eman ta zabal zazu		
Universidad	Euskal Herriko	
del País Vasco	Unibertsitatea	

Optimal Hyperbox shrinking in Dendritic Computing applied to Alzheimer's Disease detection in MRI

Darya Chyzhyk, Manuel Graña

Computational Intelligence Group Dept. CCIA, University of Basque Country, San Sebastián, Spain www.ehu.es/ccwintco

Content

- Introduction
- Dendritic Computing
- Experimental results
- Summary and Conclusions

Introduction

Dendritic Computing

- simple and fast
- based on biology
- binary class problems
- based on lattice theory

Introduction

Has been proved to compute a **perfect** approximation to **any data distribution.**

- The results of cross-validation experiments give very poor performance: high sensitivity and very low specificity.
- We attribute this to the fact that the **DC learning algorithm** always tries to **guarantee** the good classification of the class 1 samples.

We propose to apply a **reduction factor** on the size of the hyperboxes

Structure of a single output class single layer Dendritic Computing system

2. Compute response of the current dendrite D_j , with $p_j = (-1)^{\text{sgn}(j-1)}$:

$$\tau_j\left(\mathbf{x}^{\xi}\right) = p_j \bigwedge_{i \in I_j} \bigwedge_{l \in L_{ij}} (-1)^{1-l} \left(x_i^{\xi} + w_{ij}^l\right), \, \forall \xi \in P_j.$$

3. Compute the total response of the neuron:

$$\tau\left(\mathbf{x}^{\xi}\right) = \bigwedge_{k=1}^{j} \tau_{k}\left(\mathbf{x}^{\xi}\right); \, \xi = 1, \dots, m.$$

- 4. If $\forall \xi \left(f\left(\tau\left(\mathbf{x}^{\xi}\right)\right) = c_{\xi} \right)$ the algorithm stops here with perfect classification of the training set.
- 5. Create a new dendrite j = j + 1, $I_j = I' = X = E = H = \emptyset$, $D = C_1$ 6. Select \mathbf{x}^{γ} such that $c_{\gamma} = 0$ and $f(\tau(\mathbf{x}^{\gamma})) = 1$.
- 7. $\mu = \bigwedge_{\xi \neq \gamma} \left\{ \bigvee_{i=1}^{n} \left| x_{i}^{\gamma} x_{i}^{\xi} \right| : \xi \in D \right\}.$ 8. $I' = \left\{ i : \left| x_{i}^{\gamma} - x_{i}^{\xi} \right| = \mu, \xi \in D \right\}; X = \left\{ \left(i, x_{i}^{\xi} \right) : \left| x_{i}^{\gamma} - x_{i}^{\xi} \right| = \mu, \xi \in D \right\}.$ 9. $\forall \left(i, x_{i}^{\xi} \right) \in X$

a. if
$$x_i^{\gamma} > x_i^{\xi}$$
 then $w_{ij}^1 = -(x_i^{\xi} + \alpha \cdot \mu), E_{ij} = \{1\}$
b. if $x_i^{\gamma} < x_i^{\xi}$ then $w_{ij}^0 = -(x_i^{\xi} - \alpha \cdot \mu), H_{ij} = \{0\}$

10.
$$I_j = I_j \bigcup I'$$
; $L_{ij} = E_{ij} \bigcup H_{ij}$
11. $D' = \left\{ \xi \in D : \forall i \in I_j, -w_{ij}^1 < x_i^{\xi} < -w_{ij}^0 \right\}$. If $D' = \emptyset$ then go to step 2, else $D = D'$ go to step 7.

