th robot’s speed at cruise.

(b) Read the the leader’s compass to know its orientation.

(c) Set the i-th robot’s orientation equal to the leader’s orientation.
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e Figure 4.5a: Starting position. The leader starts towing the hose, while
the 2nd and 3th robots wait for it to stretch enough.

e Figure 4.5b: The first segment’s curvature falls below 0.30 (¢; = 0.27).
The 2nd robot starts advancing at cruise speed. The 3th robot keeps
waiting (co = 0.67).

e Figure 4.5¢: The first segment is too stretched (¢; = 0.11). The 2nd
robot accelerates to fast speed to shrink it. The 3th robot keeps waiting
(CQ = 06)

e Figure 4.5d: The first segment’s curvature is within limits (¢; = 0.24),
the 2nd robot brakes itself to attain cruise speed. Second segment’s
curvature also enters within limits (co = 0.28), therefore the 3th robot
starts advancing at cruise speed.

e Figure 4.5e: Second segment raises again above 0.30 (ca = 0.32), the 3th
robot stops. The 2nd robot keeps advancing at cruise speed (¢; = 0.2).

e Figure 4.5f: Second segment falls below limits (c; = 0.15), the 3th
robot accelerates to fast speed. The 2nd robot keeps advancing at
cruise speed (¢; = 0.27).

Sample videos can be found on our web site in:
http://www.ehu.es/ccwintco /index.php/DPI2006-15346-C03-03-Resultados-
videos-control-centralizado

4.4 Conclusions and discussion

We have realized the physical proof-of-concept of the vision based control of
a Linked Multi-component Robotic System (MCRS) performing the trans-
portation of a hose-like object, in fact, a length of electrical cable. Many of
the problems found were due to the need to start the whole experiment from
scratch:

e Identification of magnetic hot-spots to avoid during experimentation.

e Robot assembly, design of the robot-hose attachment allowing rota-
tions, robot painting of an appropriate color for enhanced robustness
of image segmentation.
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Figure 4.5: Frames extracted from the video of an example realization of the
hose transportation task.
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e Design and implementation of a communication protocol, due to the
difficulties produced by channel shift in the wireless communication.
Robust communication is an issue when working with robots like SR1.

e Shortcomings of the image segmentation process due to uncontrollable
environmental conditions, like parts of the robot that were not taken
into account and interfere the segmentation, or changes in the perceived
color.

However, the experiment of physical realization of the task has serve also
to demonstrate some specific traits of the hose-robot Linked MCRS. The
first question that such a system may rise is: is there any substantial differ-
ence with a distributed MCRS (independent, not-linked robot units)? The
experiment gives a definitive Yes. For such a simple behavior as the “follow-
the-leader”, the realization on a Distributed MCRS is relatively immediate.
The robots may start motion at any moment and nothing hinders them in
their motion. For a linked system it is fairly obvious that the hose-like passive
element introduces quite a lot of dynamic interaction problems.

e The hose may be an obstacle for the advance of the robot.

e The hose may drag the advance of the robot, if the robots behind do
not match speed with the leader.

e The weight and rigidity of the hose may impose motion constraints that
may deviate the robot from the desired path.

The hose-like element introduces new perception and measurement needs: we
need to observe (segment) the hose, and to compute some measure of its state
that allows to build a system of rules that determines the robot behavior as
a function of this state. The hose imposes also an ordering on the motion of
the robots, both spatial and temporal, which is a new feature relative to the
Distributed MCRS. In our experiment, the motion starts first for the first
robot, after some while starts the second robot, an so on. The perception of
the hose and the fine tuning of the effects of its state’s measure are problems
not shared by the Distributed MCRS paradigm. The experiment realization
has been a success in the sense of demonstrating the inherent features of
Linked MCRS and their need.

Companion work on this topic has been performed by Zelmar Echegoyen,
and some of the future works suggested in this paradigm could be shared
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with him. For instance: work on the simulated evaluation of different control
heuristics, and the simulation of more complex environments and tasks. The
final goal would be the realization with a distributed control and distributed
perception of the deployment and transportation of a hose, however we need
to define a collection of tasks that gradually approaches this goal. We are
currently working on this and on the physical realization of the robot-hose
system with other robotic modules.






Appendix A

LAM theoretical foundations

In this appendix we introduce some theoretical background about Lattice
Associative Memories (LAM) and the Linear Mixing Model (LMM) used in
the experimental work whose description appears in chapter 2. Section A.1
gives the basic definitions and fundamental results about Lattice Associative
Memories. Section A.2 reviews the well-known Linear Mixing Model. Sec-
tion A.3 gathers definitions and results linking underlying the approach of
endmember induction based on Lattice Autoassociative Memories (LAAM).
Section A.4 recalls the definition of the Endmember Induction Heuristic Al-
gorithm (EIHA). Section A.5 recalls the definition of the incremental on-line
variation of EIHA used for SLAM applications. Finally, section A.6 gives an
alternative way to obtain the set of endmembers using the LAAM columns
directly.

A.1 Definition of Lattice Associative Memories

The work on Lattice Associative Memories (LAM) stems from the considera-
tion of the algebraic lattice structure (R, V, A, +) as the alternative to the al-
gebraic framework given by the mathematical field (R, +, -) for the definition
of Neural Networks computation. The LAM were first introduced in [95, 91]
as Morphological Associative Memories, but we follow the new convention
introduced in [92, 94| because it sets the works in the more general frame-
work of Lattice Computing. The operators V and A denote, respectively, the
discrete max and min operators (resp. sup and inf in a continuous setting).
Given a set of input /output pairs of pattern (X,Y) = {(Xf, yf) E=1,.., k},

109
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a linear heteroassociative neural network based on the pattern’s cross correla-
tion is built up as W = Zg ye- (xf ), . Mimicking this constructive procedure
[95, 91| propose the following constructions of LAM as follows:

k k

Wxy = /\ [y§ X (—xg)/] and Mxy = \/ [yg X (—xg)/] , (A.1)
&=1 e=1

where x is any of the ™ or W operators. Here M and @ denote the max
and min matrix product [95, 91|. respectively defined as follows:

C=ANB = [Cij] = Cij = \/ {aik + bkj} y (A2>
k=1,...,n

C =A N B = [Cij] =4 Cij = /\ {aik + bkj} . (AS)
k=1,...,n

When the input is different from the output X # Y the LAM is a het-
eroassociative memory which we will call Lattice Heteroassociative Memory
(LHAM). If X = Y then the LAM are Lattice Autoassociative Memories
(LAAM). Conditions of perfect recall by the LHAM and LAAM of the stored
patterns proved in [95, 91] encouraged the research on them, because in the
continuous case, the LAAM is able to store and recall any set of patterns:
WxxMX =X = Myxn X, for any X. However, this result holds when
we deal with noise-free patterns. Research on robust recall [86, 91, 93| based
on the so-called kernel patterns lead to the notion of morphological indepen-
dence, in the erosive and dilative sense, and finally to the definition of Lattice
Independence (LI) and Strong Lattice Independence (SLI), that lead to the
results reviewed in section A.3 below.

A.2 The linear mixing model

The linear mixing model (LMM) [59, 58| assumes that the data follows a
linear model, which can be expressed as follows:

M
x:Zais¢+W:Sa+W, (A.4)

i=1
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where x is the d-dimension pattern vector, S is the d x M matrix whose
columns are the d-dimension vertices of the convex region covering the data
corresponding to the so called endmembers s;,¢ = 1,..,M, a is the M-
dimension abundance vector, and w is the d-dimension additive observation
noise vector.

The LMM is applied when some item is assumed to be the combination
of several pure items, called endmembers. In [59, 58| the items are light spec-
tra in the context of hyperspectral image processing, here the items are the
singular images which could be used as landmarks. Abundance coefficients
correspond to the fraction of the contribution of each endmember to the ob-
served item. From this physical interpretation, follows that the linear mixing
model is subjected to two constraints on the abundance coefficients. First,
to be physically meaningful, all abundance coefficients must be non-negative
a; > 0,2 =1,.., M, because the negative contribution is not possible in the
physical sense. Second, to account for the entire composition, they must
be fully additive Zf\il a; = 1. As a side effect, there is a saturation condi-
tion a; < 1,7 = 1,.., M, because no isolate item can account for more than
the existent material. From a geometrical point of view, these restrictions
mean that we expect the endmembers in S to be affinely independent and
that the convex region defined by them covers all the data points. This is a
very important observation, because it has deep implications in the following
reasoning about the inversion processes. The mixing inversion process (of-
ten called unmixing) consists in the estimation of the abundance coefficients,
given the endmembers S and the observation data x. The simplest approach
is the unconstrained least squared error (ULSE) estimation given by:

1

a= (STS)_ STx. (A.5)

The coefficients that result from equation (A.5) do not necessarily fulfill
the non-negativity and full additivity conditions. The full additivity re-
striction can be incorporated in the abundance coefficients estimation using
Lagrange multipliers [59, 58] introducing a correction term that moves the
ULSE estimation to the hyperplane that satisfies the full additivity con-
straint. From the physical interpretation point of view, the non-negativity
restriction is more fundamental. The Non-Negative Least Square estimation
(NNLS) [63] can be used to enforce this condition. The estimation prob-
lem is treated as a quadratic programming problem with linear inequalities
as constraints, solved iteratively. In each iteration the endmembers whose
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abundances are positive are used to refine the estimation. It was shown in
[59, 58] that non-negative estimations do not fulfill the full additivity con-
dition. Besides, the NNLS computation time may be high, specially as the
data dimension grows.

Some approaches to endmember determination (i.e., [94]) ensure that the
computed endmembers define a convex polytope that covers all the data
points, so that a proper convex inversion can be attempted. They find that
NNLS provide meaningful abundances. However, they also found that the
full additivity was not fulfilled. The heuristic algorithm EIHA described in
section A .4 [45] always produces convex regions that lie inside the data cloud,
so that enforcing the non-negative and full additivity restrictions would be
impossible for some data points. Enforcing them for some points may in-
troduce undesired distortions of their abundance values. Nevertheless we
have made some attempts to apply NNLS to our data which have resulted in
prohibitive computational times. For the this reasons, we use systematically
the unconstrained estimation of equation (A.5) to compute the abundance
coefficients.

Our reasoning for the application of the LMM to vision based mobile
robot localization is as follows: When M < d the computation of the convex
coordinates can be interpreted as a dimension reduction process, or a feature
extraction process as used in 2.4. Also, if the convex coordinates are a good
representation of the data, then the convex polytope vertices are distinctive
data items that can be used as landmarks for the representation of the data
space, or as landmarks of the physical space in the SLAM process, as used
in 2.5.

A.3 Lattice Independence and Lattice Autoas-
sociative Memories

We gather some results from [94] that set the theoretical background for the
approach to endmember induction applied.

Definition Given a set of vectors {xl, e xk} C R™ a linear minimax com-
bination of vectors from this set is any vector x €R’} _ which is a linear
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mainimaz sum of these vectors:

k

v=L(~x"...x") = \/ /\ (ag; +x°)

jeJ =1
where J is a finite set of indices and a¢; € Rioo Vj € J and V§ =1, .., k.

Definition The linear minimax span of vectors {xl, ...,xk} =X CR"is
the set of all linear minimax sums of subsets of X, denoted LM S (xl, o xk) :

Definition Given a set of vectors X = {xl, ey xk} C R", a vector x €R%}
is lattice dependent if and only if x € LMS (xl, ...,xk). The vector x is
lattice independent if and only if it is not lattice dependent on X. The set X
is said to be lattice independent if and only if YA € {1,...,k}, x* is lattice
independent of X'\ {X’\} = {Xg e X:E# )\} .

The definition of lattice independence supersedes and improves the early
definitions [93] of erosive and dilative morphological independence, which,
however, have more intuitive appealing. Nevertheless, this definition has the
additional advantage of establishing a formal parallelism with the definition
of linear independence.

