
Endmember Induction Algorithms (EIA)

toolbox for MATLAB and SCILAB
Version 0.1

Miguel Angel Veganzones∗, Prof. Manuel Graña†

Grupo de Inteligencia Computacional‡, Universidad del País Vasco, Spain

Abstract

This document is intended to be the reference manual for the Endmember Induction
Algorithms (EIA) toolbox. It includes how to download the sources and install the
toolbox in Scilab and Matlab, as well as how to use the functions provided in the
toolbox. Each function is explained with examples. This manual is not intended to
be a review on Endmember Induction Algorithms.

1 Copyright

Endmember Induction Algorithms (EIA) toolbox is copyright (C) of the Grupo
de Inteligencia Computacional, Universidad del País Vasco (UPV/EHU), Spain
released under the terms of the GNU General Public License.

Endmember Induction Algorithms (EIA) toolboxis free software: you can
redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.

Endmember Induction Algorithms (EIA) toolbox is distributed in the hope
that it will be useful, but WITHOUT ANYWARRANTY; without even the im-
plied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details. You should
have received a copy of the GNU General Public License along with Lattice
Algebra Toolbox. If not, see <http://www.gnu.org/licenses/>.

∗miguelangel.veganzones@ehu.es
†manuel.grana@ehu.es
‡http://www.ehu.es/computationalintelligence

1

mailto:miguelangel.veganzones@ehu.es
mailto:manuel.grana@ehu.es
http://www.ehu.es/computationalintelligence

2 Install 2

2 Install

Endmember Induction Algorithms (EIA) toolbox works over Matlab1 and Scilab2,
which are numerical computation software. Before using EIA toolbox, you'll
need to install matlab or Scilab in your computer. Matlab is a comercial soft-
ware and a license is required. Scilab is free and easy to install, and runs in
Linux, Windows and MacOsX platforms. It is convenient to install the latest
stable version available for your platform. At this moment, latest versions are
Matlab R2011a and Scilab 5.3.0.

The code can be downloaded from the Computational Intelligence group
website3. You can �nd the EIA toolbox in the Endmember Induction Algorithm
section. There, you can download a single package with all the sources and
aditional �les, or you can download each method by its own (note that some
methods require aditional functions).

2.1 EIA Toolbox install in Matlab

No installation is required to use EIA toolbox in Matlab. It is recommended
to add the EIA toolbox path to the Matlab search path so you don't have to
launch EIA toolbox methods from the EIA toolbox directory. To add the path
just do �File > Set path�, and the 'Set path' window will appear (Figure 2.1).
Press the 'Add with Subfolders' button and select the EIA toolbox directory.
Accept and the EIA toolbox path will be available from now on.

2.2 EIA Toolbox install in Scilab

No installation is required to use EIA toolbox in Matlab. However, EIA func-
tions must be loaded before you can use them. To load a Scilab function just
type:

Algorithm 1. exec 'pathto�le';

If the function �le is correct, Scilab will load it in memory and you could
use it. Note that some methods call to other functions, so these functions must
be loaded �rst.

3 Usage

Using EIA toolbox is quite easy, and there are not signi�cant di�erences between
Matlab and Scilab platforms. There are two ways to use Endmember Induction
Algorithms incorpored in the EIA toolbox, by directly using the algorithm,
which requires to adequately format the data, or by using the data format-based
launchers, which are speci�cally implemented to �t data spatial dimensionality
and encapsulate all the available algorithms.

1 http://www.mathworks.com/products/matlab/
2 http://www.scilab.org/
3 http://www.ehu.es/ccwintco/index.php/GIC-source-code-free-libre

http://www.mathworks.com/products/matlab/
http://www.scilab.org/
http://www.ehu.es/ccwintco/index.php/GIC-source-code-free-libre

3 Usage 3

Fig. 2.1: Matlab's 'Set path' window.

3.1 Use of 1D, 2D and 3D launchers

The data to be analyzed by the Endmember Induction Algorithms must be
stored in a matrix corresponding the �rst dimension of the matrix to the spectral
variables and, next dimensions to the spatial locations. This way, a collection of
images, where each image Ij is represented by a feature vector xj , is stored in
a two dimensional matrix X = {xij}; i = 1, . . . , P ; j = 1, . . . N ; where N is the
number of sample images in the collection and P is the feature vector's number of
components. The matrix X �rst dimension corresponds to the spectral variables
and the second dimension to the spatial location. This is a 1D-data because
there is only one spatial dimension. Following, an example of 1D, 2D and 3D-
data analysis by EIAs is given.

