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Approaches to the learning problem

@ Learning problem: the problem of choosing the desired
dependence among variables on the basis of empirical data.

@ Two approaches:

o To choose an aproximating function from a given set of

functions.
o To estimate the desired stochastic dependences (densities,

conditional densities, conditional probabilities).
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First approach

To choose an aproximating function from a given set of functions

@ It's a problem rather general.

@ Three subproblems: pattern recognition, regression, density
estimation.

@ Based on the idea that the quality of the choosen function can
be evaluated by a risk functional.

e Equivalent to minimizing the risk functional on the basis of
empirical data.
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Second approach

To estimate the desired stochastic dependences

@ Using estimated stochastic dependence, the pattern
recognition, the regression and the density estimation problems
can be solved as well.

@ Requires solution of integral equations for determining these
dependences when some elements of the equation are
unknown.

o It gives much more details but it's an ill-posed problem.
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General problem of learning from examples

Generator

Supervisor >y
Learning
Machine |——>y!

Figure: A model of learning by examples
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Generator

@ The Generator (G) determines the environment in which the
Supervisor an the Learning Machine act.

@ Simplest environment: G generates the vector x € X
independently and identically distributed (i.i.d.) according to
some unknown but fixed probability distribution function, F(x).
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Supervisor

@ The Supervisor (S) transforms the input vectors X into the
output values y.

@ Supposition: S returns the output y on the vector x according
to a conditional distribution function, F(y|x), which includes
the case when the supervisor uses some function y = f(x).
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Learning Machine

@ The Learning Machine (LM) observes the [ pairs
(X1,1)5- -+, (X1,y7), the training set, which is drawn randomly
and independently according to a joint distribution function
F(x,y) = F(y[x)F (x).

@ Using the training set, LM constructs some operator which will
be used for prediction of the supervisor’'s answer y; on any
specific vector x; generated by G.
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Two different goals

@ To imitate the supervisor's operator: try to construct an
operator which provides for a given G, the best predictions to
the supervisor's outputs.

@ To identify the supervisor's operator: try to construct an
operator which is close to the supervisor's operator.

@ Both problems are based on the same general principles.

@ The learning process is a process of choosing an appropiate
function from a given set of functions.
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Functional

@ Among the totally of possible functions, one looks for the one
that satisfies the given quality criterion in the best possible
manner.

@ Formally: on the subset Z of the vector space R”, a set of
admissible functions {g(z)}, z € Z, is given and a functional
R=R(g(z)) is defined.

@ It's required to find the function g’(z) from the set {g(z)}
which minimizes the functional R = R (g(z)).
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Two cases

@ When the set of functions {g(z)} and the functional R(g(z))
are explicitly given: calculus of variations.

@ When a p.d.f. F(z) is defined on Z and the functional is
defined as the mathematical expectation

R(g(2) = [ L(z.g(2)dF (2 1)

where function L(z,g(z)) is integrable for any g(z) € {g(z)}.

o The problem is then, to minimize (1) when F(z) is unknown
but the sample zy,...,7 of observations is available.
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Problem definition

@ Imitation problem: how can we obtain the minimum of the
functional in the given set of functions?

@ Identification problem: what should be minimized in order to
select from the set {g(z)} a function which will guarantee that
the functional (1) is small?

@ The minimization of the functional (1) on the basis of
empirical data zj,...,2; is one of the main problems of
mathematical statistics.
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Parametrization

@ The set of functions {g(z)} will be given in a parametric form
{g(z,),x € A}.

@ The study of only parametric functions is not a restriction on
the problem, since the set A is arbitrary: a set of scalar
quantities, a set of vectors or a set of abstract elements.

@ The functional (1) can be rewritted as

R(a):/Q(z,a)dF(z), aeA 2)

where Q(z,0) = L(z,g(z,)) is called the loss function.
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The expected loss

@ It's assumed that each function Q(z,a*) determines the
ammount of the loss resulting from the realization of the
vector z for a fixed o = a*.

@ The expected loss with respect to z for the function Q(z,o*)
is determined by the integral

R(e) = [ 0(z.0")dF 2) ©

which is called the risk functional or the risk.
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Problem redefinition

Definition

The problem is to choose in the set {Q(z, ), a € A}, a function
0(z,a,) which minimizes the risk when the probability distribution
function is unknown but random independent observations zy,...,2
are given.
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Informal definition

Definition

A supervisor observes ocurring situations and determines to which
of k classes each one of them belongs. It is required to construct a
machine which, after observing the supervisor's classification,
carries out the classification approximately in the same manner as
the supervisor.
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Formal definition

Definition

In a certain environment characterized by a p.d.f. F(x), situation x
appears randomly and independently. the supervisor classifies each
situation into one of k classes. We assume that the supervisor
carries out this classification by F (@|x), where 0 € {0,1,...,k—1}.

e Neither F(x) nor F (®,x) are known, but they exist.
@ Thus, a joint distribution function F (®,x) = F (0|x) F(x)
exists.
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Loss function

@ Given a set of functions {¢ (x,a),a € A}, which take only &
values {0,1,...,k— 1} (a set of decision rules).

@ We shall consider the simplest loss function:
0 if w=9¢

L(o,¢)= .
L if o#¢

@ The problem of pattern recognition is to minimize the
functional

/L ) dF (o,x)

on the set of functions {¢ (x,a), o € A}, where the p.d.f.
F (w,x) is unknown but a random independent sample of pairs
(X1,001),...,(x1,0) is given.
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Restrictions

@ The problem of pattern recognition has been reduced to the
problem of minimizing the risk on the basis of empirical data,
where the set of loss functions {Q(z,a), o € A}, is not
arbitrary as in the general case.

