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Introduction

Introduction

Actual remote-sensing systems enables the measurement of radiation
in many more spectral intervals than previously possible.

The increased dimensionality of such hyperspectral data greatly
enhances the data information content, but provides a challenge to
the current techniques for analyzing such data.

Human experience in three-dimensional (3-D) space tends to
mislead our intuition of geometrical and statistical properties in
high-dimensional space.

High-dimensional space properties are investigated and their
implication for high-dimensional data and its analysis is studied.



Geometrical, statistical, and asymptotical properties

Geometrical, statistical, and asymptotical properties

Present some unusual or unexpected hyperspace characteristics to show
that higher dimensional space is quite different from the 3-D space.
As dimensionality increases:

A. The Volume of a Hypercube Concentrates in the Corners

B. The Volume of a Hypersphere Concentrates in an Outside Shell
C. The Volume of a Hyperellipsoid Concentrates in an Outside Shell
D. The Diagonals Are Nearly Orthogonal to All Coordinate Axes

E. The Required Number of Labeled Samples for Supervised
Classification Increases as a Function of Dimensionality

F. For Most High-Dimensional Data Sets, Low Linear Projections
Have the Tendency to be Normal, or a Combination of Normal
Distributions, as the Dimension Increases
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The Volume of a Hypercube Concentrates in the Corners

It has been shown [9] that the volume of the hypersphere
of radius » and dimension d is given by
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of the. hypercue 1s lncreaSIngly concentrated in the comers Fig. 1. Fractional volume of a hypersphere inscribed in a hypercube as a
as d increases. function of dimensionality.
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The Volume of a Hypersphere Concentrates in an Outside

Shell

0.9 L
The fraction of the volume in a shell defined by a sphere of 0.8
radius 7 — ¢ inscribed inside a sphere of radius r is 0.7
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In Fig. 2 we can observe, for the case ¢ = /5, how as the 0.1 ‘I
dimension increases, the volume concentrates in the outside 04 Ea -
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Note that[limy_ocfa2 = 1,Ve > 0/ implying that most of
the volume of a hypersphere is concentrated in an outside shell.

'ig. 2. Volume of a hypersphere contained in the outside shell as a function
of dimensionality for ¢ = r/5.
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The Volume of a Hyperellipsoid Concentrates in an Outside

Shell

Generalization to a hyperellipsoid
The fraction of the volume of V,(\; — &;), inscribed in the

volume V.()\;), is
The volume of a hyperellipsoid [ defined by
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Consequences for high-dimensional data

High-dimensional space is mostly empty:

Desirable to project to a lower dimensional subspace without losing
significant information in terms of separability among the different
statistical classes.

Density estimation more difficult:

Normally distributed data will have a tendency to concentrate in the
tails

Uniformly distributed data will be more likely to be collected in the
corners
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Statistical behavior of normally and uniformly distributed
multivariate data at high dimensionality

Experiment:
Normal and uniform variables are i.i.d. samples from the
distributions N (0,1) and U(—1,1), respectively.
Two random variables: the distance from the zero coordinate and its
square: R = 27:1 x?, r= \/27:1 5

Results:
The means and the standard deviations are functions of d.

As d increases:
the data will concentrate in an outside shell, and
that shell will increase its distance from the origin.
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The Diagonals Are Nearly Orthogonal to All Coordinate
Axes
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The cosine of the angle between any diagonal vector and a 60
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sionality. R AN S S S e =
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. . Fig. 5. Angle (in degrees) between a diagonal and a Euclidean coordinate
orthogonal to the Euclidean coordinates. versus dimensionality.
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The Required Number of Labeled Samples for Supervised
Classification Increases as a Function of Dimensionality

The required number of training samples is linearly related to the
dimensionality for a linear classifier and to the square of the
dimensionality for a quadratic classifier

With a limited number of training samples, there is a penalty in
classification accuracy as the number of features increases beyond
some point.
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Low Linear Projections

For most high-dimensional data sets, low linear projections have the
tendency to be normal, or a combination of normal distributions
(normality), as the dimension increases.