In the 'Data' folder of the EIA toolbox there are a Matlab and a Scilab
data �les named 'sample_data.mat' and 'sample_data.dat' respectively. Both
�les contain three matrices, each corresponding to an example of 1D, 2D and
3D-data.

3.1.1 EIA_1D use example

The variable named 'faces' which is a 10304× 400 matrix is an example of 1D-
data. 'Faces' is a collection of 400 faces, where each face is represented as a
10304 components feature vector4. Each feature vector has been extracted by

4 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

3 Usage 4

Fig. 3.1: Image of the �rst face of the faces collection.

reshaping the original gray-scale face images which are of size 112 × 92 pixels.
Figure 3.1 shows the original image of the �rst face of the collection. The code
used to obtain the image is:

Algorithm 2. face = faces(:,1);
face = reshape(face,112,92);
imshow(face,[0 255]);

Now, you can use the EIA_1D launcher to analyze this data using the default
options (which will run the ILSIA algorithm):

Algorithm 3. [E,C] = EIA_1D(faces);

The results are stored in the two variables 'E' and 'C'. 'E' stores the in-
duced endmembers and 'C' stores the spatial coordinates of the data samples
correponding to the endmembers. Some EIAs do not select some samples as
endmembers, and thus, variable 'C' will be empty. In this case, the endmem-
bers induced by the EIA_1D method used above returns the most 'extreme'
faces in the database. Figure 3.2 shows the faces (endmembers) returned by the
ILSIA algorithm (the default one). The code is:

Algorithm 4. k=size(E,2);
selected_faces = reshape(E,112,92,k);
for i=1:k
�gure;imshow(selected_faces(:,:,i),[0 255]);
end

If you want to use an speci�c EIA you can select it adding a second parameter
to the call. lets see and example running the N-FINDR algorithm:

3 Usage 5

Fig. 3.2: Extreme faces selected by the ILSIA (default) algorithm, obtained by
reshaping the induced endmembers.

Algorithm 5. [E,C] = EIA_1D(faces,'NFINDR');

This will run the N-FINDR algorithm using its default options. The possible
algorithms and options for each algorithm are described in the EIA_1D method
(as well as EIA_2D and EIA_3D) help documentation. If you want to tune up
the algorithm options you can do it adding additional parameters to the call:

Algorithm 6. [E,C] = EIA_1D(faces,'NFINDR','p',4,'maxit',100);

Figure 3.3 shows the faces (endmembers) returned by the N-FINDR algo-
rithm with p=4 and maxit=100.

3.1.2 EIA_2D use example

Common images are an example of data with two spatial dimensions. The 'hy-
per' variable contains an hyperspectral image corresponding to the well-known
Indian Pines scene5. It has 220 spectral bands and it is 145x145 pixels sized
(spatial dimensionalities). Figure 3.4 shows band 170 of the hyperspectral scene.
The code is:

Algorithm 7. imagesc(squeeze(hyper(170,:,:)));

EIA_2D method can be used to analyze this image data in the same way
than the faces data:

Algorithm 8. [E,C] = EIA_2D(hyper);

5 https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html

https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html

3 Usage 6

Fig. 3.3: Extreme faces selected by the N-FINDR algorithm with p=4 and
maxit=100, obtained by reshaping the induced endmembers.

3 Usage 7

Fig. 3.4: Hyperspectral Indian Pines scene band 170.

The result of applying an EIA to the hyperspectral data is a set of endmem-
bers, that is, the spectral response of the purest materials found in the image
by the algorithm. Figure 3.5 shows the endmembers induced by the ILSIA
algorithm (default options). The code is:

Algorithm 9. plot(E,'LineWidth',2);
xlim([1 220]);

3.1.3 EIA_3D use example

Same can be done for MRI images which is an example of data with 3 spatial
dimensions. The 'fmri' matrix represents a simulated functional MRI image6.
The image is a time serie of 100 instances of a simulated functional MRI cube
of 60× 60× 60 voxels. Thus, EIA_3D can be used:

Algorithm 10. [E,C] = EIA_3D(fmri);

Figure 3.6 shows the endmembers induced by ILSIA algorithm.

