
Robot localization based on KS-FAM

July 29, 2010

1 Description
The objective is mobile robot vision based localization using associative mem-
ories. The map stores a path previously followed by the robot in the form of
several view “landmarks” representing points of interest in the path. Those land-
marks will identify a section of the path, dividing it in a sequence of locations
without gaps between them. These landmarks are stored as gray-scale patterns
in a KS-FAM. Localization will be performed by feeding the KS-FAM with the
images that the robot acquires in its movement, obtaining from it the recognized
position.

2 Experiment details
For the experiment, the optical image database already recorded is used.

The code for the KS-FAM was provided by prof. Peter Sussner1.
Available example uses of KS-FAM are as Auto-Associative memories. In this

experiment, the Auto-Associative type has the additional problem of estimating
which position is the one recalled by the memory. Visual examination of results
with both Auto-Associative and Hetero-Associative memories seemed to give
very similar results. So, in a first approach, Hetero-Associative memories are
used.

In the pairs (x,y), x will be the pattern (gray-scale image corresponding to
the landmark that is going to be stored) and y will be a vector of size n = #
of patterns to store. The vector will be composed of 0’s, except for one 1 in the
vector position corresponding to the map position of the stored pattern. e.g:

Being X = {x1, x2, x3, x4, x5} the patterns that we want to encode in the KS-
FAM. The pair y2 of pattern x2 (second pattern in the path) will be y2 = [01000].
Y (the matrix of outputs) will be then (vectors stored column-wise):

1http://www.ehu.es/ccwintco/groupware/webdav.php/apps/phpbrain/142/KSFAM%20-
%20Code.rar

1

Y =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,

which corresponds to an identity matrix of size nxn.
Initially, a simpler approach was used, being yi a scalar identifying the po-

sition (i.e. ’2’ for the second position instead of [01000]). However, results
obtained with that method were much worse.

For validation purposes, the same ground division based on the odometry
data of previous experiments has been used.

3 Implementation details
First, the image database is transformed to gray-scale [0,1], as is done in the
sample code provided by Sussner.

f o r i = 1 : nWalks
f o r j = 1 : tamsBD(i) ;

bdImagenes{ i }(j , :) = mat2gray (bdImagenes{ i }(j , :)) ;
end

end

The patterns matrix is built using the images of the selected landmark po-
sitions from the first walk.

X = ze ro s (tamVec , n S i t i o s) ; % re s e rvo e spac i o para matr iz de patrones
% obtengo l o s patrones (imagenes de l o s landmaks)
f o r i = 1 : n S i t i o s

X(: , i) = bdImagenes {1}(s i t i o s (i) , :) ;
end

Output patterns matrix is built as the identity matrix.

Y = eye (nS i t i o s) ; % cada vec tor tendrá un 1 en l a po s i c i ón co r r e spond i en t e

Mxz and Wzy memories are built using the input and output pattern matri-
ces.

Mxz = BoxMax2(eye (n S i t i o s) , −1∗X’ ,− I n f) ;
Wzy = BoxMin2(Y, −1∗eye (nS i t i o s) , I n f) ;

For each test walk i, the images are put in an input matrix and feed to the
memories. Some of the code is redundant or unnecessary, but was done like that
to make sure that it was being done correctly.

2

Xin = ze ro s (tamVec , tamsBD(i)) ;
f o r j = 1 : tamsBD(i)

Xin (: , j) = bdImagenes{ i }(j , :) ;
end
[Yout , u] = AMM_Nova(Xin ,Mxz ,Wzy) ;

Output vectors are translated to scalars identifying the positions (’find’ re-
turns the nonzero position in the vector) .

posLoc (j) = f i nd (Yout (: , j)) ;

Success rate is calculated for each walk (i+1 because the first walk was used
for training) using the path division based on odometry.

a c i e r t o s (i) = sum(posLoc{ i } (:) == gruposOdo{ i +1}(:))/tamsBD(i +1);

4 Results
Obtained results are rather poor, as can be appreciated in table 1. Surprisingly,
the best results were obtained using the smallest images.

Image size Walk 2 Walk 3 Walk 4 Walk 5 Walk 6 Mean
242x314 0.3221 0.3812 0.2883 0.3264 0.246 0.3128
121x157 0.2969 0.3193 0.2909 0.3107 0.2086 0.28528
61x79 0.4678 0.4629 0.4494 0.389 0.4171 0.43724

Table 1: Position recognition success rates obtained using images of different
sizes.

3