Definition A set of vectors X = {Xl, e Xk} C R"™ is said to be max domi-
nant if and only if for every A € {1, ..., k} there exists and index j, € {1,...,n}
such that

k
x?A — 1) = \/ <:1c§A - xf) Vie{l,...,n}.
e=1
Similarly, X is said to be min dominant if and only if for every A € {1, ..., k}
there exists and index j, € {1,...,n} such that

k
x) —a) = /\ <:1c§A - xf) Vie{l,..,n}.
e=1

The expressions that compound this definition appeared in the early the-
orems about perfect recall of Morphological Associative Memories [95, 91].
Their value as an identifiable property of the data has been discovered in
the context of the formalization of the relationship between strong lattice
independence, defined below, and the classical affine independence.
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Definition A set of lattice independent vectors {Xl, o xk} C R" is said to
be strongly lattice independent (SLI) if and only if X is max dominant or
min dominant or both.

As said before, min and max dominance are the conditions for perfect
recall. Per construction, the column vectors of Lattice Autoassociative Mem-
ories are min or max dominant, depending of their erosive or dilative nature,
therefore they will be strongly lattice independent, if they are lattice inde-
pendent.

Conjecture A.3.1 [94] If X = {x!,..,x"} C R" is strongly lattice inde-
pendent then X s affinely independent.

This conjecture (stated as theorem in [92]) is the key result whose proof
would relate the linear convex analysis and the nonlinear lattice analysis.
If true, it means that the construction of the LAAM provides the starting
point for obtaining sets of affine independent vectors that could be used as
endmembers for the unmixing algorithms described in section A.2.

Theorem A.3.2 [9/] Let X = {x',..,x*} C R" and let W ( M) be the
set of vectors consisting of the columns of the matrix Wxx (Mxx.). Let
F(X) denote the set of fized points of the LAAM constructed from set X.
There exist V. C W and N C M such that V and N are strongly lattice
independent and F' (X) = F (V) = F (N) or, equivalently, Wxx = Wyy and
Mxx = Myn-.

The key idea of this theorem is to test the lattice independence of the
already known as min or max dominant sets of vectors. Removing lattice
dependent vectors will not affect this min/max dominance property. The
smart way to test lattice dependence lies in the fact that removing a lattice
dependent vectors does not alter the set of fixed points of the remaining ones.
This theorem is proved following a constructive reasoning, giving way to an
algorithm for the construction of the set of affine independent sets of vectors
from LAAM, the ETHA, discussed in [45, 94].

A.4 Endmember Induction Heuristic Algorithm
(ETHA)

The Endmember Induction Heuristic Algorithm (EIHA) [45] is a tool for the
extraction of an affine independent set of vectors from a set of input data
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based on the results of section A.3. Let us denote {f (i)eRY:i=1,.., n} a
set of high dimensional data vectors, which could correspond, in our works,
to the images acquired by a mobile robot’s camera. Vectors i and & are,
respectively, the mean vector and the vector of standard deviations computed
componentwise over the units of data sample, a the noise correction factor,
and E the set of already discovered endmembers. The noise amplitude of
the additive noise in equation (A.4) is o, the patterns are corrected by the
addition and subtraction of a'@’, before being presented to the LAAM’s.
The gain parameter « controls the amount of flexibility in the discovering
of new endmembers. For e € R?, let b (e) denote the binary version of e
defined by b(e), = 1 if ¢, > 0 and b(e), = 0 if ; < 0, where b (e), denotes
the ith coordinate of b (e). Finally, we will denote by X the set of binary
signatures used to build the lattice memories, and I the set of sample indices
corresponding to the endmembers selected by the algorithm.

The detailed description of the steps in the heuristic algorithm is pre-
sented as algorithm A.1. The starting endmember set consists of a randomly
image. However, this selection is not definitive, because the algorithm may
later change this endmember for another, more extreme, one. The noise cor-
rection parameter o has a great impact on the number of endmembers found.
Low values imply large number of endmembers. It determines if a vector is
interpreted as a random perturbation of an already selected endmember.

This algorithm does not need a prior: information about the nature of
the distinctive images that we want to detect.

A.5 An on-line ETHA for SLAM

In the experimental works reported in section 2.5 the EIHA is used for un-
supervised landmark selection in SLAM applications. The use of the EIHA
for SLAM purposes had to cope with some issues typical of that paradigm.
The main issue comes from the fact that the full set of the data will not be
available from the start, since SLAM applications are supposed to work in
unknown environments and information about it will be acquired progres-
sively, as more space is explored. So, the EIHA has to be adapted to work
on-line, processing the incoming image feature vectors and making decisions
based on the available information, and under the assumption that these
decisions can not be reverted.

In the version of the algorithm described in section A.4, vectorsz and
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Algorithm A.1 Endmember Induction Heuristic Algorithm (EIHA)
1. Shift the data sample to zero mean

{fe(i)y=1()—Ww;i=1,.,n}.

2. Initialize the set of endmembers F = {e! = f¢ (s*)} where i* is a ran-
domly picked sample index. Initialize the set of lattice independent
binary signatures X = {x'} where x! = b(e'). The initial set of
endmember sample indices is I = {i*}.

3. Construct the LAAM’s based on the lattice independent binary signa-
tures: Mxx and Wxx.

4. For each incoming image feature vector £ (i)

(a) Compute the mnoise corrections sign vectorsf™ (i) =
b (f¢ (i) + &'@) and £~ (i) = b (f° (i) — a'F)

(b) Compute y© = Myx 1 (7)

(¢) Compute y~ = Wxx & f~ (7)

(d) Ify™ ¢ X or y~ ¢ X then (i) is a new endmember to be added

to E, execute once 3 with the new F and resume the exploration
of the data sample. Add 7 to the set of indices I.

(e) If y* € X, let k be the index in E of the corresponding endmem-
ber. If ¢ (i) > e* then execute step 4g.

(f) If y~ € X, let k be the index in F of the corresponding endmem-
ber. If ¢ (i) < e* then execute step 4g.

(g) The new data sample is more extreme than the stored endmem-
ber, then substitute e® in E with f¢(i). Index i substitutes the
corresponding index in /.

5. The output set of endmembers is the set of original data vectors
{f (i) : i € I} corresponding to the sign vectors selected as members
of E.
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o were used, being respectively the mean vector and the vector of standard
deviations computed over the data sample. The first effect of the on-line
nature of SLAM is that it is not possible to use them, because we can not
have a prior: estimations. An adaptive estimation strategy can not be used,
because this information would be used to perform decisions (selection of
an endmember) which can not be undone when the mean and covariance
matrix estimations are updated. In other words, each image must be treated
independently, and we can not assume it as a sample from a stationary
distribution because the images will change unpredictably as the robot moves
on. As in previous version, o denotes the noise tolerance and E the set of
already discovered endmembers, corresponding to the already identified view
landmarks for SLAM.

Another of the effects of the on-line processing is that it can no longer be
assumed that the amplitude of the additive noise in equation (A.4) is o, there-
fore it can not be computed an interval based on the addition and subtraction
of ao, to the feature vector f (¢) before being presented to the LAAM’s (note
that t is used as index instead of 7 to indicate a temporal relation of the data
samples). Nevertheless, this interval can be computed applying a scaling fac-
tor of the input feature vector magnitude. The gain parameter o continues to
control the amount of flexibility in the discovering of new endmembers. Other
effect of the on-line processing is that the data can not be shifted to zero
mean, but as the algorithm is going to be applied to the low frequency of the
Discrete Cosine Transform (DCT), it can be expected that their coefficients
will be placed around zero. The expression x > 0 denotes the construction
of the binary vector ({b; = 1if z; > 0;b; =0if z; <0};i=1,..,n).

The steps in the procedure of on-line endmember induction are described
in the algorithm A.2.

A.6 Endmember Induction from the LAAM ma-
trix

Theorem A.3.2 gives also a key for single LAAM endmember induction. If
a LAAM is computed from the full dataset, theorem A.3.2 entails that a
subset of the columns of the obtained LAAM is strongly lattice independent.
Searching for this subset can be an approach to obtain a suitable set of
endmembers.
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Algorithm A.2 An on-line EIHA for SLAM applications.
1. Initialize the set of endmembers with the first data sample E =
{e! =f(0)}. Initialize the set of morphologically independent binary

signatures X = {x'} = {e! > 0}. The initial set of endmember sample
indices is I = {0}.

2. Construct the LAAM’s based on the lattice independent binary signa-
tures: Mxx and Wxx.

3. For each incoming image feature vector f ()

(a) compute the noise tolerance sign vectors fT(f) =
(f(t)+af(t) >0) and £~ (t) = (f(t) — af (t) > 0)

(b) compute y* = Mxx i £ (¢)

(c) compute y~ = Wxx &£~ (t)

(d) if y* ¢ X or y~ ¢ X then f(¢) is a new endmember to be added
to E. Compute its signature f(¢) > 0, adding it to the set of
morphologically independent binary signatures X. Add f (¢) to

E. Execute (2) once with the new F and resume the exploration
of the data sample. Add t to the set of indices I.

(e) if y© € X, let k be the index in E of the corresponding endmem-
ber. If f () > e* then execute step (3g).

(f) if y~ € X, let k be the index in E of the corresponding endmem-
ber. If f () < e* then execute step (3g).

(g) The new data sample is more extreme than the stored endmem-
ber, then substitute e® in £ with f (¢). Index t substitutes the
corresponding index in .

4. The output set of endmembers is the set of original data vectors
{f(t) : t € I} corresponding to the sign vectors selected as members
of E.
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Algorithm A.3 Endmember Induction from a single LAAM
1. Compute the min auto-associative memory W x from the data.

2. Compute the conjugate of each element in the matrix, obtaining the
conjugate matrix —Wyxx.

3. The rows of the matrix —Wxx is considered as the strong lattice inde-
pendent set. The minimum of each dimension in the data set is added
to the corresponding dimensions of the strong lattice independent vec-
tors.

4. Select the vectors with minimum mutual information to obtain a set
with smaller cardinality than the data dimensionality.

Following this approach, an algorithm for a single LAAM endmember
induction is proposed, composed of a four step process described in the al-
gorithm A.3.

This approach has some advantages for the desired application. First,
as it does not have a random start like the EIHA, the resulting endmember
set is always the same for a given dataset. And secondly, the number of
the endmembers extracted can be determined, instead of having a variable
number of endmembers depending on the tuning of the o parameter. This
can be helpful if we want a fixed size feature vector.

However, this approach also has several unsolved problems which need to
be considered:

e The number of strongly lattice (and affinely) independent vectors is
quite high, close to the space dimensionality. As the desired goal is to
use the endmembers to obtain the convex coordinates and use them as
feature vectors, some dimensionality reduction is desired. The approach
followed selects a smaller set of endmembers, but the optimality of this
selection can not be guaranteed.

e The assumption that a subset of a set strongly lattice independent is
also strongly lattice independent has not been proved yet.

e The convex polytope defined by set V' of strongly lattice independent
vectors is not related to the data points. For the desired application,
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the data point set needs to be covered as much as possible, approaching
the data convex hull, in order to have meaningful convex coordinates.

e We do not know of appropriate ways to perform on-line endmember
induction following this approach, which can be of use for SLAM related
applications.



Appendix B

Computational Intelligence tools

In this appendix we will give a brief review of the Computational Intelligence
tools used in the works presented in chapter 3. First, two Competitive Neural
Network (CNN) approaches, namely the Self-Organizing Maps (section B.1)
and the Neural Gas Networks (section B.2), will be presented. We will follow
the original notations found in the literature, so there are minor notation
variations between the presentations of both algorithms. Both CNN were
used in chapter 3 to fit the 3D point cloud. While some CNN approaches,
for instance SOM, are used to perform a non-linear dimensionality reduc-
tion, the emphasis here is made into obtaining a reduction on the number
of points treated while preserving most of the spatial information. In other
words, the CNN are applied to obtain a set of codevectors optimal in the
sense of minimal distortion relative to the 3D camera measurements. After
that, in section B.3 we review the definition of the Evolution Strategies that
where used to find the optimal transformation between consecutive views
from the 3D ToF camera as the optimal registration between the codevec-
tors computed for these consecutive views. Finally, section B.4 contains a
description of the kd-trees and its use for Nearest Neighbor search.