Experiments:
Project the data from a high-dimensional space to a one-dimensional
(1-D) subspace.
In the original high-dimensional space d = {1,10, 100}

Method of data projection: multiply data with a normal vector with
random angles from the coordinates.



Geometrical, statistical, and asymptotical properties

One class
200 My — d=1 *F / d=1
I —' ] n[ 0
ool AT d=10 | ~ =10 |
e 1] ]
el %,«5 a=100 | = —  d=100 ]
. 1 ]
one class with uniform distribution AVIRIS: one class, soybean

©

14 /33



Geometrical, statistical, and asymptotical properties

Two class
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Low Linear Projections

The first results tempt us to expect that the data can be assumed to be
a combination of normal distributions in the projected subspace
without any problem.

The second ones show the risk of damaging data projecting it into one
normal distribution, losing separability and information.

We can see the advantage of developing an algorithm that will estimate
the projection directions that separate the explicitly defined classes by
doing the computations in a lower dimensional space.



Asymptotical first- and second-order statistics properties

Asymptotical first- and second-order statistics properties

The conditions required for the predominance of either first- or
second-order statistics in the discrimination among the statistical classes
in high-dimensional space.



Asymptotical first- and second-order statistics properties

As the number of features increases, the potential information
content in multispectral data increases.

In supervised classification, that increment of information is
translated to the number of classes and their separability.

We will use Bhattacharyya distance here as the measure of
separability.

It provides a bound of classification accuracy, taking into account
first- and second-order statistics.
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Bhattacharyya distance

Bhattacharyya distance under the assumption of normality:

The Bhattacharyya distance is the sum of the contribution
of the difference of the means and the difference of the
covariances. jt = fipr + jicr, Where

fint = é(M2 ~MO)TE T (M — M), S = [

_1 B
He = 5 In (m) .
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Experiments

i How Bhattacharyya distance and its mean and covariance components
can aid in the understanding of the role of first- and second-order
statistics?

Experiments:

The first one has conditions in which second- order statistics are
more relevant in discriminating among the classes.

The second experiment has conditions for the predominance of
first-order statistics.

The mean (Bhatt Mean) and covariance (Bhatt Cov) components of
Bhattacharyya distance and its sum were computed, also the ratio of
Bhatt Mean/Bhatt Cov
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Experiment 1

Data generated for two classes

Both classes belong to normal distributions with different means and
covariances.

Each class has 500 points.

Parameters:

M=[0 00000000 0
My=[15 1 05 0 00 0 0 0 0]

0 1 0 T

Classifiers: Gaussian ML, Gaussian ML with zero-mean data, and
Minimum Distance classifier
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Experiment 2

Similar experimentl but the first-order statistics are predominant in
this case.

Parameters:

M;=[0 00000000 0 1 !

My=[15 1 0500 00 0 0 0] 0 1 0 1

Classifiers: Gaussian ML, Gaussian ML with zero-mean data, and
Minimum Distance classifier
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Upper bounds

iWhen the mean difference plays a predominant role?

iWhen the covariance difference became predominant?



Asymptotical first- and second-order statistics properties

Case 1

Under the following conditions:
1) @; € (mins Qmax), Where (i > 0 and at least there
exists «;, such that o; # 1;

X ) ) ) 2) €max = MaXyic(k+1,q) (|€i]), such that ;.. = 0;
Case 1) Covariance Difference as the Dominant Role in

Statistical Class Separability: Assume a two-class problem,
where without loss of generality, the first- and second-order

statistics are 3) k = f(d) 3 limg—oo(k/d) = 0 [as an example,
YA > 0,d = k),
i 0 0% 0 4) €2 € (Emins Bmax), Vi € (1,k), and (Epax < ) (to
¥, = - and X, = . see the validity of this last assumption, see Appendix B).
0 e 0 @ [/jg Then, as d increases, the covariance contribution will dominate
d

the Bhattacharyya distance.
(Mg = My)=[ey -~ € €1 --- 2a]"-

The total covariances information plays a more important role in
discriminating among the classes than the means information.
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Case 2

Case 2) Mean Differences as Dominant in Statistical-Class
Separability: Assume a two-class problem, where without
loss of generality, the first- and second-order statistics are

ro? 0
¥, = o
o2
LO o?
and
[ 0? 0
apo?
Y= N 2
4107
L 0 Gqo?

