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Introduction

Introduction

� Actual remote-sensing systems enables the measurement of radiation
in many more spectral intervals than previously possible.

� The increased dimensionality of such hyperspectral data greatly
enhances the data information content, but provides a challenge to
the current techniques for analyzing such data.

� Human experience in three-dimensional (3-D) space tends to
mislead our intuition of geometrical and statistical properties in
high-dimensional space.

� High-dimensional space properties are investigated and their
implication for high-dimensional data and its analysis is studied.
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Geometrical, statistical, and asymptotical properties

Geometrical, statistical, and asymptotical properties

Present some unusual or unexpected hyperspace characteristics to show
that higher dimensional space is quite different from the 3-D space.
As dimensionality increases:

� A. The Volume of a Hypercube Concentrates in the Corners
� B. The Volume of a Hypersphere Concentrates in an Outside Shell
� C. The Volume of a Hyperellipsoid Concentrates in an Outside Shell
� D. The Diagonals Are Nearly Orthogonal to All Coordinate Axes
� E. The Required Number of Labeled Samples for Supervised

Classification Increases as a Function of Dimensionality
� F. For Most High-Dimensional Data Sets, Low Linear Projections

Have the Tendency to be Normal, or a Combination of Normal
Distributions, as the Dimension Increases
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Geometrical, statistical, and asymptotical properties

The Volume of a Hypercube Concentrates in the Corners
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Geometrical, statistical, and asymptotical properties

The Volume of a Hypersphere Concentrates in an Outside
Shell
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Geometrical, statistical, and asymptotical properties

The Volume of a Hyperellipsoid Concentrates in an Outside
Shell

Generalization to a hyperellipsoid
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Geometrical, statistical, and asymptotical properties

Consequences for high-dimensional data

1. High-dimensional space is mostly empty:
Desirable to project to a lower dimensional subspace without losing
significant information in terms of separability among the different
statistical classes.

2. Density estimation more difficult:
Normally distributed data will have a tendency to concentrate in the
tails
Uniformly distributed data will be more likely to be collected in the
corners
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Geometrical, statistical, and asymptotical properties

Statistical behavior of normally and uniformly distributed
multivariate data at high dimensionality

Experiment:
� Normal and uniform variables are i.i.d. samples from the

distributions N (0, 1) and U (−1, 1), respectively.
� Two random variables: the distance from the zero coordinate and its

square: R =
�

d

i=1 x2
i
, r =

��
d

i=1 x2
i

Results:
� The means and the standard deviations are functions of d .
� As d increases:

the data will concentrate in an outside shell, and
that shell will increase its distance from the origin.
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The distance from zero coordinate increases
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Geometrical, statistical, and asymptotical properties

The Diagonals Are Nearly Orthogonal to All Coordinate
Axes

Consequence: the projection of any cluster onto any diagonal (e.g., by
averaging features) could destroy information contained in multispectral
data
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Geometrical, statistical, and asymptotical properties

The Required Number of Labeled Samples for Supervised
Classification Increases as a Function of Dimensionality

� The required number of training samples is linearly related to the
dimensionality for a linear classifier and to the square of the
dimensionality for a quadratic classifier

� With a limited number of training samples, there is a penalty in
classification accuracy as the number of features increases beyond
some point.
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Geometrical, statistical, and asymptotical properties

Low Linear Projections

For most high-dimensional data sets, low linear projections have the
tendency to be normal, or a combination of normal distributions
(normality), as the dimension increases.

Experiments:
� Project the data from a high-dimensional space to a one-dimensional

(1-D) subspace.
� In the original high-dimensional space d = {1, 10, 100}
� Method of data projection: multiply data with a normal vector with

random angles from the coordinates.
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Geometrical, statistical, and asymptotical properties

One class
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Two class
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Geometrical, statistical, and asymptotical properties

Low Linear Projections

The first results tempt us to expect that the data can be assumed to be
a combination of normal distributions in the projected subspace
without any problem.

The second ones show the risk of damaging data projecting it into one
normal distribution, losing separability and information.

We can see the advantage of developing an algorithm that will estimate

the projection directions that separate the explicitly defined classes by
doing the computations in a lower dimensional space.

16 / 33



Asymptotical first- and second-order statistics properties

Asymptotical first- and second-order statistics properties

The conditions required for the predominance of either first- or
second-order statistics in the discrimination among the statistical classes
in high-dimensional space.
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Asymptotical first- and second-order statistics properties

� As the number of features increases, the potential information
content in multispectral data increases.

� In supervised classification, that increment of information is
translated to the number of classes and their separability.