B.1 Self-Organizing Maps

A Self-Organizing Map (SOM), known also as Kohonen network [61, 60|,
is a computational tool for vector quantization, visualization and analysis
of high-dimensional data. This type of artificial neural network uses unsu-
pervised learning to produce a low-dimensionality, discretized representation

121



APPENDIX B. COMPUTATIONAL INTELLIGENCE TOOLS 122

of the input space called map. In this map, the relationships on the origi-
nal high-dimensional data are converted into simple geometric relationships,
preserving their topological and metric characteristics. This preservation,
achieved by using a neighborhood function, makes SOM different from other
Artificial Neural Networks.

B.1.1 Learning Algorithm

The SOM defines an ordered mapping, or projection, of the space of input
data vectors x € R" onto an array of nodes, usually in the form of a two-
dimensional grid with a rectangular or hexagonal neighborhood pattern of the
node locations. Each node (or neuron) of the grid has an associated reference
vector m; € R™;i = 1,..., M (figure B.1). The collection of all the reference
vectors forms a non-parametric model of the input data distribution. The
input data can be of any form, as long as a distance function d(x,m;) can
be defined over it. Here we use as distance function the Euclidean distance.

We denote x(t) a sample from the input process which is fed to the SOM.
The reference vectors at the map’s nodes are updated following a competitive
adaptation rule:

m, (¢4 1) = m (1) + o (t) e (1) [ (1) — m, (1), (B.1)

where « (t) is a monotonically decreasing scalar learning factor that defines
the magnitude of the correction. The neighborhood function h; (t) is a
smoothing kernel defined on the space of neuron indices centered on the
best-matching node identified by ¢. This node m, (¢) is the one which satis-
fies

d(x(t),m, (t)) = min{d (x () ,m; ()}, (B.2)
or, in our case with Euclidean distance,
1 (£) = me ()] = min {[}x () —m; (#)]]} (B.3)

The neighboring function h,; (t) is usually defined as a function of the
map locations of the nodes,

hei () = h([lre = rill ;1) ,
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where r. € R? and r; € R? will be the coordinates of the nodes ¢ and i in a
map with the typical bi-dimensional lattice. One of the simpler definitions
commonly used is by establishing a neighborhood radius ¢ around m, which
defines a neighborhood set

Ne = [myl [jre = ril| < o],

(figure B.2). In this case, the neighborhood function will be

hei (t) = a(t),

when m; € N, and h,; (t) = 0 otherwise, with 0 < « () < 1. Another widely
used definition is as a radial basis function,

||rc_Ti||2
he (1) = —— |, B.4
e exp< (= (B.4)

where o (t) is the width of the neighborhood function, which decreases mono-
tonically along time, as does a ().

Nodes had to be initialised with some value at the start of the algorithm.
Although m,; (0) can be initialised with random values and still the process
may converge to a good map of the data, this approach can be quite slow.
However, the validity of a random start proves that any arbitrary values
can be used for initialization. Thus, an ordered initial state is desirable.
One successful approach to this initialization is to select initial values from
the subspace spanned by the eigenvectors corresponding to the two largest
principal components of input data. Those values are arranged in a rectangu-
lar array, which is used to give values to their approximately correspondent
nodes in the SOM.

B.1.2 SOM for 3D data fitting

One of the main characteristics of the SOM is its ability to preserve the topo-
logical relationships between the input data points. That is, the SOM acts
like a nonlinear projection of the input data distribution p (z). When applied
to R? data (like a cloud of 3D points), the elastic network of the SOM will
be spread along the distribution of the input data points, creating a model
or projection of the data which preserves its three-dimensional shape. This
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Figure B.1: Array of nodes in a two dimensional SOM grid defined over an
hexagonal lattice.
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Figure B.2: Examples of topological neighborhood in rectangular and hexag-

onal maps.
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Figure B.3: Projection of the distribution p (x) shown in the left by a SOM,
shown to the right. [61]

model has, however, a drawback caused by the fixed neighborhood relation-
ships inside the map, as nodes can fall in spaces without input data when
trying to link separated high data density areas. An example of this data
fitting as shown in [61] can be seen in figure B.3.

B.2 Neural Gas Networks

Neural Gas (NG) networks [69] are another type of Artificial Neural Network
for Vector Quantization. Neural Gas networks were developed in an attempt
to achieve an optimal utilization of all neural units. We have already seen
that for the SOM preservation of the topology was prioritised, which resulted
in “misuse” of some of the nodes in the map as the network tried to span the
lattice of nodes to cover the topological structure that is the domain of the
distribution of the input data when it is not convex (e.g, like the example
seen in figure B.3, where data was distributed along several “branches”). NG
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networks has been proposed as a flexible network able to quantize those
topologically heterogeneous structured data and at the same time learning
the relationships between the input signals without specifying a network
topology.

B.2.1 Learning algorithm

The main feature of the neural gas network is that the weights w; of the
nodes adapt to the input data without taking in consideration any kind of
network topology, being affected only by the relative distances between the
neural units within the input space. That means also that the network nodes
constantly change their neighborhood relationships with other nodes as they
adapt to the data. The NG network is then defined by a set of vectors
w;, e R"1=1,...,N.

Given an input vector v (), presented to the network at time ¢, the re-
lationship in the input space between v (¢) and the reference vectors stored
at the nodes in the network will be given by the set of distortions D, =
{l[v () —w; (t)]|,i =1,..., N}. Ordering this set will determine the proxim-
ity of the neurons to the data and the adjustment of the weights w; and its
influence in the actualization of its value. This actualization is computed in
step t as

wi(t+1) =wi(t) +e- fi (Dy)- (v(t) —w; (1)), (B.5)
where the step size € € [0, 1] describes the overall extend of the modifications
and f; (D,) € [0,1] describes the influence of the arrangement of the w; (¢)
within the input space. This influence depends on the number k; of nodes
that are closer to the input data than the node 7, being maximum in the
node ig which satisfies

v (£) = wi, (1)]] = min [[v () —w; £ (B.6)

Besides, i,k = 0,..., N — 1 is the node for which there are exactly &
nodes which satisfy ||v () —w; (t)|| < ||[v(t) —w;, (t)], and o, %1, ..., %1
will be then the order of the set D,. The influence function f; (D,) will be
given by a function f (k;) which will equal to 1 for k; = 0 and decrease as k;
increases. The typical form of this function is

fi(Dy) = f (ki) = e/, (B.7)
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Figure B.4: Three steps of a Neural Gas fitting topologically heterogeneous
data from the starting configuration to the final projection of the data. [69]

where A determines the number of nodes significantly changing their synaptic
weights, which is a parameter similar to the shrinking neighborhood of the
SOM.

If there is any interest in data visualization, topological relationships in
the space of node indices between nodes of the network can be established
by means of a Cj; € {0, 1} connections matrix. When an input data v is fed
to the network, a connection between node iy and ¢; is established by setting
the element Cj;, from 0 to 1. This connection has a maximum lifetime 7,
after which it is considered broken and put again to 0, unless some other
input data renews it, resetting its age t;; to zero.

B.2.2 Neural Gas for 3D data fitting

The main objectives of the Neural Gas networks was the quantization of
the data under an heterogeneous distribution avoiding nodes lying outside
the data space. The flexible neighborhood relationships of the Neural Gas
allows this. In figure B.4 we can see an example from [69], where a Neural
Gas fits tightly a very heterogeneously spatially distributed data. It can be
appreciated how it fits the data without “losing” nodes in spaces without
input data.
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B.3 Evolution Strategies

Evolution Strategies (ES) as described in [9] belongs to the family of the
nature-inspired Evolutionary Algorithms. ES are methods of stochastic it-
erative optimization based on the adaptation of a population of candidate
solutions by means of an evolutionary approach that uses mutation, recom-
bination and selection on those individuals as tools to evolve them, obtaining
solutions closer to the optimum each iteration of the algorithm. The main
difference between Evolution Strategies and Genetic Algorithms is the rep-
resentation of the traits of the individuals of the populations. While in GAs
the genetic representation of the solution encoded by each individual is usu-
ally an array of bits, in ESs the traits are usually a real-valued n-dimensional
vector. Also, the main search operator of the ES is the mutation, although
modern approaches also make use of recombination as a way of avoid more
easily local optima.

B.3.1 The ES Algorithm

As stated above, the objective of the ES is to optimize a given objective
function F with respect to a parameter set y = (y1, ya....), referred as objective
parameters. This set can be any finite data structure, typically a real valued
vector. The ES operate on populations P of individuals a. An individual ay,
has the form

Ak = (Urs Sk, I (Ur)) 5 (B.8)

where y; are its related object parameters and F' (yy) its objective function
value Fy = F (yx) or fitness, s is an optional set of endogenous strategy
parameters used to control certain parameters of the strategy, like adaptive
mutation, in self-adaptive ESs.

Each generation, or step, of the ES a set of  parents is used to generate
a number A\ of offspring individuals a, mixing p parents to generate each
offspring. The parameters u, p and A are the exzogenous strategy parameters,
and they are constant for all the execution of the ES. In following steps, the
parent population can be selected from the offspring (“)” in the notation)
or from the union of the offspring and parent population (“+” notation).
The notation (u/ptA) will, thus, express the configuration of each ES. For
example, a (u+ A)-ES does not use recombination for generating offspring
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Algorithm B.1 The ES general algorithm.
1. Initialize parent population P, = {ay,...,a,}.

2. Generate a new offspring population Py = {ay,...,a,}. Each offspring
a is generated:

(a) Select p parents from P,

(b) Recombine the selected parents.
) (optional) Mutate the strategy parameters set s.
)

(c

(d) Mutate the object parameters set y.
3. Select a new parent population from

e (i, ) case: the offspring population Py.

e (/t+ A) case: the combination of parent P, and offspring Py pop-
ulations.

4. Repeat from 2 until termination criterion is matched.

and a (u/p+ 1)-ES is a steady state strategy in which each generation only
one offspring will be generated. The outline of an ES algorithm, following
[9] notation, can be seen in algorithm B.1.

Selection is the process that guides the algorithm towards the optimal
solution. This is achieved by means of selecting the best fitted individuals (i.e.
the ones with better F},) from the population to build the parent population
P,. That guarantees that only the best solutions will be used for the next
step, ensuring that the best solution in following generation will be at least
as good as in the previous one. In (p, A) strategies a necessary condition is
that © < A, otherwise no convergence can be guaranteed as no selection is
performed, since all offsprings are selected as parents and best individuals
of previous generation are lost. (u+ A) do not have this restriction, since
both parents and offspring are used to obtain the next generation, which
guarantees the survival of the best individual found so far. The selection
techniques which preserve the best individuals are called elitist. The (p, \)
strategies are not elitist, therefore they can not be proved to converge to the
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global optima in any case.

The variability of the individuals in ES is achieved mainly with the mu-
tation operator. There is no fixed mutation operator design and it is usually
problem dependant. In any case, the mutation operator has to assure reach-
ability: each point of the search space has to be reachable within a finite
number of iterations. Also, as variation is the way to explore the search
space (in contrast with the selection, which guides the search to promising
areas), the introduction of bias in the search through the mutation opera-
tor should be avoided, satisfying the condition of unbiasedness. Finally, if
a self-adapting ES is desired, the scalability of the operator should be also
guaranteed, as it should adapt to the properties of the fitness landscape.