3.2 Use of individual algorithms

In the previous section we explained how to use the spatial-based EIA launchers.
Here we are going to explain how to use the individual methods. All the methods
have a similar call:

Algorithm 11. [E,C] = EIA_algorithm(data,options);

We already explained that 'E' and 'C' stores the induced endmembers and
pixels-endmembers coordenates respectively. 'algorithm' can be replaced by any
of the implemented Endmember Induction Algorithms, for instance: EIA_ILSIA
or EIA_NFINDR. The 'data' variable contains the data to be analyzed by the

6 http://mlsp.umbc.edu/simulated_fmri_data.html

http://mlsp.umbc.edu/simulated_fmri_data.html

3 Usage 8

Fig. 3.5: Endmembers induced by EIA_2D (default options) from the hyper-
spectral scene.

Fig. 3.6: Endmembers induced by EIA_3D (default options) from the simulated
functional MRI image.

4 Methods reference 9

EIA and 'options' can be di�erent parameters depending on the selected EIA.
To use an EIA method you have �rst to format the data adequately. All the
methods data input is a 2 dimensional matrix where �rst dimension represents
the data variables and second dimension the samples. That is, 'data' is a matrix
P × N , being P the number of variables and N the number of samples. Lets
see how to format the three sample data included in the toolbox.

In the case of the faces data, the 'faces' variable is already a P ×N matrix,
so it don't need to be formatted.

The hyperspectral scene in the 'hyper' variable is a P ×m×n matrix, where
m and n are the spatial locations of the pixels. We can reshape the matrix to
�x the data format needed by the EIA methods as follows:

Algorithm 12. [P m n] = size(hyper);
data = reshape(hyper,P,m*n);

For the MRI image is almost the same:

Algorithm 13. [P m n o] = size(fmri);
data = reshape(fmri,P,m*n*o);

Once you have the data formatted you can call to the desired EIA method.
Some examples:

Algorithm 14. [E,C] = EIA_ILSIA(data);
[E,C] = EIA_ILSIA(data,2);
[E,C] = EIA_NFINDR(data,5,100);

The available options for the di�erent algorithms can be found in the meth-
ods code documentation and in the Methods Reference scetion below.

4 Methods reference

4.1 EIA_1D

[E,C] = EIA_1D(data,algorithm,varargin)
Endmembers induction algorithms for 1-spatial dimensionality data. 1-

spatial data is de�ned as a matrix where �rst dimension represents the spectral
information and, second dimension is the spatial. Examples of 1-spatial data
are contingency matrix where each sample (spatial dimensionality) is an N-
dimensional feature vector (spectral dimensionality).

• Input:

� data: column data matrix [nvariables x nsamples]

� algorithm : EIA to be used. It can be one of this: {'ILSIA'(default)|'EIHA'|'WM'|'NFINDR'|'FIPPI'|'ATGP'}

� varargin : options to be passed to the algorithm (see below).

• Output:

4 Methods reference 10

� E : set of induced endmembers [nvariables x p]

� C : induced endmembers indexes vector [nsamples] with {0,1} values,
where '1' indicates that the corresponding sample has been identi�ed
as an endmember. Some of the algorithms do not select pixels as the
endmembers and, in that case C is empty.

Now, a description of the algorithms is o�ered together to the options that can
be passed as parameters:

• ILSIA: Incremental lattice Source Induction Algorithm (ILSIA) endmem-
bers induction algorithm. Options:

� 'alpha': Chebyshev-best approximation tolerance threshold (>= 0).
Default = 0.

• EIHA: Endmember induction heuristic algorithm (EIHA) endmembers in-
duction algorithm. Options:

� 'alpha': perturbation tolerance. Default = 2.

• WM: Prof. Ritter's WM endmembers induction algorithm. Options:
none.

• NFINDR: N-FINDR endmembers induction algorithm. Options:

� 'p': number of endmembers to be induced. If not provided it is
calculated by HFC method with tol=10^(-5).

� 'maxit': maximum number of iterations. Default = 3*p.

• FIPPI: Fast Iterative Pixel Purity Index (FIPPI) endmembers induction
algorithm. Options:

� 'p': number of endmembers to be induced. If not provided it is
calculated by HFC method with tol=10^(-5).

� 'maxit': maximum number of iterations. Default = 3*p.

• ATGP: ATGP endmembers induction algorithm. Options:

� 'p': number of endmembers to be induced. If not provided it is
calculated by HFC method with tol=10^(-5).