$$\begin{array}{l} \hline \textbf{Algorithm 1} \text{ Dendritic Computing learning based on elimination} \\ \hline \text{Training set } T = \left\{ \left(\mathbf{x}^{\xi}, c_{\xi} \right) \mathbf{x}^{\xi} \in \mathbb{R}^{n}, c_{\xi} \in \{0,1\}; \xi = 1, \ldots, m \right\}, \ C_{1} = \left\{ \xi : c_{\xi} = 1 \right\}, \ C_{0} = \left\{ \xi : c_{\xi} = 0 \right\} \\ \hline \text{I. Initialize } j = 1, \ I_{j} = \{1, \ldots, n\}, \ P_{j} = \{1, \ldots, m\}, \ L_{IJ} = \{0, 1\}, \\ w_{Ij}^{1} = -\bigwedge_{c_{\xi} = 1} \mathbf{x}^{\xi}; \ w_{Ij}^{0} = -\bigvee_{c_{\xi} = 1} \mathbf{x}^{\xi}, \forall i \in I \\ \hline x_{i}^{1} = \sum_{c_{\xi} = 1} \mathbf{x}^{f}, \ (\mathbf{x}^{f}) = p_{j} \bigwedge_{c_{\xi} \mid f \in L_{Ij}} (-1)^{1-l} \left(\mathbf{x}^{f}_{\xi} + w_{II}^{f} \right), \forall \xi \in P_{j}. \\ \hline \mathbf{x}_{I} \left(\mathbf{x}^{\xi} \right) = p_{j} \bigwedge_{i \in I_{j} \mid f \in L_{Ij}} (-1)^{1-l} \left(\mathbf{x}^{f}_{\xi} + w_{II}^{f} \right), \forall \xi \in P_{j}. \\ \hline \mathbf{x}_{I} \left(\mathbf{x}^{\xi} \right) = \sum_{i \in I_{j} \mid f \in L_{Ij}} \mathbf{x}_{i} \left(\mathbf{x}^{\xi} \right); \xi = 1, \ldots, m. \\ \hline \mathbf{x}_{I} \left(\mathbf{x}^{\xi} \right) = c_{\xi} \right) \text{ the algorithm stops here with perfect classification of the training set. \\ \hline \mathbf{x}_{I} \left(\mathbf{x}^{\xi} \right) = c_{\xi} \right) \text{ the algorithm stops here with perfect classification of the training set. \\ \hline \mathbf{x}_{I} \left(\mathbf{x}^{\xi} \right) = c_{\xi} = 1, \dots, m. \\ \hline \mathbf{x}_{I} \left(\mathbf{x}^{\xi} \right) = c_{\xi} = 0, \ D = C_{1} \\ \hline \mathbf{x}_{I} \left(\mathbf{x}^{\xi} \right) = 1, \ I_{I} = I = X = E = H = 0, \ D = C_{1} \\ \hline \mathbf{x}_{I} \left(\mathbf{x}^{\xi} \right) = \left\{ \mathbf{x}_{I} \left\{ \mathbf{x}^{\xi} \right\}, \ \mathbf{x}_{I} \in \mathbf{x}_{I} \right\}, \ \mathbf{x}_{I} \in \mathbf{x}_{I} \in \mathbf{x}_{I} \\ \mathbf{x}_{I} \left\{ \mathbf{x}^{\xi} \right\}, \ \mathbf{x}_{I} \in \mathbf{x}_{I} \\ \mathbf{x}_{I} \left\{ \mathbf{x}^{\xi} \right\}, \ \mathbf{x}_{I} \in \mathbf{x}_{I} \\ \mathbf{x}_{I} \left\{ \mathbf{x}^{\xi} \right\}, \ \mathbf{x}_{I} \in \mathbf{x}_{I} \in \mathbf{x}_{I} \\ \mathbf{x}_{I} \left\{ \mathbf{x}^{\xi} \right\}, \ \mathbf{x}_{I} \in \mathbf{x}_{I} \\ \mathbf{x}_{I} \left\{ \mathbf{x}^{\xi} \right\}, \ \mathbf{x}_{I} \in \mathbf{x}_{I} \\ \mathbf{x}_{I} \left\{ \mathbf{x}^{\xi} \right\}, \ \mathbf{x}_{I} \in \mathbf{x}_{I} \\ \mathbf{x}_{I} \left\{ \mathbf{x}^{\xi} \right\}, \ \mathbf{x$$

a. if
$$x_i^{\gamma} > x_i^{\xi}$$
 then $w_{ij}^1 = -(x_i^{\xi} + \alpha \cdot \mu), E_{ij} = \{1\}$
b. if $x_i^{\gamma} < x_i^{\xi}$ then $w_{ij}^0 = -(x_i^{\xi} - \alpha \cdot \mu), H_{ij} = \{0\}$

10.
$$I_j = I_j \bigcup I'$$
; $L_{ij} = E_{ij} \bigcup H_{ij}$
11. $D' = \left\{ \xi \in D : \forall i \in I_j, -w_{ij}^1 < x_i^{\xi} < -w_{ij}^0 \right\}$. If $D' = \emptyset$ then go to step 2, else $D = D'$ go to step 7.

Algorithm 1 Dendritic Computing learning based on elimination

Training set
$$T = \left\{ \left(\mathbf{x}^{\xi}, c_{\xi} \right) \mathbf{x}^{\xi} \in \mathbb{R}^{n}, c_{\xi} \in \{0, 1\}; \xi = 1, \dots, m \right\}, C_{1} = \left\{ \xi : c_{\xi} = 1 \right\}, C_{0} = \left\{ \xi : c_{\xi} = 0 \right\}$$

1. Initialize j = 1, $I_j = \{1, \dots, n\}$, $P_j = \{1, \dots, m\}$, $L_{ij} = \{0, 1\}$,

$$w_{ij}^{1} = -\bigwedge_{c_{\xi}=1} x_{i}^{\xi}; w_{ij}^{0} = -\bigvee_{c_{\xi}=1} x_{i}^{\xi}, \forall i \in I$$