The second operator which introduces variation in the population is the
recombination. The search performed by the mutation only takes into ac-
count the information from one parent, which reduces the search to a limited
region around it. Recombination, on the contrary, uses the information of p
parents to search in a much wider space, increasing the variability of the off-
spring and, at the same time, keeping the properties of the parents. There are
two common classes of recombination: the discrete recombination, in which
each trait of the offspring is inherited from one of the parents selected ran-
domly, and intermediate recombination, in which each trait is the arithmetic
mean of that trait in the parents.

B.3.2 Evolution Strategies for registration

The registration problem can be defined as the optimization problem in
which, given two clouds of points, we look for the optimal spatial transfor-
mation that provides the best matching between them. Matching goodness
is measured as a function of the distance between the transformed clouds of
points. Usually only the points in one of the clouds is transformed to match
the points in other one. Point correspondence need to be established in order
to compute the global distance among clouds of points.

An Evolution Strategy can be applied to search for the solution of this
problem in a direct way, where the objective parameters set gy, will be the pa-
rameters of the sought transformation matrix and the fitness function F (yy)
will be a defined distance function between the transformed and goal clouds
of points, e.g. the mean or the median of the euclidean distances between
the corresponding points in the clouds.
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B.4 kd-trees

A kd-tree [6, 7] (short for k-dimensional tree) is a data structure in the form
of a binary tree. It is a special sub-case of the binary space partitioning
(BSP) trees, which partitions a k-dimensional data space, storing a finite
number of points in that space. The kd-trees are used for very fast searching
and nearest-neighbor queries in high-dimensional spaces and /or with big data
point collections.

B.4.1 Construction

The kd-tree will be a binary tree in which each node is a k-dimensional point.
Each non-leaf node generates an hyperplane perpendicular to one of the
dimensions of the space which partitions that space in two subspaces. Each of
those subspaces will be stored in the subtrees. There is no fixed splitting node
selection method, as different approximations could be optimal for different
problems. Usually the tree is built in a balanced way, trying that every leaf
node is at approximately the same distance from the root. This requires that
each partition contains the same number of points. This is achieved using as
non-leaf nodes the hyperplanes that cut the partitioned axis at the median
points of the distribution of the data point projections into this axis (i.e. the
coordinate values). Also, consecutive non-leaf nodes generate an hyperplane
cutting the space following a different axis (e.g. the root node’s hyperplane
cuts the space in the X axis, the subspaces generated are partitioned following
the Y axis, etc.). This process is repeated in a recursive way until all the
points are in the tree, being the leaf nodes the points which do not have
more space to partition. In algorithm B.2 this recursive step is outlined as
is described in [20] and figure B.5 shows an example of 2-dimensional kd-
tree generated following it. A kd-tree constructed in this way will use O (n)
storage and can be constructed in O (nlogn) time.

B.4.2 Nearest Neighbor search

One of the main uses of kd-trees is nearest neighbor search of one input data
point into the data used used to build the tree. The properties of the tree
allow for large portions of the space to be quickly discarded from the search,
making the search highly efficient and fast.
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Algorithm B.2 kd-tree construction recursive algorithm.

Given a set of points P = {p1,p2, ..., p,} and a current depth d.
1. If P = {}, return empty tree.
2. Else

(a) Select splitting axis a in function of d.

(b) Find the median point m € P with respect to a.

(c) Split P in two subsets m™ = {pi(a) <m(a)} and m~

{pi(a) > m(a)}.
(d) Build the kd-tree T; with P =m* and d = d + 1.
(e) Build the kd-tree T, with P =m™ and d = d + 1.
(f) Make the tree T with root m and branches T; and T,.
(g) return T.

Figure B.5: Example of the kd-tree (B.5a) generated with a set of 2-

dimensional points and the space partitioning it represents (B.5Db).
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Algorithm B.3 Nearest neighbor search algorithm with kd-trees.

Given a kd-tree T" and a point p
1. Follow the tree until a leaf node is found, marking the visited branches.
2. Mark the found leaf as current best n, and R = ||n, — p|.
3. Unwind the path. For each node n..

(a) If |[n. — p|| < R then ny = n. and R = ||n. — p||

(b) If the hyperplane intersects the hypersphere with origin n, and
radius R:

i. Search the unvisited branch and get its best n; and R'.
ii. If R < R then n, =nj and R = R’
(c) Go up in the tree.

The search is performed traversing the tree from root to the leaf that
identifies the region of the space. In each node, the search continues following
a branch depending on whether the point is greater or less than the node
reference value for the partitioning axis. When the first leaf node is reached,
it is marked as the closest point found up to that moment and its distance
stored as a search range. Then the algorithm goes up the tree, unwinding the
path followed. In each node it checks if the splitting hyperplane intersects
an hypersphere of the radius of the search range centered in the current best.
This means that there could exists another closer point in the section of the
space separated by that hyperplane and that the other branch of the tree
must be explored. If it does not cut the hypersphere, the branch is discarded
and the algorithms keeps unwinding the path up the tree. This recursive
process is outlined in algorithm B.3.

The nearest neighbor search with kd-trees can be performed in O (logn)
time.






Appendix C

Experimental settings

As other robotics related research, the works presented in this PhD Thesis
required the setting and maintenance along all the Thesis of a suitable exper-
imental environment composed of several hardware and software platforms.
Dealing with the technical problems implied by this maintenance, while they
may not look relevant to the contributions to the state of the art, takes a
great amount of time and effort that we think should be somehow represented
in this report.

This Appendix will be devoted to describe those experimental settings.
In the following section C.1, the different robotic platforms used will be de-
scribed. Section C.2 contains a description of the image acquisition hardware
that was mounted on the robots to acquire visual information. Section C.3
refers to the software tools and environments used. Finally, in section C.4
a description of the configurations of the previously described software and
the programs developed for the experimental validation of the approaches
presented in chapters 2 to 4 of this report is provided. The tables showing
the specifications of the different hardware used can be found at the end of
this appendix.

C.1 Robotic platforms

As the works of this PhD Thesis are devoted to the application of Compu-
tational Intelligence tools to mobile robotics, several robotic platforms have
been used to test them and to carry out other auxiliary tasks like data record-
ing. These robotic platforms are described below.
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C.1.1 Pioneer robotic platform

The main robotic platform used in the works of this PhD Thesis is the Mobile
Robots’ Pioneer DX, in two of its versions. The Pioneer robots are a commer-
cial platform widely known and used in the robotics research field. In general
terms, the Pioneer is a wheeled tricycle robot, with two motorised wheels,
which provide drive and steering, and a rear caster. It is a medium sized
robot designed following the regulations of the mid-size RoboCup league.
This makes its dimensions (figure C.1) and characteristics very suitable for
indoor environments like laboratories or offices.

Early experiments were performed with the older model, a Pioneer 2
DXE, while late experiments made use of the Pioneer 3 DX. Both robots
have similar physical characteristics and capabilities, being the main differ-
ences related with the on-board electronics, like the microcontroller or the
embedded PC.

As described by the manufacturer, the Pioneer is an agile, versatile in-
telligent mobile robotic platform. Late versions have been updated from
previous versions to carry loads more robustly and to traverse small floor ob-
stacles, such as door sills, more safely. The on-board power supply has been
also upgraded with high-performance current management to provide power
when it’s needed. Its a robust platform, one step ahead of smaller and weaker
hobby robots, designed to last for years of experimentation and built on a
rugged aluminium body. This body has a back door which provides access
to the batteries, allowing easy hot-swapping. The three batteries store up to
252 watt-hours of charge, providing up to 18-24 hours of operation of the bare
platform with a full charge. Pioneer’s nose is also removable, allowing access
to the embedded computer, which can be expanded with up to 3 PC104+
cards. This embedded computer allows on-board Ethernet based communi-
cations and other autonomous functions like vision or laser processing with
the adequate accessories.

On-board standard sensing is composed of 500 tick encoders in the two
motors and a frontal ring of ultrasonic sensors providing 180° forward cov-
erage, with ranges from 15 cm. to approximately 5 m. Additional sensing
capabilities can be improved with several options, like bumpers, compass,
optical cameras or stereo and laser range finders.

Robot’s drive is provided by the two 19 cm. pneumatic rubber wheels,
powered by two separate motors. Those motors allows for top speeds of
1.6 meters per second and payloads of up to 23 Kg., including batteries
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26 cm swing radius

18.5 cm

Figure C.1: Pioneer robotic platform dimension.

and accessories, and it can also climb 25% grades and sills of 2.5¢cm. This
differential drive platform is highly holonomic and can rotate in place moving
both wheels, or it can swing around a stationary wheel in a circle of 32cm
radius. The rear caster balances the robot.

As every Mobile Robots Inc. platforms, Pioneer robots use a client-
server architecture for control in which a software running in an embedded
microcontroller controls directly the actuators of the robot, providing also
an interface through RS-232 serial connection to other client applications for
higher-level control.

The two robots used in the works of this PhD Thesis, being from two dif-
ferent generation Pioneer robots, had some differences in their configuration
and accessories, which will be specified next. Full comparative specifications
are shown in tables C.2 and C.3.

Pioneer 2 DXE

The first Pioneer robot used was a second generation Pioneer 2 DXE, with
the following configuration:

e On-board computer based on a AMD K6-II 400 MHz processor with
128 MB of RAM, running Microsoft Windows Me operative system.
This on-board computer is expanded with two PC104-+ cards:
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— 802.11b compliant Orinoco Wi-Fi card for wireless communica-
tion.

— Imagenation PXC-200A frame grabber for image acquisition from
the pan-tilt-zoom (PTZ) camera.

e Sensing capabilities:

— Standard frontal ultrasonic sensor ring.

Rear ultrasonic ring.
— Frontal and rear bumpers.

— Sony EVI-D30 PTZ camera connected to the on-board computer.

e The embedded control is provided by an 20 MHz Siemens 80C166 16
bit microcontroller, running the P20S version of the server software.

e External ports and indicators are distributed between the sides of the
body and the top roof.

— On-board computer ports and switches are located in the right
side panel.

Microcontroller ports and switches are located in the top frontal
part of the robots roof, to the left of the PTZ unit.

Status LCD display is located to the left of the PTZ unit.

— Power switch is located on the left side panel.

In figure C.2 the used Pioneer 2 DXE robot is shown.

Pioneer 3 DX

The second Pioneer robot used was a third generation Pioneer 3 DX, with
the following configuration:

e On-board computer based on a Intel Pentium III 800 MHz processor
with 256 MB of RAM, running Microsoft Windows 2000 operative sys-
tem. This on-board computer is expanded with two PC104+ cards:

— 802.11b compliant Orinoco Wi-Fi card for wireless communica-
tion.
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Figure C.2: Pioneer 2 DXE robot with the Sony EVI-D30 mounted.

— Imagenation PXC-200A frame grabber for image acquisition from
the PTZ camera.

e Sensing capabilities:

— Standard frontal ultrasonic sensor ring.

— Canon VC-C4 PTZ camera connected to the on-board computer.

e The embedded control is provided by an 33 MHz RISC-based Hitachi
HS8S 32 bit microcontroller, running the ARCOS version of the server
software.

e External ports and indicators are distributed between both the sides of
the body:

— On the right side: on-board computer ports and switches.

— On the left side: microcontroller ports and switches, plus LED
status indicators and power switch.

In figure C.3 the used Pioneer 3 DX robot is shown.
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Figure C.3: Pioneer 3 DX robot

Control architecture

Pioneer robots use a client-server architecture for control. In this architecture
the robot acts as the server, handling the low-level control of mobile robotics,
like maintaining the platform’s drive speed and heading over uneven terrain,
acquiring sensor readings, such as the sonar, and managing attached acces-
sories. The direct control of the robot’s actuators and sensors is managed by
an embedded microcontroller running the server software.

The client-server architecture is completed with client software applica-
tions running higher-level control and connected to the embedded microcon-
troller through RS-232 serial connection. Figure C.4 shows the diagram of
the architecture. This client software can be running in an on-board or ex-
ternal computer which can be connected to the server directly through the
serial communications or other bridge accessories, allowing several control
configurations, as shown in figure C.5.