4 Methods reference 11

4.2 EIA_2D

[E,C] = EIA_1D(data,algorithm,varargin)
Endmembers induction algorithms for 2-spatial dimensionality data. 2-

spatial data is de�ned as a cube where �rst dimension represents the spectral
information and, second and third dimensions are the spatial ones. Examples
of 2-spatial data are images where each pixel (spatial dimensionality) is an N-
dimensional feature vector (spectral dimensionality). For binaries or grey-scale
images N=1. For RGB images N=3. For hyperspectral images N is high.

• Input:

� data: column data matrix [nvariables x nrows x ncolumns]

� algorithm : EIA to be used. It can be one of this: {'ILSIA'(default)|'EIHA'|'WM'|'NFINDR'|'FIPPI'|'ATGP'}

� varargin : options to be passed to the algorithm (see below).

• Output:

� E : set of induced endmembers [nvariables x p]

� C : induced endmembers indexes vector [nsamples] with {0,1} values,
where '1' indicates that the corresponding sample has been identi�ed
as an endmember. Some of the algorithms do not select pixels as the
endmembers and, in that case C is empty.

Now, a description of the algorithms is o�ered together to the options that can
be passed as parameters:

• ILSIA: Incremental lattice Source Induction Algorithm (ILSIA) endmem-
bers induction algorithm. Options:

� 'alpha': Chebyshev-best approximation tolerance threshold (>= 0).
Default = 0.

• EIHA: Endmember induction heuristic algorithm (EIHA) endmembers in-
duction algorithm. Options:

� 'alpha': perturbation tolerance. Default = 2.

• WM: Prof. Ritter's WM endmembers induction algorithm. Options:
none.

• NFINDR: N-FINDR endmembers induction algorithm. Options:

� 'p': number of endmembers to be induced. If not provided it is
calculated by HFC method with tol=10^(-5).

� 'maxit': maximum number of iterations. Default = 3*p.

4 Methods reference 12

• FIPPI: Fast Iterative Pixel Purity Index (FIPPI) endmembers induction
algorithm. Options:

� 'p': number of endmembers to be induced. If not provided it is
calculated by HFC method with tol=10^(-5).

� 'maxit': maximum number of iterations. Default = 3*p.

• ATGP: ATGP endmembers induction algorithm. Options:

� 'p': number of endmembers to be induced. If not provided it is
calculated by HFC method with tol=10^(-5).

4.3 EIA_3D

[E,C] = EIA_1D(data,algorithm,varargin)
Endmembers induction algorithms for 1-spatial dimensionality data. 3-

spatial data is de�ned as an hypercube where �rst dimension represents the
spectral information and, second, third and fourth dimensions are the spatial
ones. Examples of 3-spatial data are hyperspectral MRI images where each
voxel (spatial dimensionality) is an N-dimensional feature vector (spectral di-
mensionality).

• Input:

� data: column data matrix [nvariables x voxel_dim1 x voxel_dim2 x
voxel_dim3]

� algorithm : EIA to be used. It can be one of this: {'ILSIA'(default)|'EIHA'|'WM'|'NFINDR'|'FIPPI'|'ATGP'}

� varargin : options to be passed to the algorithm (see below).

• Output:

� E : set of induced endmembers [nvariables x p]

� C : induced endmembers indexes vector [nsamples] with {0,1} values,
where '1' indicates that the corresponding sample has been identi�ed
as an endmember. Some of the algorithms do not select pixels as the
endmembers and, in that case C is empty.

Now, a description of the algorithms is o�ered together to the options that can
be passed as parameters:

• ILSIA: Incremental lattice Source Induction Algorithm (ILSIA) endmem-
bers induction algorithm. Options:

� 'alpha': Chebyshev-best approximation tolerance threshold (>= 0).
Default = 0.

• EIHA: Endmember induction heuristic algorithm (EIHA) endmembers in-
duction algorithm. Options:

4 Methods reference 13

� 'alpha': perturbation tolerance. Default = 2.

• WM: Prof. Ritter's WM endmembers induction algorithm. Options:
none.

• NFINDR: N-FINDR endmembers induction algorithm. Options:

� 'p': number of endmembers to be induced. If not provided it is
calculated by HFC method with tol=10^(-5).

� 'maxit': maximum number of iterations. Default = 3*p.

