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Context

Face recognition problem.

Each image is represented by a vector in a wh-dimensional

space.

This space is called the sample space or the image space, and

its dimension is typically very high.

There is redundant information.
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Objective

Find a subspaces based features extraction method that could

success under the small sample size problem.

Small sample size problem: when sample space dimensionality

is larger than the number of samples in the training set.

Subspaces based common methods:

Principal Component Analysis (PCA) -> unsupervised
Fisher's Linear Discriminant (FLD) -> supervised
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Principal Component Analysis (PCA)

Projections that maximize the total scatter matrix

(covariances), ST .

JPCA(Wopt) = argmax
W

∣∣W T STW
∣∣

The maximum is given by the eigenvectors of ST .

The projection directions are also called eigenfaces. Any face

image in the sample space can be approximated by a linear

combination of the signi�cant eigenfaces.

Tends to model unwanted within-class variations (lighting,

expressions, occlusions,...) and the resulting classes tend to

have more overlapping than other approaches.
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Fisher's Linear Discriminant (FLD)

Overcomes the limitations of the Eigenfaces method.

Projections that maximize the between class scatter matrix,

SB, and minimize the within class scatter matrix, SW .

JFLD(Wopt) = argmax
W

∣∣W T SBW
∣∣

|W T SWW |

The maximum is given by the eigenvectors of S−1
W SB.

Not applicable within �small sample size problem� because SW

is singular in this case.
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Scatter matrices

Between class scatter matrix:

SB =
C

∑
i=1

Ni(µi−µ)(µi−µ)T

Within class scatter matrix:

SW =
C

∑
i=1

Ni

∑
m=1

(xi
m−µi)(xi

m−µi)T

Total scatter matrix:

ST = SB +SW =
C

∑
i=1

Ni

∑
m=1

(xi
m−µ)(xi

m−µ)T
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Road map

FLD Modi�cations

Discriminative Common Vector Method (DCV)

Rough Common Vector Method (RCV)

Discriminative Common Vector with Kernels (KDCV)
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Some FLD-based methods

Pseudoinverse method: replacing S−1
W by its pseudoinverse.

Perturbation method: adding a small perturbation matrix ∆ to

SW in order to make it non-singular.

Rank Decomposition method: making successive

eigen-decompositions of the total scatter matrix ST and the

between class scatter matrix SB.

They are computationally expensive since the scatter matrices

are very large.
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Fisherface method

Two stage method: PCA + Linear Discriminant Analysis.

PCA is used to reduce data dimensionality so as to make SW

non-singular.

By PCA use some directions corresponding to the small

eigenvalues of ST are thrown away, removing dimensions with

potential discriminative information.
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Null Space Method

Based on the modi�ed FLD criterion:

JMFLD(Wopt) = argmax
W

∣∣W T SBW
∣∣

|W T STW |

This method has been proposed to be used when the

dimension of the sample space is larger than the rank of SW .

The MFLD criterion attains its maximum when all image

samples are projected onto the null space of SW , and then

PCA is applied to the projected samples to obtain the optimal

projection vectors.

The performance of the Null Space method improves if the

null space of SW is large.

There is not an e�cient algorithm for applying this method in

the original sample space.
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PCA + Null Space Method

PCA is applied to remove the null space of ST , which contains

the intersection of the null spaces of SW and SB.

Then the optimal projection vectors are found in the remaining

lower dimensional space by Null Space method.

The di�erence with the Fisherface method is that, here SW is

typically singular in the reduced space because all eigenvectors

corresponding to the non-zero eigenvalues of ST are used for

dimension reduction.

http://www.ehu.es/ccwintco (Grupo de Inteligencia Computacional Universidad del País Vasco)KDCV 12 / 29



Introduction FLD's modi�cations Discriminative Common Vector Kernel DCV Summary

Direct-LDA method

Uses the simultaneous diagonalization method.

First, the null space of SB is removed and then, the projection

vectors that minimize SW in the transformed space are selected

from the range space of SB.

Removing the null space of SB by dimensionality reduction will

also remove part of the null space of SW removing important

discriminant information.

Futhermore, the whitening proccess over SB is redundant.

http://www.ehu.es/ccwintco (Grupo de Inteligencia Computacional Universidad del País Vasco)KDCV 13 / 29



Introduction FLD's modi�cations Discriminative Common Vector Kernel DCV Summary

Comparisons

Table: Comparisons of performance across methods for n > C−1

Rank Accuracy Training Time Testing Time
Storage

Requirements

1
DCV, PCA + Null

Space
Direct-LDA

DCV, PCA + Null

Space

DCV, PCA + Null

Space

2 Fisherface DCV
Fisherface,

Direct-LDA

Fisherface,

Direct-LDA

3 Direct-LDA Eigenface Eigenface Eigenface

4 Eigenface Fisherface

5 PCA + Null Space
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Introduction

DCV addresses the limitations of previous methods that use

the null space of SW to �nd the optimal projection vectors.

It can be only used when the dimension of the sample space is

larger than the rank of SW .

This approach extracts the common properties of classes in

the training set by eliminating the di�erences of the samples in

each class.
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Algorithms

Previous works in word recognition obtain a common vector

for each class by removing all the features in the direction of

the eigenvectors corresponding to the non-zero eigenvalues of

the scatter matrix of its own class.