This client-server environment eases the development of high-level control
programs, providing an abstraction layer between the physical robot and the
control software, allowing the same client applications to be ported between
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Pioneer platforms without modifications.

Besides this client-server control, the robot also allows for microcontroller-
level robot programming, loading the developed low-level control software in
the microcontroller’s flash memory.

C.1.2 SR1 Robot

The SR1 Robot (figure C.6) is a small sized wheeled robot, designed mainly
for educational purposes. This makes the SR1 robot a very versatile platform,
as it must offer a configuration complete enough to address the typical prob-
lems that any student interested in mobile robotics has to know. Therefore,
despite its small size, the robot has a very complete range of sensors (contact
switches, IR sensors, photoelectric cells, compass) which can be expanded
thanks to the I12C interface that it implements.

On-board processing is provided by a Netmedia BasicX-24P microcon-
troller and the possibility of off-board computing is provided through wireless
communications by means of a ER-400TRS RF transceptor. Also a DB-9 se-
rial port for RS-232 communications is provided in the main board, allowing
also for connection of other communication devices for Bluetooth or WiFi
RS-232 tunneling, with appropriate devices.

The PVC chassis also allows it to be expanded with other complements
like tracks for off-terrain drive or a pan-tilt unit for a camera and ultrasonic
Sensor.

The drive is provided by two radio-control HS-422 servos which propel
each rear wheel independently. Frontal part of the robot is balanced by an
unpowered wheel. The robot is powered by 6 AA batteries, which provide
around 20 hours of operation without the RF module.

Overall, the SR1 robot turns out to be a suitable low-priced platform for
prototype building. Some of its specifications are shown in table C.4.

C.2 Image acquisition hardware

In this section we review the specifications of the image acquisition hard-
ware used in the experimental works reported in this dissertation. The two
main sources of visual information have been the PTZ cameras mounted on
the Pioneer robots and the 3D ToF camera, which we have also mounted
temporarily on the Pioneer robot.



Client

Application

Server
Information

APPENDIX C. EXPERIMENTAL SETTINGS

Client
Commands

Serial
TCP/IP
Local Pipe

Server Communication

Interface Packets

Velocity and Position
Angle Controls Integration

Sonar &

I/0 Schedules

|

Drive

Control

Enconder

Sonar

Figure C.4: Pioneer client-server control architecture.

Ranging

Counting

1/0

Control

Robot
Specific
Functions

142



APPENDIX C. EXPERIMENTAL SETTINGS 143

PC
RadloModem
SR S /,/|T°Hub Lavmvc«nm

N Tether Onboard Ethernet Access Point Ii Connector Cable Autonomous with Onboard Computer
000 0 x o OO0 Etomet s@@@ Q@m 5ol o0

i Modem I Il 0 |
) > : ‘ )

Figure C.5: Client server connection options.

fl

Figure C.6: SR1 robot.



APPENDIX C. EXPERIMENTAL SETTINGS 144

C.2.1 Sony EVI-D30 PTZ camera

The Pioneer 2 DXE had a Sony EVI-D30 pan-tilt-zoom camera mounted over
the flat roof. The camera’s optical unit is mounted on a pan-tilt platform that
allows it to be oriented through command controls from the robot. Those
command controls are sent to the camera through a proprietary VISCA RS-
232 connector. Although being a digital camera with a CCD sensor, it only
provides analog output through a composite RCA video connection. Thus,
a frame grabber is required to capture the images provided by the camera
with a computer. Specs of the EVI-D30 camera are shown in table C.5.

C.2.2 Canon VC-C4 PTZ camera

The Pioneer 3 DX came with a lighter PTZ camera, a Canon VC-C4. Mount-
ing of the camera on the robot was in the same position on the flat roof.
Connection to the robot’s on-board computer was also a composite RCA
video cable connected to the frame grabber, with control commands sent
from the robot by a VISCA RS-232 connection. Full specifications of the
VC-C4 camera are shown in table C.6.

C.2.3 Imagenation PXC-200A frame grabber

Both Pioneer robots had their PTZ cameras connected to the on-board com-
puter by means of a Imagenation PXC-200A PCI frame grabber. This frame
grabber is a commercial model oriented to industrial applications, using the
industry standard PCI PC104+ socket to connect to the computer’s mother-
board. The cameras were connected with RCA connectors, providing images
with the NTSC video format. PXC-200A specifications are shown in table
C.7.

C.2.4 Mesa Imaging Swissranger 3000 ToF 3D camera

Swissranger 3000 camera (http://www.mesa-imaging.ch/) (figure C.7) is a
3D Time-of-Flight digital camera based in the principle of phase measuring
to estimate distances. The camera uses an array of LEDs which emits light in
the close infra-red spectrum to illuminate the scene. Knowing the wavelength
of the light emitted, when a pixel of the sensor detects some light rebounded
from an object in the scene, the distance traveled by this ray of light since
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it was emitted by the LED array can be estimated by measuring its phase
(figure C.8). This distance is calculated following the algorithm known as
the four buckets, or four steps method, computed according to the equations:

D=L.--2 (C.1)
2.7
C

L—_° 2
2 fm (©2)

where ¢ is the measured phase, L represents the non-ambiguity distance
range, ¢ the speed of light and f,,, the RF modulation frequency [79]. Due to
the periodicity of the phase of the infra-red light wave, distances can only be
measured with precision inside the non-ambiguity range defined by L, since
the same phase can be measured in different periods of the wave. The speci-
fications of the camera state that within the non-ambiguity range, distances
are measured with a typical precision of 1% of the measured distance (table
C.1).

Compared to other 3D imaging technologies, such as laser triangulation or
stereoscopic vision systems, ToF based measurements have several important
advantages :

e Measurements are not dependant on external reference points or pres-
ence of contrast in the surface of measured objects.

e Real time, video frame rate measurements with no dependency on scan-
ning cycles or limitations imposed by computer processing power.

e Scene illumination is provided by the camera, and it is not dependent
on illumination from external, visible light.

e Camera directly delivers depth values for each pixel, without the need
of complex calculation algorithms, resulting in faster, less computation
intensive systems.

e Larger objects can be measured easily without fitting any additional
system parameter, such as the camera base length in stereo vision.

As the optical characteristics of the camera are known, each pixel has a
correspondence to fixed azimuth and zenith angles in spherical coordinates.
Using the measured distance for each pixel, the spatial location with respect
to the camera of the object which reflected the detected light can be obtained.
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Figure C.7: Swissranger 3000 3D ToF digital camera.

| Operating Range [meters] [03] 1 | 2 [ 3 |
X-Y Resolution (one pixel) [mm]| | 1.5 | 5.0 | 10.0 | 15.0
Distance Resolution [mm)| 25 6 | 13 | 22

Table C.1: Measurement accuracy of the Swissranger 3000 camera (central
pixel).

Raw data provided by the Swissranger 3000 camera consists of two im-
ages: one distance image and one intensity image. In the distance image
the pixel value corresponds with the measured distance in that orientation in
spatial coordinates. The pixel value in the intensity image corresponds with
the amount of reflected light that the sensor’s pixel detected.

Full specs of the Swissranger 3000 3D camera are shown in table C.8.

C.3 Software

In this section we review the characteristics of the main software tools used
for the development of the PhD Thesis works. We review the ARIA libraries
provided for interfacing the robot control and the client applications, the
Basic Express environment for SR1 software development, the image capture
libraries of the frame grabber provided with the Pioneer robot versions, the
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OpenCV libraries used for some image processing applications and the two
main programing environments used: Microsoft Visual C++ and MATLAB.

C.3.1 ARIA libraries

Advanced Robot Interface for Applications (ARIA) is an object oriented
C++ SDK library provided by Mobile Robots for programming all of its
robotic platform series. ARIA offers high-level functions for building a client-
side control software, providing dynamic control to all of the robot’s parame-
ters, like its velocity or heading, and allowing also reading from robot sensors
like its odometry, sonar, or any other operating data provided by the robot
platform. Besides the high-level Actions infrastructure, ARIA also allows
low-level command communication with the robot.

ARIA provides an abstraction layer to the robot’s main functions through
the high-level class ArRobot (figure C.9). This class offers client side access to
robots operative system’s functions, as well as other components like sensors
of the PTZ cameras.

Connections with the robot is managed through the ArDeviceConnection.
Recent versions of ARIA also includes a library called ArNetworking which
implements an extensible infrastructure for easy remote network operations,
user interfaces, and other networked services. Through a server executing
on the robot’s PC, ArNetworking-enabled clients connect from another com-
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puter on the network to get data and issue commands.

A variety of other useful tools for building robot applications are included
in ARIA or available as separate libraries, including speech synthesis and
recognition; sound effect playback; mathematical functions, cross-platform
(Windows/Linux) thread and socket implementations; and more.

C++ development with ARIA is supported on GNU /Linux with GCC
(3.4 or greater; ARIA is precompiled with GCC 3.4 but may be recompiled
with any later version) and on Windows with MS Visual C++ .NET 2003
(7.1) and Visual C++ 2008 (9.0). As the robots used in this PhD Thesis
works were Windows based, the programming environment used with ARIA
was Microsoft Visual C++.

ARIA comes with full source code under the GNU General Public Li-
cense. The license allows re-distribution of code as long as all is distributed
freely. Proprietary distributions (without releasing your own source code, for
example) requires a different, commercial license. ARIA includes a full API
reference manual and example code.

Along the time this PhD Thesis works were done, ARIA libraries have
gone through several revisions and updates, from 1.1 version to the last
2.5.1 used one (at the time of writing this report, last available version is
2.7.1). The two main versions were used according to their availability and
capabilities:

e Version 1.x: This version was used for the tasks carried out with the
Pioneer 2 DXE.

e Version 2.x: Version used with the Pioneer 3 DX. It introduced the
new library ArNetworking, which allowed the building of the necessary
client-server control program that was required to acquire data with
the Swissranger SR3000 camera, as is explained in section C.4.2.

Using ARIA, a custom library was built with the standard actions we wanted
to perform with the robot, like robot connection, standard movements or
camera control. This custom library was used along all the PhD Thesis.

C.3.2 Basic Express BX-24

The Basic Express is a programming environment provided by Netmedia for
the development of software for their BX series of microcontrollers. The
BasicX language is based on Visual Basic, with a very similar syntax. The
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programs developed has to be compiled and downloaded to the SR1 robot
through RS-232 serial connection.

Several examples of programming for the SR1 robot where provided by
the manufacturer, which where used as the base for our own control functions
and communications interface through RF communications.

C.3.3 Imagenation PXC-200 libraries

The PXC-200 frame grabber version used in these PhD Thesis works came
without VW (Video for Windows) compliant Windows drivers, so our pro-
gramming environment (Microsoft Visual C++) could not made use of this
multimedia framework to access the frame grabber device through Direct-
Show. Instead, the PXC-200A frame grabber came with an interface library
to develop applications which communicate with it, available to DOS and
Windows platforms through C libraries (DOS based programs) and DLLs
(Windows based programs). This interface is implemented as a set of three
libraries, of which only two were used, as the third was a DOS-only library,
not needed in the working environment. Those libraries and their purpose
are:
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e PXC200A Frame Grabber Library: Includes the functions used to
control the frame grabber, including capturing images, setting image
resolution, switching video inputs, and setting image contrast, bright-
ness, hue, and saturation.

e Frame Library: Includes the functions used to access captured im-
age data and to read and write image files. In later developments,
this library was substituted in the applications developed by the more
general, computer vision oriented OpenCV libraries.

As was done with the ARIA libraries, PXC-200 libraries were used to build
up a custom library with the most used functions in our applications.