2. Compute response of the current dendrite D_j , with $p_j = (-1)^{\text{sgn}(j-1)}$:

$$\tau_j\left(\mathbf{x}^{\xi}\right) = p_j \bigwedge_{i \in I_j} \bigwedge_{l \in L_{ij}} (-1)^{1-l} \left(x_i^{\xi} + w_{ij}^l\right), \, \forall \xi \in P_j.$$

3. Compute the total response of the neuron:

$$\tau\left(\mathbf{x}^{\xi}\right) = \bigwedge_{k=1}^{j} \tau_{k}\left(\mathbf{x}^{\xi}\right); \, \xi = 1, \dots, m.$$

4. If $\forall \xi \left(f\left(\tau\left(\mathbf{x}^{\xi}\right)\right) = c_{\xi} \right)$ the algorithm stops here with perfect classification of the training set. 5. Create a new dendrite j = j + 1, $I_j = I' = X = E = H = \emptyset$, $D = C_1$ 6. Select \mathbf{x}^{γ} such that $c_{\gamma} = 0$ and $f(\tau(\mathbf{x}^{\gamma})) = 1$. 7. $\mu = \Lambda_{\xi \neq \gamma} \left\{ \bigvee_{i=1}^{n} \left| x_i^{\gamma} - x_i^{\xi} \right| : \xi \in D \right\}$. 8. $I' = \left\{ i : \left| x_i^{\gamma} - x_i^{\xi} \right| = \mu, \xi \in D \right\}$; $X = \left\{ (i, x_i^{\xi}) : \left| x_i^{\gamma} - x_i^{\xi} \right| = \mu, \xi \in D \right\}$. 9. $\forall (i, x_i^{\xi}) \in X$ a. if $x_i^{\gamma} > x_i^{\xi}$ then $w_{ij}^1 = -(x_i^{\xi} + \alpha \cdot \mu), E_{ij} = \{1\}$ b. if $x_i^{\gamma} < x_i^{\xi}$ then $w_{ij}^0 = -(x_i^{\xi} - \alpha \cdot \mu), H_{ij} = \{0\}$ 10. $I_j = I_j \cup I'; L_{ij} = E_{ij} \cup H_{ij}$ 11. $D' = \left\{ \xi \in D : \forall i \in I_j, -w_{ij}^1 < x_i^{\xi} < -w_{ij}^0 \right\}$. If $D' = \emptyset$ then go to step 2, else D = D' go to step 7.

Adding of dendrites to remove misclassified patterns of class 0 that fall inside this hyperbox

The **black** hyperbox is the basis box. The **red**, **green** and **blue** boxes – to remove misclassified controls

20

- To establish specificity and sensitivity we propose shrinking the boundaries of the hyperbox.
- Exclude the region occupied by a misclassified item of control

- To balance specificity and sensitivity we propose shrinking the boundaries of the hyperbox corresponding to each dendrite
- Exclude the region occupied by a misclassified item of control

Results on Alzheimer Detection

α	Accuracy	Sensitivity	Specificity
0	58	94	23
0.5	60	81	40
0.53	59	77	42
0.55	64	85	44
0.57	63	83	43
0.6	62	81	44
0.63	64	83	45
0.65	69	83	54
0.67	64	78	49
0.7	64	79	49
0.73	65	79	52
0.75	65	78	51
0.77	67	78	56
0.8	69	<mark>8</mark> 1	56
0.83	66	76	55
0.85	62	73	51
0.87	63	74	52
0.9	63	74	51
0.93	66	74	57
0.95	65	73	57
0.97	61	69	53

First row – **baseline DC**

We defind Shrinking parameter of the box $\alpha \epsilon[0,1)$.

For each shrinking parameter we have performed 10 –fold cross validation

The best result: Sensitivity worse Specificity **increase** – the best balance which gives the best Accuracy

Results on Alzheimer Detection

- **Specificity** (at the bottom) control classification: For 0.5 increase very fast and still increase
- **Sensitivity** (at the top) patient classification: Shows the better results for baseline DC
- But the **Accuracy** (in the middle) Shows the best result for $\alpha=0.8$

Conclusions

- We found empirically, performing **cross-validation** on an **Alzheimer's Disease database** of features computed from **MRI** scans, that a single layer neuron model endowed with **Dendritic Computing** has poor generalization capabilities.
- The model shows **high sensitivity** but **poor specificity**. In this paper we have proposed a **simple change** in the learning algorithm
- that produces a significative **increase** in performance in terms of accuracy,
- obtaining a better trade-off between sensitivity and specificity.

Thank you for your attention!

Darya Chyzhyk, Manuel Graña

Computational Intelligence Group University of Basque Country, San Sebastián, Spain <u>www.ehu.es/ccwintco</u>