Cevikalp's work describes two algorithms to obtain DCV for

face recognition:

Instead of using a given class's own scatter matrix, he uses the
within-classes scatter matrix of all classes to obtain the
common vector.
He gives an alternative algorithm based on the subspace
methods and the Gram-Schmidt orthogonalization procedure.
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SW Null Space based criterion

In the special case where wT SW w = 0 and wT SBw 6= 0 for all

w ∈ Rd \{0}, the modi�ed FLD criterion attains a maximum.

A projection vector w satisfying the above conditions does not

necessarily maximizes the between-class scatter matrix. In this

case, a better criterion is given by:

J(Wopt) = arg max
|W T SWW=0|

∣∣W T SBW
∣∣ = arg max

|W T SWW=0|

∣∣W T STW
∣∣
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Direct algorithm

To �nd the optimal projection vectors w in the null space of

SW , the face samples are projected onto the null space of SW

and then, the projection vectors are obtained by PCA.

However, this task is computationally intractable since the

dimension of the null space can be very large.

A more e�cient way of doing it is by using the orthogonal

complement of the null space of SW , which typically is

signi�cantly lower-dimensional space.

http://www.ehu.es/ccwintco (Grupo de Inteligencia Computacional Universidad del País Vasco)KDCV 20 / 29



Introduction FLD's modi�cations Discriminative Common Vector Kernel DCV Summary

Feasible algorithm
Description

Let Rd be the original sample space, V be the range space of

SW , and V⊥ be the null space of SW :

V = span{αk|SW αk 6= 0, k = 1, . . . ,r}

V = span{αk|SW αk = 0, k = r +1, . . . ,d}

Where:

r < d is the rank of SW
{α1, . . . ,αd} is an orthonormal set, and {α1, . . . ,αr} is the set
of orthonormal eigenvectors corresponding to the non-zero
eigenvalues of SW .
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Feasible algorithm
Goal

Considering the matrices Q = [α1 . . .αr] and Q̃ = [αr+1 . . .αd ] .
Since Rd = V ⊕V⊥, every face image xi

m ∈ Rd has a unique

decomposition of the form

xi
m = yi

m + zi
m

where yi
m = Pxi

m = QQT xi
m ∈V , zi

m = P̃xi
m = Q̃Q̃T xi

m ∈V⊥ and P
and P̃ are the projection operators onto V and V⊥ respectively.

The goal is to compute:

zi
m = xi

m− yi
m = xi

m−Pxi
m
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Common vectors

The eigenvectors can be obtained from the M by M matrix,

AT A where A is a d by M matrix of the form

A =
[
x1

1−µ1 . . .x1
N−µ1x2

1−µ2 . . .xC
N−µC

]
Let λk and vk be the kth non-zero eigenvalue and the

corresponding eigenvector of AT A. Then, αk = Avk will be the

eigenvector that corresponds to the kth non-zero eigenvalue of

SW .

It turns out that we obtain the same unique vector for all

samples of the same class, which are de�ned as the common

vectors:

xi
com = xi

m−QQT xi
m = Q̃Q̃T xi

m, m = 1, . . . ,N; i = 1, . . . ,C
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Maximizing criterion

After obtaining the common vectors xi
com, optimal projection

vectors will be those that maximize the scattering of the

common vectors:

J(Wopt)= arg max
|W T SWW=0|

∣∣W T SBW
∣∣= arg max

|W T SWW=0|

∣∣W T STW
∣∣= argmax

W

∣∣W T ScomW
∣∣

W is a matrix whose columns are the orthonormal optimal

projection vectors wk, and Scom is the scatter matrix of the

common vectors

Scom =
C

∑
i=1

(xi
com−µcom)(xi

com−µcom)T , i = 1, . . . ,C
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Obtaining optimal projections

All eigenvectors corresponding to the non-zero eigenvalues of

Scom will be the optimal projection vectors.

Instead of using Scom that is typically a large d by d matrix,

the smaller matrix AT
comAcom of size C by C can be used, where

Acom =
[
x1

com−µcom . . .xC
com−µcom

]
Each class is discriminated by a discriminative common vector:

Ωi = W T xi
m, m = 1, . . . ,N; i = 1, . . . ,C

To recognize a test image xtest , the feature vector of this image

is found by Ωtest = W T xtest , and the Euclidean distance to each

class's discriminative common vector gives the classi�cation.
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Algorithm

Step 1: compute the non-zero eigenvalues and corresponding

eigenvectors of SW by using the matrix AT A. Set
Q = [α1 . . .αr] where r is the rank of SW .

Step 2: choose any sample from each class and project it onto

the null space of SW to obtain the common vectors.

Step 3: compute the eigenvectors wk with non-zero

eigenvalues of the matrix AT
comAcom. Use these eigenvectors to

form the projection matrix W = [w1 . . .wC−1].
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Summary
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Appendix

Questions?

Thank you very much for your attention.

Contact:

Miguel Angel Veganzones
Grupo Inteligencia Computacional
Universidad del País Vasco - UPV/EHU (Spain)
E-mail: miguelangel.veganzones@ehu.es
Web page: http://www.ehu.es/computationalintelligence
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