C.3.4 OpenCV libraries

OpenCV (Open Source Computer Vision) is a library of programming func-
tions for real time computer vision. It is free for commercial and research
use under the open source BSD license. The library is cross-platform, and
runs on Windows, Mac OS X, Linux, PSP, VCRT (Real-Time OS on Smart
camera) and other embedded devices. OpenCV was originally developed by
Intel. It focuses mainly on real-time image processing, and as such, if it finds
Intel’s Integrated Performance Primitives (IPP) on the system, it will use
these commercial optimized routines to accelerate itself. Earlier versions of
this library had some problems running on non-Intel platforms as they made
intensive use of the MMX and SSE primitives introduced in the Pentium
processor, preventing us from using them with the AMD based on-board
computer of the Pioneer 2 DXE as that generation’s AMD processors did
not include those extensions.

OpenCV is a well-known, widespread computer vision library used in
many researches in this field. It has been used in some notable applications,
like the vision system of Stanley, Stanford’s 2005 DARPA Grand Challenge
race winner, or Google’s Street View.

The OpenCV library is composed of five modules:

e cxcore: Basic data structures and linear algebra support.
e cv: Main image processing and vision OpenCV functions.

e cvaux: Auxiliary, experimental and defunct OpenCV functions.
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e mll: Statistical classifier and clustering machine learning OpenCV
tools.

e highgui: GUI and I/O functions.

C.3.5 Microsoft Visual C++4

Microsoft Visual C++ (MSVC) is a commercial integrated development en-
vironment (IDE) product engineered by Microsoft for the C, C++, and
C++/CLI programming languages. It has tools for developing and debug-
ging C++ code, especially code written for the Microsoft Windows API, the
DirectX API, and the Microsoft .NET Framework. This development plat-
form was chosen since it was the recommended and supported platform by
the ARIA libraries for code development in the Windows platform. Initially
Visual C++ 6.0 was used, being later changed to Visual C++ .NET 2003,
as the ARIA 2.x libraries required this new version.

C.3.6 The MathWorks MATLAB

MATLAB (abbreviation for MATrix LABoratory) is a numerical computing
environment which offers an IDE with its own programming language (M
language) for mathematical applications programming. Its a cross-platform
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software with versions for Unix, Windows and MacOS X operative systems,
with a Java-based GUI.

MATLAB allows matrix manipulation, plotting of functions and data,
implementation of algorithms, creation of user interfaces, interfacing with
programs in other languages and exporting developed code to other languages
or to standalone executable applications. It provides also GUI development
tools through GUIDE package and graphical multidomain simulation and
Model-Based Design for dynamic and embedded systems through Simulink.
Both MATLAB and Simulink can be extended by means of optional toolboxes
(MATLAB) and blocksets (Simulink).

MATLAB is a widespread software, extensively used in research, both in
the university and I-+D Centers.

C.4 Experimental configurations

In this section we review the detailed experimental configurations of the
robots for several of the experiments reported in this PhD dissertation, those
related to some of the experiments done with the Lattice Associative Memo-
ries (LAM), related to the 3D ToF camera and those related with the Linked
System.

C.4.1 Lattice Computing approaches to localization and
mapping

In the works presented in chapter 2 two different experimental approaches
where realized. The main interest of the experiments reported in section 2.3
was to try the presented approach in a real robotic mobile platform. On
the other hand, in following works, reported in sections 2.4 and 2.5, the
emphasis was put in testing the suitability of the proposed approach for view
characterization and its performance in recognizing landmarks. Thus, an off-
line experimentation approach with pre-recorded datasets was preferred, as
this avoids most of the misleading and time consuming technical problems
which a real robot implementation entails.
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Figure C.11: Flow chart for the control program and data retrieving.

On-board experimentation

In section 2.3 a two step process was done. In the first step, the robot had
to make a walk, following the path which was desired to map. The data
recorded in this first walk was used to build up a map on-line. In the second
step, the robot had to make several walks, following the same path as in
the first walk. Then it made use of the map generated in the first step and
tried to recognize the positions it was going through. This two step process
required two different control programs for the two tasks: one map building
program and one localization program. Both programs are programmed in
C++ and made use of the ARIA libraries to control and communicate with
the robot and of the PXC200 libraries for image acquisition. Both programs
also run in the on-board computer in an autonomous way. A remote desktop
PC was used to start the robot’s program remotely through a Wi-Fi wireless
connection and to retrieve the recorded experimental data for further off-line
analysis. In figure C.11 the operation diagram of this process is shown. Some
detail about the specifics of the two programs is presented next.

Map building The map building program had a single thread, in which
the main loop controlled the movements of the robot and the image and
data acquisition and recording. The path to follow was pre-programmed
beforehand. Also, to avoid problems with possible blurry images caused by
the robots movement and to ensure an steady separation between frames,
the path was followed in a movement-stop-capture loop with 600 mm. steps.
Data acquisition of each of the positions followed the steps detailed in section
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2.3.1:

. Acquire the image from the frame grabber and the position from the

odometry.

Compute the binarization thresholds.
Binarize the image with the two thresholds.
Compute the M and W memories.

Store the acquired image, M and W memories and related odometry
position.

Localization Localization was performed by a double-threaded program.
The main thread controlled the movement of the robot and it had the same
pre-programmed path that the mapping program, but in this case the path
was followed in a continuous way, without the movement-stop-capture loop.
A background thread was continuously acquiring odometry readings and im-
ages and comparing them with the stored map. This localization process
followed the steps described in section 2.3.1:

1.

d.

Acquire the image from the frame grabber and the position from the
odometry.

. Compute the binarization thresholds.

Binarize the image with the two thresholds.

For each of the stored positions:

(a) If the luminosity of the image is very different from the stored one,
skip the position.

(b) Use the binarized images as inputs for the W and M memories.

(c) If the output from both memories equals 1, mark position as rec-
ognized and store the recognition.

If no position has been recognized, store a -1, indicating failure in
localization.
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Experimental data analysis After the map building and localization
processes, the recorder data was retrieved from a remote desktop PC in
which several statistical analyses were made. Those results are presented in
section 2.3.2.

Additionally the robustness of the localization was tested, measuring the
area around the positions from which its related landmark view was recog-
nized. This was done by means of a simple program that captured one single
view, generating a map position with it, and then acquiring a new frame and
trying localization against the single stored position when a controller ask
for it. To measure the recognition area, a 1 m? graduated sheet was used
(figure C.12). The procedure was as following:

1. The robot is placed in the center of the graduated sheet.
2. The reference map position is acquired.

3. The robot is manually moved to the front at steps of two centimeters
until it reaches the border of the sheet, making one localization step in
each position.

4. The robot is placed again in the center of the sheet.

5. Repeat steps 3 and 4 moving the robot backwards, to the left and to
the right.

Recognition area was calculated using as references the farthest point in ev-
ery direction in which the reference position was recognized. From those
experiments it was verified that localization is more robust against displace-
ments along the optical axis than lateral translations. Therefore the positive
recognition area of a map’s position has an elliptical form, whose maximum
elongation is collinear with the optical axis. The radiuses of this ellipse will
be very dependant of the characteristics of the environment, varying between
10 and 70 cm.

Off-line experimentation

To carry out the experiments described in sections 2.4 and 2.5, a suitable
dataset was required, which had to be recorded prior to any test. Those
image datasets were recorder over several predefined walks in different floors
of the building in which the “Facultad de Informéatica de San Sebastian”
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Figure C.12: Pioneer 2 DXE on the graduated sheet used to measure position
recognition area.

resides. Those walks try to simulate possible paths that a robot should
travel in one hypothetical navigation task in that building.

Data recording Dataset were recorded with the Pioneer 2 DXE robot and
its mounted Sony EVI-D30 PTZ camera. The robot was driven manually at
a constant speed with a keyboard connected to the PS2 port of the on-board
computer. The robot acquired and stored one optical image from the camera
each 5-6 centimeters, along with its related position as measured by odom-
etry. The recorded data was retrieved off-line from a desktop computer via
wireless connection. The control and image acquisition program was running
on the on-board AMD K6-II computer and was programmed in C++ using
the ARIA and PXC-200 libraries, as a client control software in the Pioneer
client-server architecture (figure C.13). It had a two threaded structure, in
which one of them runs a loop in the background, acquiring and storing opti-
cal images and odometry information at constant time steps, while the main
thread waits for user’s high-level control input through the keyboard, sends
the low-level commands to the robot through serial connection and makes
sure that the commands have been correctly executed by the robot.

The control of the PTZ camera was limited to check at the start of the
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Figure C.13: Flow chart for the control and data acquisition program.

execution the centered position of the pan-tilt unit and the configuration of
the zoom in the shortest focal length, in order to capture as wider field of
view possible, oriented just ahead of the robot.

The resulting optical images datasets are described in appendix D.

C.4.2 Localization from 3D imaging

The approach presented in chapter 3 was also validated through off-line ex-
perimentation. This validation was done on pre-recorded 3D ToF camera
data readings, compiled in several datasets described in appendix E. The
settings used to acquire this datasets are detailed next.

Hardware configuration

Mounting the 3D camera on the robot presented some difficulties. It uses a
USB 2.0 data connection for communication with the controlling computer.
The Pioneer 3 robot used only had USB 1.1 data ports available, so the
camera has to be connected to an external laptop in order to acquire data.
The ideal mounting of the camera on the robot, in the central-front part,
was already occupied by the pan-tilt-zoom camera, which we did not want
to unmount since complementary optical images were also desired. First
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Figure C.14: 3D camera mounted on the Pioneer robot.

attempts were done mounting the 3D camera behind the pan-tilt unit, but
the approach resulted unpractical with the available hardware. The resulting
position was too high and suffered from great oscillations and vibrations.
Placing the camera directly over the flat roof of the robot was the best
solution to avoid those oscillations, but, as the pan-tilt unit occupies the
central part of the robot, the 3D camera could not to be located directly on
the longitudinal axis of the robot. Also, since the 3D camera has a cooling
fan in the bottom, it could not be placed straight, as the airflow would be
obstructed. Final position of the camera was placed, rotating it 90° clockwise,
over the front part of the robot’s roof and to the right of the longitudinal
axis of the robot, as can be seen in figure C.14. This camera configuration
has to be taken into account when processing data and analyzing the results.

The camera configuration had to be changed in order to adapt it to a
moving platform. To avoid blurry data acquisition, exposition times were
reduced to 1/200 s, in order to be fast enough to capture steady frames.
This small exposition time also has other effects. One negative aspect is
that it reduces the range of the camera, since farther rebounds have less
intensity. On the other hand, it will ease the problem of rebounds beyond
non-ambiguity range and specular reflections, since usually they are also
of very low intensity and thus they will be less detectable with a shorter
exposition time.

Robot control and data acquisition

In order to make the robot to follow an specific path along the environments
that were going to be recorded, manual remote control was used. As the
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3D data acquisition had to be done in an external computer because of the
problems reported in C.4.2, the remote control was performed from a laptop
carried by an operator, following closely the robot as the 3D camera has to
be also connected to it.

To allow the remote control and data acquisition from an external laptop,
a two module control-acquisition software was programmed (figure C.15),
using ARIA client-server libraries provided by the robot’s manufacturer:

e Client module, running in the controller’s laptop, gets control com-
mands from the operator and sends them to the robot through Ether-
net. Also, when the operator hits ’space’ key, the program will acquire
a frame from the 3D camera and ask the robot for odometry data of
the position and an image from the on-board optical camera.

e The server module runs in the robot’s on-board computer waiting for
commands from the client. It acts as an intermediary between the
client module and the robot’s hardware, sending to the robot’s micro-
controller the control commands received by the Ethernet and reading
odometry. As the robot’s on-board optical camera is connected directly
to the on-board computer, the server module also manages the optical
image acquisition from it. When asked for it, the server module will
acquire and send via Ethernet odometry data and an optical image.
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C.4.3 Multi-robot visual control

The works reported in chapter 4 are mainly experimental. However, as we
were working on a new platform, the SR1 robot, first we had to learn it and
build up the required hardware and software experimental environment. The
experimental configurations used are reported below.