• FIPPI: Fast Iterative Pixel Purity Index (FIPPI) endmembers induction
algorithm. Options:

� 'p': number of endmembers to be induced. If not provided it is
calculated by HFC method with tol=10^(-5).

� 'maxit': maximum number of iterations. Default = 3*p.

• ATGP: ATGP endmembers induction algorithm. Options:

� 'p': number of endmembers to be induced. If not provided it is
calculated by HFC method with tol=10^(-5).

4.4 EIA_ATGP

[E,C] = EIA_ATGP(data,p)
ATGP endmembers induction algorithm [7].

• Input:

� data: column data matrix [nvariables x nsamples]

� p: number of endmembers to be induced. If not provided it is calcu-
lated by HFC method with tol=10^(-5).

• Output:

� E : set of induced endmembers [nvariables x p]

� C : induced endmembers indexes vector [nsamples] with {0,1} values,
where '1' indicates that the corresponding sample has been identi�ed
as an endmember. Some of the algorithms do not select pixels as the
endmembers and, in that case C is empty.

4 Methods reference 14

4.5 EIA_CCA

[E] = EIA_CCA(data,p,t)
Convex Cone Analysis (CCA) endmembers induction algorithm [5].

• Input:

� data: column data matrix [nvariables x nsamples].

� p: number of endmembers to be induced. If not provided it is calcu-
lated by HFC method with tol=10^(-5).

� t : tolerance for numerical errors. By default 10^(-6).

• Output:

� E : set of induced endmembers [nvariables x p]

� C : is empty.

4.6 EIA_CHEBYSHEV

[d] = EIA_CHEBYSHEV(x,y)
Chebyshev distance between two vectors.

• Input:

� x,y : two vectors of same dimensionality.

• Output:

� d : Chebyshev distance.

4.7 EIA_EIHA

[E,C] = EIA_EIHA(data,alpha)
Endmember induction heuristic algorithm (EIHA) endmembers induction

algorithm [4].

• Input:

� data: column data matrix [nvariables x nsamples]

� alpha: perturbation tolerance. Default = 2.

• Output:

� E : set of induced endmembers [nvariables x p]

� C : induced endmembers indexes vector [nsamples] with {0,1} values,
where '1' indicates that the corresponding sample has been identi�ed
as an endmember. Some of the algorithms do not select pixels as the
endmembers and, in that case C is empty.

4 Methods reference 15

4.8 EIA_FIPPI

[E,C] = EIA_FIPPI(data,p,maxit)
Fast Iterative Pixel Purity Index (FIPPI) endmembers induction algorithm

[2].

• Input:

� data: column data matrix [nvariables x nsamples]

� p: number of endmembers to be induced. If not provided it is calcu-
lated by HFC method with tol=10^(-5).

� maxit: maximum number of iterations. Default = 3*p.

• Output:

� E : set of induced endmembers [nvariables x p]

� C : induced endmembers indexes vector [nsamples] with {0,1} values,
where '1' indicates that the corresponding sample has been identi�ed
as an endmember. Some of the algorithms do not select pixels as the
endmembers and, in that case C is empty.

4.9 EIA_HFC

[vd] = EIA_HFC(data,alfa)
Virtual dimensionality by HFC method [1, 3].

• Input:

� data: column data matrix [nvariables x nsamples]

� alfa: vector of false alarm probabilities [1 x p] (default: [10^(-3)
10^(-4) 10^(-5)]).

• Output:

� vd: vector of virtual dimensionality values [1 x p].

4.10 EIA_ILSIA

[E,C] = EIA_ILSIA(data,alpha)
Incremental lattice Source Induction Algorithm (ILSIA) endmembers induc-

tion algorithm [6].

• Input:

� data: column data matrix [nvariables x nsamples]

� alpha: Chebyshev-best approximation tolerance threshold (>= 0).
Default = 0.

4 Methods reference 16

• Output:

� E : set of induced endmembers [nvariables x p]

� C : induced endmembers indexes vector [nsamples] with {0,1} values,
where '1' indicates that the corresponding sample has been identi�ed
as an endmember. Some of the algorithms do not select pixels as the
endmembers and, in that case C is empty.

4.11 EIA_LAM

[W,M] = EIA_LAM(X,Y)
The Lattice Associative Memories is a kind of associative memory work-

ing over lattice operations. If X=Y then W and M are Lattice AutoAssocia-
tive Memories (LAAM), otherwise they are Lattice HeteroAssociative Memories
(LHAM) [9, 8].