(Mz = M) =[e1 - ed"-

Under the following assumptions:

1) @i € (0umin, Muax), wWhere 0 < amin < Ouax <
oo, Vi € (1,k);

2) @; €(1-6,1+6),Vie (k+1,d),where § ~ 0;

3) €2 > Eyin > 0,Vi € (1,d);

4) limg—,oo(k/d) = O [as an example, VA > 0,d =
k(1+”\]).

As d increases, the means differences will dominate the

Bhattacharyya distance.

The total mean differences will provide more information for classes
discrimination than covariances differences.
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High-dimensional-characteristics implications for supervised classification

High-dimensional-characteristics implications for supervised
classification

Apparent high-dimensional space is mostly empty and multivariate
data is usually in a lower dimensional structure.

It is possible to reduce the dimensionality without losing significant
information and separability.

A parametric version of data-analysis algorithms may be expected to
provide better performance doing the difficulties of density
estimation in nonparametric approaches.

The increased number of labeled samples required for supervised
classification as the dimensionality increases presents a problem to
current feature-extraction algorithms where computation is done at
full dimensionality

A new method (;?) is required that computes in a lower dimensional

subspace: preprocessing method is called parametric projection pursuit ©
28/33



High-dimensional-characteristics implications for supervised classification

Parametric projection pursuit (PPP)

Reduces the dimensionality of the data, maintaining as much
information as possible by optimizing a projection index that is a
measure of separability.

The projection index: minimum Bhattacharyya distance among the
classes, taking in consideration first- and second-order
characteristics.

The calculation is performed in the lower dimensional subspace
where the data is to be projected.

High Dimensional Datal
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Experiment

Experiment 1

A segment of AVIRIS data taken of northwest Indiana’s Indian Pine
test site. From the original 220 spectral channels, 200 were used,
discarding the atmospheric absorption bands

Classes = 8. Number of training samples = 1790, and number of
test samples =1630.

Four types of dimension reduction algorithms (200-22)

DB: decision-boundary feature extraction [from ¢ directly to V]
DA: discriminant analysis [from ¢ directly to V]

PPDB: PPP [from & directly to '] + decision boundary [from T to
vl

PPDA: PPP [from & directly to Il 4+ discriminant analysis [from I
to V]

Four types of classifiers [from W to Q] : ML classifier, ML with 2%
threshold, a spectral-spatial classifier named ECHO and the fourth is
ECHO with a 2% threshold. i
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Experiment
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Experiment

Experiment 2

Classes = 4. Number of training samples = 179, and number of test
samples =3501.
Two types of dimension reduction algorithms

DA (200-3): discriminant analysis [from & directly to V]

PPDA: PPP (200-22) [from & directly to I'] + discriminant analysis
(22-3) [from T to V]

= DA 200-3

[] PPDA 2003

o
w 20 3§ — —
o
- i
03

ML ML-2% Echo Echo-2%
Type of Classifier

Test Fiel

Fig. 19. Test fields classification accuracy for two feature-extraction methods —
and four classifiers.



Conclusions

Conclusions

Characteristics of high-dimensional space are different from those of
the 3-D space

Implications in the context of supervised classification techniques

A large number of samples are required to make estimation and
grows as the dimensionality increases

The goal is to reduce the dimensionality of the data to the right
subspace without losing separability information.

Describe a procedure to make the computations in a lower
dimensional space

Application program: Multispec@


https://engineering.purdue.edu/~biehl/MultiSpec/