SR1 physical configuration

Being a education oriented robot, the SR1 is intended to show the students
every step in the robotics research process starting from its physical con-
struction. The SR1 robot comes, thus, unassembled. The first step in the
configuration of the robotic hardware was to assemble it, including soldering
the main board.

The characteristics of the environment in which the experiments where
going to be performed required for some modifications in the SR1 robots. Its
original yellow color is difficult to discriminate from the yellowish color of the
floor’s tiles, so there will be difficulties in their detection and localization by
an artificial vision system. To avoid this problem and ease the segmentation
process, the robots where painted in blue.

Robots also need a mechanism with which they can hook to he hose, while
rotating freely below it. A practical and easy solution came with the use of
cabinet casters. One of those casters screwed up on the robot’s roof provide
a rotating coupling for the hose. The wheel of the caster was used to avoid
that the hose slips away, keeping it in place.

As most of the robot’s main board is exposed, the hose had a tendency
to get caught in the board’s components, especially in the sonar unit. This
was avoided by covering the main board with a cardboard with the corners
folded to avoid as much as possible the existence of points to which the hose
could get hooked.

The final robot configuration is show in figure C.16.

Command and communication protocols

A library of common command controls (advance, accelerate, brake, various
turning functions, etc.) was programmed using the Basic Express environ-
ment. Communications where done through RF by means of ER-400TRS
modules, connected to the serial port of the robot’s microcontroller and with
an USB adapter to the controller PC.
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Figure C.16: SR1 robot’s final configuration.

Initially, each robot used a different RF channel, with a simple command
format. Early tests saw that this communication method was plagued with
problems, as many command controls were lost and overlapping communica-
tion channels caused the robots to receive commands not sent to them. Also,
the USB RF transceptor of the controller PC had to change constantly the
channel to communicate with each and all the different robots, introducing
delays that caused also synchronization problems. It was, thus, necessary to
build a communications protocol robust enough, with all the robots using the
same communication channel. After several try and error test, a compromise
solution was found: it was estimated that merely repeating several times the
desired command will be enough to cope with the problem of lost commands.
To avoid the repeated command to be executed more than once, commands
where labeled with an sequence ID. Following this protocol, each command
packet (figure C.17) will have the following fields:

o Packet start: Packets starts with the character 'Z’.

e Robot ID: An {’1’-’9’} character identifying the robot the packet has
been sent to.

e Sequence ID: A {"X’’Y’} character identifying the command sequence.
X" and 'Y’ values alternate in consecutive commands.
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Figure C.17: Communication protocol’s packet structure.

e Control command: 5 characters identifying the control command sent
(e.g. 'MORAE’ to command the robot to advance).

e Control command parameters: a variable number of optional parame-
ters for some control commands.

When a robot receive a new packet (reads a 'Z’ from the communication
buffer), first checks if the robot ID character corresponds with its assigned
number. If the message is for other robot, it discards the packet and waits
for the next 'Z’. If the packet was destined to it, it checks if the sequence 1D
is the same than the last executed command. If it is the same, it discards
the packet. If it is different, it reads the command and its parameters. If
the command or the parameters are incorrect, the packet is also discarded.
Finally, if the command is received correctly, the robot executes it and dis-
cards all the packets it receives until a packet with different sequence ID is
read. This process is outlined in algorithm C.1.

As the packet size is quite small (8 characters for a normal command,
up to 16 for the largest one), the transmission speed allowed for multiple
command repetitions without introducing delays. In any case, experimental
tests saw that a repetition of 3 was enough to avoid most problems from lost
commands.

This protocol was implemented, besides the control program running in
the robots, in a MATLAB-SRI1 interface library for serial communications
between the MATLAB environment and the robots. This library was used
to communicate wirelessly the control program with the robots through the
serial tunneling provided by the USB RF adaptor.

Robot control implementation

The control of the hose transportation system was programmed in the MAT-
LAB environment. A GUI provided access to the configuration of a image
acquisition device which provided global perception. Several parameters of
the control heuristic could be changed on-line through the GUI, and the
current state of the system was shown in a window (figure C.18). Commu-
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Algorithm C.1 Robust communication protocol.

Given the robot with ID = # and expected command sequence ID = §.

1.
2.
3.

10.

Empty communication buffer until a 'Z’ is received.

Read the robot ID field from the communication buffer.

If the robot ID is not #, go to 1.

Read the sequence ID field from the communication buffer.
If the sequence ID is not $, go to 1.

Read the command from the communication buffer.

Check the command. Go to 1 if the command is invalid.

If the command has parameters.

(a) Read the command from the communication buffer.

(b) Check the parameters. Go to 1 if they are invalid.

Execute the received command.

Change the expected command sequence ID.
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Figure C.18: GUI of the robot-hose transportation system’s control program.

nications with the robots were performed with the MATLAB-SR1 interface
mentioned before.
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Pioneer 2 DXE

|

Pioneer 3 DX

’ Physical Characteristics

Length (cm) 44.5 44.5 (44)
Width (cm) 40 40.0 (38)
Height (cm) 24.5 24.5 (22)
Clearance (cm) 6.5 6.5 (6)
Weight (kg) 9 9
Payload (kg) 23 23 flat
14 @ 13% grade
Power
Batteries 12VDC lead-acid 3 3
Charge (watt-hrs) 252 252
Run time (hrs) 8-10 18-24
with PC (hrs) 3-4
Recharge time (hrs)
Standard charger 6 12
High-Speed charger 24 2.4

Mobility
Wheels 2 pneumatic 2 pneumatic
1 hard caster 1 hard caster
diam (mm) 191 191
width (mm) 50 50
Caster (mm) 75
Steering Differential Differential
Gear ratio 19.7:1 38.3:1
Pushing force (kg) 6
Swing (cm) 32 32
Turn (cm) 0 0
Translate speed max (mm/sec) 1,800 1,200
Rotate speed max (deg/sec) 360
Traversable step max (mm) 20 35
Traversable gap max (mm) 89 89
Traversable slope max (grade) 25% 25

Traversable terrains

Wheelchair accessible

Wheelchair accessible

Table C.2: Pioneer 2 DXE and Pioneer 3 DX comparative physical specifi-

cations.
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Pioneer 2 DXE

Pioneer 3 DX

Sensors

Sonar Front Array

8 included
1 each side, 6 forward
20° intervals

8 included
1 each side, 6 forward
15° intervals

Rear Sonar Array

8 included
1 each side, 6 rear
20° intervals

8 optional
1 each side, 6 rear
15° intervals

Range

15cm - 5m

On-board computer

CPU AMD K6 I1 Intel Pentium III
Frequency 400 MHz 800 MHz

RAM 128 Mb 256 Mb

SO Microsoft Windows Me Microsoft Windows 2000
Microcontroller

Processor Siemens 80C166 (20 MHz) Hitachi H8S (33 MHz)

LCD 32 characters on 2 lines n/a

Audio Piezo buzzer Piezo buzzer

Sonar inputs

2x8 (multiplexed)

16 max

Digital I/O

16 logic ports; 8 in, 8 out

8-bit 1/O bus / 16 devices
+ PC104 I/O boards

A/D

5@ 0-5 VDC

5@ 0-5 VDC

FLASH PROM

32 KB

1Mb

Power switches

1 main; 1 RADIO

1 main; 2 auxiliary

Comm ports

2 RS-232 internal
1 RS-232 external

3 RS-232 serial ports

Table C.3: Pioneer 2 DXE and Pioneer 3 DX comparative sensor and elec-

tronics specifications.
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Dimensions ‘
Length (cm) 15
Width (cm) 14
Height (cm) 10
] Power \
Batteries 6 x 1.5V AA
Run Time (h) 20 without RF
| Mobility
Wheels 2 rear, 1 frontal
Diameter (cm) 7.2 rear
5 frontal
Servos 2 HS-422
Torque (kg/cm) 3.3
Sensors 1 x SRF08 ultrasonic sensor, front faced
2 x IR LED emitters, 1 receiver
2 x photoelectric cells
1 x CMPS03 digital compass
2 x contact switches, front faced
1 x inclinometer
Communications 1 x RS-232 DB-9 port
1 x ER-400TRS RF transceptor
1 x 12C communications port.
’ Microcontroller \ Netmedia BasicX-24P

Table C.4: SR1 robot specifications.
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Image Sensor

1/3" IT CCD

Effective Pixels

768(H) x 494(V) NTSC; 752(H) x 585(V) PAL

Horizontal Resolution

460 TV lines NTSC; 450 TV lines PAL

Vertical Resolution

350 TV lines NTSC; 400 TV lines PAL

Lens

12X Zoom, f=5.4 - 64.8 mm; F=1.8 - 2.7

Angle of View (H)

48.8 degrees (wide angle) - 4.3 degrees (telephoto)

Angle of View (V)

37.6 degrees (wide angle) - 3.3 degrees (telephoto)

Minimum illumination

7lux / F1.8

Pan Angle +100 degrees; max 80 degrees / second
Tilt Angle +25 degrees; max 50 degrees / second
Weight 1,200 g

Table C.5: Sony EVI-D30 camera specifications.
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Video Standard: NTSC
Total Number of Pixels: 410,000 (380,000 effective pixels)
TV-Line: 460 TV L
Minimum Illumination: 6 lux (2 lux at gain-up mode)
SNR: 48 dB
Horiz, Field of View: 3 to 47.5 degrees
65 degrees with Wide angle lens adapter
White Balance: Auto
Exposure: Auto/Manual
Focus: Auto/Manual
Focus Length: 4 to 64mm, F1.4 to 2.8
Zoom: 16x
Pan Angle: +100 degrees (£170° VC-C4R)
Pan Speed: 1 to 90 degrees/sec (+10°, -90° VC-CR)
Tilt Angle: +90/-30 degrees
Tilt Speed: 1 to 70 degrees/sec
Preset Position: 9 Positions
Controllable # by one IR: | 9 Units
Cascade control: 9 Units
Control: RS232 Serial (up to 19.2 kbps)
Power: 13V, 12W
Size (W x D x H) mm: 116 x 113 x 91
Weight: 375 g

Table C.6: Canon VC-C4 PTZ camera specifications.

Video Input Formats NTSC, PAL, SECAM, S-Video

Video Input Signal 1 V peak to peak, 75 &

Resolution NTSC: 640 x 480
PAL / SECAM: 768 x 576

Output Formats Color: YCrCb 4:2:2; RGB 32, 24, 16 y 15
Grayscale: Y8

PCI PC-104 Card Dimensions | 174.6 x 106.7 mm.

Table C.7: PXC-200A frame grabber specifications.
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Pixel Array Size

176 x 144 (QCIF)

Field of View

47.5 x 39.6 degrees

Optical lens f/1.4

Interface USB 2.0
[umination Power 1 Watt (average)
Wavelength 850nm

Housing Size 50 x 67 x 42.3 mm3
Housing Material Aluminium

Power Supply 12V

Power Consumption

12 W, typical

Operating Temperature

-10°C to +50°C

Output Data (per pixel)

X, ¥, z coordinates i (intensity)

Camera Mounting Holes

2x M4; 1x¥

Range and Resolution

Modulation Frequency

20MHz, standard

Non-ambiguous range

7.5 meters

Distance Resolution

1% of range, typical

Frame Rate

25 fps, typical

Table C.8: Swissranger 3000 specifications.
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Optical image datasets

In this appendix several optical image datasets are presented. These im-
age collections were recorded simulating several possible paths that a mobile
robot should follow when performing a task inside our building. The experi-
mental validation of the approaches reported in sections 2.4 and 2.5 of chapter
2 were done using these datasets. Detailed description of the configuration
of the recording process is given in appendix C.

Due the size of these datasets we are unable to put them available on-
line on our web site. Anyone interested in these datasets can request them
through the contact address available in our wiki' and we will gladly send
them by ordinary mail to the indicated postal address.