� We will use Bhattacharyya distance here as the measure of
separability.

� It provides a bound of classification accuracy, taking into account
first- and second-order statistics.
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Asymptotical first- and second-order statistics properties

Bhattacharyya distance

Bhattacharyya distance under the assumption of normality:
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Asymptotical first- and second-order statistics properties

Experiments

¿How Bhattacharyya distance and its mean and covariance components
can aid in the understanding of the role of first- and second-order
statistics?

Experiments:
� The first one has conditions in which second- order statistics are

more relevant in discriminating among the classes.
� The second experiment has conditions for the predominance of

first-order statistics.

The mean (Bhatt Mean) and covariance (Bhatt Cov) components of
Bhattacharyya distance and its sum were computed, also the ratio of
Bhatt Mean/Bhatt Cov
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Asymptotical first- and second-order statistics properties

Experiment 1

� Data generated for two classes
� Both classes belong to normal distributions with different means and

covariances.
� Each class has 500 points.
� Parameters:

� Classifiers: Gaussian ML, Gaussian ML with zero-mean data, and
Minimum Distance classifier
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Asymptotical first- and second-order statistics properties

Experiment 2

� Similar experiment1 but the first-order statistics are predominant in
this case.

� Parameters:

� Classifiers: Gaussian ML, Gaussian ML with zero-mean data, and
Minimum Distance classifier

23 / 33



Asymptotical first- and second-order statistics properties
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Asymptotical first- and second-order statistics properties

Upper bounds

¿When the mean difference plays a predominant role?

¿When the covariance difference became predominant?
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Asymptotical first- and second-order statistics properties

Case 1

The total covariances information plays a more important role in
discriminating among the classes than the means information.
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Asymptotical first- and second-order statistics properties

Case 2

The total mean differences will provide more information for classes
discrimination than covariances differences.
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High-dimensional-characteristics implications for supervised classification

High-dimensional-characteristics implications for supervised
classification

� Apparent high-dimensional space is mostly empty and multivariate
data is usually in a lower dimensional structure.
It is possible to reduce the dimensionality without losing significant
information and separability.

� A parametric version of data-analysis algorithms may be expected to
provide better performance doing the difficulties of density
estimation in nonparametric approaches.

� The increased number of labeled samples required for supervised
classification as the dimensionality increases presents a problem to
current feature-extraction algorithms where computation is done at
full dimensionality

A new method (¿?) is required that computes in a lower dimensional
subspace: preprocessing method is called parametric projection pursuit
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High-dimensional-characteristics implications for supervised classification

Parametric projection pursuit (PPP)

� Reduces the dimensionality of the data, maintaining as much
information as possible by optimizing a projection index that is a
measure of separability.

� The projection index: minimum Bhattacharyya distance among the
classes, taking in consideration first- and second-order
characteristics.

� The calculation is performed in the lower dimensional subspace
where the data is to be projected.
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Experiment

Experiment 1

� A segment of AVIRIS data taken of northwest Indiana’s Indian Pine
test site. From the original 220 spectral channels, 200 were used,
discarding the atmospheric absorption bands

� Classes = 8. Number of training samples = 1790, and number of
test samples =1630.

� Four types of dimension reduction algorithms (200-22)
� DB: decision-boundary feature extraction [from Φ directly to Ψ]
� DA: discriminant analysis [from Φ directly to Ψ]
� PPDB: PPP [from Φ directly to Γ] + decision boundary [from Γ to

Ψ]
� PPDA: PPP [from Φ directly to Γ] + discriminant analysis [from Γ

to Ψ]

� Four types of classifiers [from Ψ to Ω] : ML classifier, ML with 2%
threshold, a spectral-spatial classifier named ECHO and the fourth is
ECHO with a 2% threshold.
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Experiment
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Experiment

Experiment 2

� Classes = 4. Number of training samples = 179, and number of test
samples =3501.

� Two types of dimension reduction algorithms
� DA (200-3): discriminant analysis [from Φ directly to Ψ]
� PPDA: PPP (200-22) [from Φ directly to Γ] + discriminant analysis

(22-3) [from Γ to Ψ]

32 / 33



Conclusions

Conclusions

� Characteristics of high-dimensional space are different from those of
the 3-D space

� Implications in the context of supervised classification techniques
� A large number of samples are required to make estimation and

grows as the dimensionality increases
� The goal is to reduce the dimensionality of the data to the right

subspace without losing separability information.
� Describe a procedure to make the computations in a lower

dimensional space

Application program: Multispec@
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https://engineering.purdue.edu/~biehl/MultiSpec/