• Input:

� X: input pattern matrix [nvariables x nsamples].

� Y: ouput pattern matrix [nvariables x nsamples]

• Output:

� W : dilative LAM [mvariables x nvariables].

� M : erosive LAM [mvariables x nvariables].

4.12 EIA_NFINDR

[E,C] = EIA_NFINDR(data,p,maxit)
N-FINDR endmembers induction algorithm [11].

• Input:

• data: column data matrix [nvariables x nsamples]

� p: number of endmembers to be induced. If not provided it is calcu-
lated by HFC method with tol=10^(-5).

� maxit: maximum number of iterations. Default = 3*p.

• Output:

� E : set of induced endmembers [nvariables x p]

� C : induced endmembers indexes vector [nsamples] with {0,1} values,
where '1' indicates that the corresponding sample has been identi�ed
as an endmember. Some of the algorithms do not select pixels as the
endmembers and, in that case C is empty.

4 Methods reference 17

4.13 EIA_WM

[E,C] = EIA_WM(data)
Prof. Ritter's WM endmembers induction algorithm [10].

• Input:

� data: column data matrix [nvariables x nsamples]

• Output:

� E : set of induced endmembers [nvariables x p]

� C : is empty.

References

[1] C.-I. Chang and Q. Du. Estimation of number of spectrally distinct signal
sources in hyperspectral imagery. Geoscience and Remote Sensing, IEEE
Transactions on, 42(3):608�619, 2004.

[2] C.-I. Chang and A. Plaza. A fast iterative algorithm for implementation of
pixel purity index. Geoscience and Remote Sensing Letters, IEEE, 3(1):63�
67, 2006.

[3] Chein-I Chang, Wei Xiong, Weimin Liu, Mann-Li Chang, Chao-Cheng Wu,
and C.C.-C. Chen. Linear spectral mixture analysis based approaches to
estimation of virtual dimensionality in hyperspectral imagery. Geoscience
and Remote Sensing, IEEE Transactions on, 48(11):3960�3979, 2010.

[4] Manuel Grana, Ivan Villaverde, Jose O. Maldonado, and Carmen Hernan-
dez. Two lattice computing approaches for the unsupervised segmentation
of hyperspectral images. Neurocomput., 72(10-12):2111�2120, 2009.

[5] A. Ifarraguerri and C.-I. Chang. Multispectral and hyperspectral image
analysis with convex cones. Geoscience and Remote Sensing, IEEE Trans-
actions on, 37(2):756�770, 1999.

[6] Manuel Gra na, Darya Chyzhyk, Maite García-Sebastián, and Carmen
Hernández. Lattice independent component analysis for functional mag-
netic resonance imaging. Information Sciences, 181(10):1910�1928, May
2011.

[7] A. Plaza and C.-I. Chang. Impact of initialization on design of endmember
extraction algorithms. Geoscience and Remote Sensing, IEEE Transactions
on, 44(11):3397�3407, 2006.

[8] G. X. Ritter, J. L. Diaz-de-Leon, and P. Sussner. Morphological bidirec-
tional associative memories. Neural Networks, 12(6):851�867, July 1999.

4 Methods reference 18

[9] G. X. Ritter, P. Sussner, and Diaz-de-Leon, J. L. Morphological associative
memories. Neural Networks, IEEE Transactions on, 9(2):281�293, 1998.

[10] Gerhard X. Ritter and Gonzalo Urcid. A lattice matrix method for hyper-
spectral image unmixing. Information Sciences, In Press, Corrected Proof,
October 2010.

[11] M. E. Winter, M. R. Descour, and S. S. Shen. N-FINDR: an algorithm
for fast autonomous spectral end-member determination in hyperspectral
data. volume 3753, pages 266�275, Denver, CO, USA, October 1999. SPIE.

	Copyright
	Install
	EIA Toolbox install in Matlab
	EIA Toolbox install in Scilab

	Usage
	Use of 1D, 2D and 3D launchers
	EIA_1D use example
	EIA_2D use example
	EIA_3D use example

	Use of individual algorithms

	Methods reference
	EIA_1D
	EIA_2D
	EIA_3D
	EIA_ATGP
	EIA_CCA
	EIA_CHEBYSHEV
	EIA_EIHA
	EIA_FIPPI
	EIA_HFC
	EIA_ILSIA
	EIA_LAM
	EIA_NFINDR
	EIA_WM