D.1 Procedure

Image datasets were recorder over several predefined walks in different floors
of the building in which the “Facultad de Informéatica de San Sebastian”
resides. Those walks try to simulate possible paths that a robot should
travel in one hypothetical navigation task in that building.

Each walk was traveled six times, driving the Pioneer 2 robot manually
through a connected keyboard at a constant speed. The robot acquired and
stored one optical image from the camera each 5-6 centimeters, along with its
related position as measured by odometry. Being guided manually, each one
of the travels follows a slightly different path, having different oscillations in
its movement and trajectory corrections as well.

Thttp:/ /www.ehu.es/ccwintco

171



APPENDIX D. OPTICAL IMAGE DATASETS 172

Original resolution | 640x480

Final resolution 628x242
Format 8bit grayscale
File type Bitmap (.bmp)

Table D.1: Format of the stored images.

D.2 Stored data format

D.2.1 Optical images

Raw NTSC frames acquired by the frame grabber have a resolution of 640x480
pixels. Those images are interleaved: each image is a composition of two
frames, alternating rows from them. Frame interleaving involves a serious is-
sue to vision based techniques when acquired from a mobile platform. When
images are acquired in motion, scene captured by the camera changes be-
tween frames, and mixing different frames introduces artifacts which can be
problematic for image processing. Thus, it is advisable to deinterlace the
images. But deinterlacing is a difficult procedure and it does not provide a
clean solution, introducing other artifacts like ghosting. As images are big
enough, the easiest way to avoid problems produced by interlacing was by
merely storing as an image the rows that come from the same frame. This
resulted in full size images with the same resolution, but with its lower half
rows without information (black). As the frame grabber driver provided
this function, images were acquired in this format. Also, the NTSC format
introduced black vertical rims which had to be cropped (figure D.1).

The resulting image after this process is a grayscale image of 628x242
pixels, stored in 8 bit grayscale BMP format (table D.1). As horizontal
resolution more doubles vertical resolution after discarding half of the rows
and the vertical rims, objects in the scene appear elongated (figure D.2).
This can be an issue for some object recognition tasks, so a subsampling of
the columns of the images may be required. However, the images were stored
without this subsampling in order to save as much information as possible.

D.2.2 Odometry

Along with each of the travels, a text file is provided with odometry record-
ings corresponding with the points in which each of the stored images was
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Figure D.1: Deinterlaced image as acquired.

Figure D.2: Cropped Image as stored.
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Figure D.3: Coordinate reference system in relation with original position of
the robot.

taken. This text file stores one position each row, each position formed by
four values separated by spaces, with the order <#image, x, y, 6>, being
coordinates given in millimeters and orientation in degrees. The origin of the
coordinates is in the starting position of the robot, being the X axis and the
0° orientation the direction in which the robot was facing (figure D.3).

Recorded odometry is quite imprecise, as can be seen on superposed paths
show on the plans of section D.3. The greater errors relative to the nominal
path of the robot are introduced at the turning points, while straight portions
of the path are relatively well represented by the odometry readings.
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D.3 Datasets

Five datasets are provided, recorded in two different floors. Each dataset
contains six folders numbered from 01 to 06, one for each travel, and in
each folder the files with the images are stored, plus a text file with the
corresponding positions:

e File with the odometry readings: “posiciones.txt”

e File with the image corresponding to position number ###: “ima-

gen ##+#.bmp”

D.3.1 Walk 01: Lab-Corridor-Hall

Short walk recorded in the third floor of the building. Starting from one of
the laboratories, close to the starting point it turns to the right to cross a
door. Then a corridor is followed up to a hall which is reached after another
turn to the right. In the hall there are several furnishings (couches, cabinets,
plant pots), which the path avoids to finally stop near the door to the stairs.
Paths for the six walks are shown in figure D.4.

e Travelled distance: 35 m. approximately.

90° turnings: 2.

Samples per travel: 750-800

IMlumination: Constant of artificial and natural source.

D.3.2 Walk 02: Lab-Corridor-Hall-Corridor-Hall

Long walk recorder in the third floor of the building. Starting from one of
the laboratories, it turn right to go through a corridor and then again to the
right to a hall. Another corridor is followed to the left up to another hall,
when it turns again to the left to finally stop in front of a door. Paths for
the six walks are shown in figure D.5.

e Travelled distance: 60 m. approximately.



APPENDIX D. OPTICAL IMAGE DATASETS 176

Figure D.4: Paths from the travels of walk 01.

e 90° turnings: 4.
e Samples per travel: 1000-1050.

e [llumination: Constant of artificial source.

D.3.3 Walk 03: Hall-Corridor-Hall-Corridor-Lab

Same path than the walk 02, but in opposite direction. Paths for the six
walks are shown in figure D.6.
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Figure D.5: Paths from the travels of walk 02.

J

Traveled distance: 60 m. approximately.

90° turnings: 4.

Samples per travel: 1000-1050.

[Mlumination: Constant of artificial source.

D.3.4 Walk 04: Hall 1

Long rectangular path in the building’s first floor hall. Very regular structure,
with several columns and stairs. Natural illumination with strong shadows
and harsh changes between travels. Paths for the six walks are shown in
figure D.7.

e Traveled distance: 40 m. approximately.
e 90° turnings: 4.

e Samples per travel: 750-850.
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Figure D.6: Paths from the travels of walk 03.

e [llumination: Changing of natural source.

D.3.5 Walk 05: Hall 2

Rectangular path in the first floor’s hall, in the opposite direction than walk
04. Similar illumination conditions. Paths for the six walks are shown in
figure D.8.

e Traveled distance: 40 m. approximately.
e 90° turnings: 4.
e Samples per travel: 650-700.

e [llumination: Changing of natural source.
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Figure D.7: Paths from the travels of walk 04.
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Figure D.8: Paths from the travels of walk 05.






Appendix E

3D ToF camera datasets

In this appendix we describe several datasets of measurements acquired with
the Swissranger 3000 ToF camera mounted on top of a Pioneer robot. These
datasets are the ones used for the off-line validation of the works presented
in chapter 3. In this appendix only the specific details of the stored data
and the environments they measure are described. A complete description
of the hardware and software configurations used to record these datasets is
given in appendix C. The datasets are freely available from the web site of
the Computational Intelligence group:
http://www.ehu.es/ccwintco/index.php/Conjuntos_de datos 3D

E.1 Environments

Datasets were recorded in rooms 125 and 126 of the first floor of the “Facultad
de Informatica de San Sebastian” (FISS) of the UPV-EHU, prior to reforms
(figures E.1, E.2 and E.3). Both rooms are of rectangular plan, measuring
88 and 119 m?, respectively. One of the walls in both rooms is composed of
windows with radiators below (east wall in room 125 and west wall in room
126). There are projecting columns in east wall in room 125 and in both
longitudinal walls in room 126.

In the north-western corner of room 125 there are piled several furnishings
up to the middle of the room in wide and up to first column lengthwise. In
room 126 there is also piled furnishings against the eastern wall between first
and second columns, projecting up to 1.5 m from the wall.

In each of the environments three walks have been recorded, following
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Figure E.1: Plans of rooms 125 and 126.
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Figure E.3: Several views of room 126.
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different paths in order to gather as complete a data set as possible from this
very unique setting (which no longer exists at the time of this writing). The
paths followed were:

e Clockwise (CW): The room is traveled following closely the walls in
clockwise direction.

e Counter Clockwise (CCW): The room is traveled following closely
the walls in counter clockwise direction.

e Zig-Zag (ZZ): The room is traveled crosswise following an ’S’ pattern.

E.2 Stored data

As shown in section E.1 a total of 6 datasets have been recorded (2 envi-
ronments, with 3 walks each). Each dataset is composed of the following
data:

e amplitudes.dat: raw near infrared image intensity data from the 3D
camera. The data is stored in a sequence of matrices in binary format,
each matrix representing the amplitude image from one position. Each
matrix is composed of 144x 176 values of type uint16.

e distancias.dat: raw range data, the distance measurements from the
3D camera. The data is stored in a sequence of matrices in binary
format, each matrix representing the distance image from one position.
Each matrix is composed of 144x176 values of type uint16.

e x.dat: Values of X coordinate, computed from the raw range data from
the 3D camera. The data is stored in a sequence of matrices in binary
format, each matrix representing the X coordinate value corresponding
to the pixel of that position. Each matrix is composed of 144x176
values of type int16.

e y.dat: Values of Y coordinate, computed from the raw range data from
the 3D camera. The data is stored in a sequence of matrices in binary
format, each matrix representing the Y coordinate value corresponding
to the pixel of that position. Each matrix is composed of 144x176
values of type int16.
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e z.dat: Values of Z coordinate, computed from the raw range data from
the 3D camera. The data is stored in a sequence of matrices in binary
format, each matrix representing the Z coordinate value corresponding
to the pixel of that position. Each matrix is composed of 144x176
values of type int16.

e posiciones.txt: Sequence of spatial positions and orientations fol-
lowed by the robot, in global coordinates, as given by robot’s odometry.
The origin (0,0,0) is the starting position of the robot. Text format,
one position each line in the format (x,y, ) with one space between
values.

e secuencia.mat: Formatted data to be read by Matlab. Contains the
following variables:

— imagenesAmp: Cell structure of matrices of size 144x 176, con-
taining the data from amplitudes.dat.

— imagenesDist: Cell structure of matrices of size 144x176, con-
taining the data from distancias.dat.

— imagenesX: Cell structure of matrices of size 144x176, contain-
ing the data from z.dat, in camera coordinates rotated 90° CCW.

— imagenesY: Cell structure of matrices of size 144x176, contain-
ing the data from y.dat, in camera coordinates rotated 90° CCW.

— imagenesZ: Cell structure of matrices of size 144 x 176, containing
the data from z.dat, in camera coordinates rotated 90° CCW.

— posiciones: Matrix nx3, containing the sequence of positions.
One position each row (z,y,0).

— secuenciaPuntos: Cell containing the sequence of matrices nx3
with the point cloud for each position, integrated from imagenesX,
mmagenesY and tmagenesZ, and filtered with a confidence value
of 6 x 10°. Each row of the matrices contains the coordinates of
each point (z,y, z) in the camera reference system.

— secuenciaPuntosRobot: Cell containing the sequence of matri-
ces nx3 with the point cloud for each position, integrated from
mmagenesX, imagenesY and imagenesZ, and filtered with a con-
fidence value of 6 x 10°. Each row of the matrices contains the
coordinates of each point (z,y, z) in the robot reference system.
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Note: Raw data is rotated 90° to the right, due the collocation of the cam-
era in the robot, which was mounted lying down on its side, instead of being
mounted straight, as explained in section C.4.2 of appendix C. In prepro-
cessed data this has been corrected. All units are in millimeters.

E.3 Coordinate systems

When working with coordinates or displaying them as Matlab’s figures, some-
thing to take into account is the reference coordinate system that is being
used. Coordinate axes are situated in different order in the camera, robot
and Matlab reference systems. Also has to be noted that the 3D camera
is mounted on the robot rotated 90° to the right (CW), therefore, the raw
data’s coordinate system is also different. In Figure E.4 the different reference
systems are shown.

E.4 Recorded walks

In figures E.5 to E.10 representations of the paths followed by data record-
ing walks over the plans for the rooms are shown. Real approximate path
(nominal path) is shown as a the red line. Path as recorded by odometry is
shown as a blue line.
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Figure E.4: Coordinate reference systems for (E.4a) camera, (E.4b) camera
rotated 90° CW, (E.4c) robot and (E.4d) Matlab.
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Figure E.5: Room 125. Clockwise path.

Figure E.6: Room 125. Counter Clockwise path.
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Figure E.7: Room 125. Zig-Zag path.
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Figure E.8: Room 126. Clockwise path.
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Figure E.10: Room 126. Zig-Zag path.
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