@ The following restrictions are imposed:

o The vector z consist of n+ 1 coordinates: coordinate @ (which

takes a finite number of values) and n coordinates x!,x%,... x"

which form the vector x.
e The set of functions {Q(z,), @ € A} is given by

0(z,a) =L@, (xa), acA

and also takes on only a finite number of values.
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© Minimizing the risk functional on the basis of empirical data

@ The regression problem
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Stochastic dependences

@ There exist relationships (stochastic dependences) where to
each vector x there corresponds a number y which we obtain
as a result of random trials. F (y|x) expresses that stochastic
relationship.

@ Estimating the stochastic dependence based on the empirical
data (X1,y1),-..,(X1,y;) is a quite difficult problem (ill-posed
problem).

@ However, the knowledge of F (y|x) is often not required and
it's sufficient to determine one of its characteristics.
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Regression

@ The function of conditional mathematical expectaction

r(x) = [ ydF (lx)

is called the regression.

o Estimate the regression in the set of functions
{f(x,a),a € A}, is referred to as the problem of regression
estimation.

http://www.ehu.es/ccwintco Vapnik UPV/EHU 26 / 47



Minimizing the risk functional on the basis of empirical data
00000

Conditions

@ The problem of regression estimation is reduced to the model
of minimizing risk based on empirical data under the following
conditions:

/ Y2dF (y,x) < o / r (X)dF (y,x) < o0
@ On the set {f(x,a) € Ly, € A}, the minimum (if exists) of
the functional
R(@) = [ (= f (x.)2dF (%)

is attained at;:

o The regression function if r(x) € {f (x,c), 0 € A}.
o The function f(x,a*) which is the closest to r(x) in the L,
metric if r(x) ¢ {f (x,a),a € A}.
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Demonstration

e Denote Af (x,a) = f(x,0) — r(X).

@ The functional can be rewritten as:
R(@) = [ (= r () dF 0,x)+ [ (A (x, @) dF (%)
-2 [ Af (x,0) (v=r(x))dF (%)

o [(y—r(x))*dF (y,x) does not depend of o.
o [Af(x,0)(y—r(x))*dF (y,x) =0.
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Restrictions

@ The problem of estimating the regression may be also reduced
to the scheme of minimizing the risk. The following
restrictions are imposed:

e The vector z consist of n+ 1 coordinates: coordinate y and n
coordinates x!,x2. ..., x" which form the vector x. However,
the coordinate y as well as the function f(x,@) may take any
value on the interval (—oo, ).

o The set of functions {Q(z,a),a € A} is on the form

0za)=0-f(xa), acA

and can take on arbitrary non-negative values.
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© Minimizing the risk functional on the basis of empirical data

@ The density estimation problem (Fisher-Wald setting)
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Problem definition

o Let {p(x,a),00 € A}, be a set of probability densities
containing the required density:

_ dF(x)
p(X’aO) = dX
e Considering the functional:
R(@) = [Inp(x,)dF (x) (4)

the problem of estimating the density in the L; metric is
reduced to the minimization of the functional (4) on the basis
of empirical data (Fisher-Wald formulation).
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Assertions (1)

Functional’s minimum

@ The minimum of te functional (4) (if it exists) is attained at
the functions p(x,a*) which may differ from p(x,@,) only on
a set of zero measure.

@ Demostration:

e Jensen's inequality implies:

Vo oalbir
Xa() 7 ()

e So, the first assertion is proved by:

p(x,0,)dx=1n1=0

/1 i /lnpxoc)dF /lnpxoca)dF() 0
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Assertions (I1)
The Bregtanolle-Huber inequality

@ The Bregtanolle-Huber inequality:

[ p(x.00 = p(x. )] d (x) < 2/1 —exp{R(a) R (@)}

is valid.
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Conclusion

@ The functions p(x,a*) which are e-close to the minimum:

R(a")— Oicréf\R(a) &€

will be 24/1 —exp{—¢}-close to the required density in the L;

metric.
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Restrictions

@ The density estimation problem in the Fisher-Wald setting is
that the set of functions {Q(z,a),a € A} is subject to the
following restrictions:

o The vector z coincides with the vector x.
o The set of functions {Q(z,a),a € A}, is on the form

0(z,a) = —Inp(x,a)

where {p(x,a)} is a set of density functions.
o The loss function takes on arbitrary values on the interval

(_°°7°°)'
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© Minimizing the risk functional on the basis of empirical data

@ Induction principles for minimizing the risk functional on the
basis of empirical data
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Introduction

@ We have seen that the pattern recognition, the regression and
the density estimation problems can be reduced to this scheme
by specifying a loss function in the risk functional.

@ Now, how can we minimize the risk functional when the
density function is unknown?

o Classical: empirical risk minimization (ERM).
o New one: structural risk minimization (SRM).
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Empirical Risk Minimization

Definition

@ Instead of minimizing the risk functional:
% /Q(z,a)dF(z), acA
minimize the emprical risk functional
1 1
7 Z Q n,x), oc A

i=1

emp

on the basis of empirical data z;,...,2 obtained according to a
distribution function F(z).
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Empirical Risk Minimization

Considerations

@ The functional is explicitely defined and it is subject to
minimization.

@ The problem is to establish conditions under which the

minimum of the empirical risk functional, Q (z, o), is closed to
the desired one Q(z,0,).
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Empirical Risk Minimization

Pattern recognition problem (1)

@ The pattern recognition problem is considered as the
minimization of the functional

R(a):/L(w,¢(x,a))dF(w,x), oEA

on a set of functions {¢ (x, ), € A}, that take on only a
finite number of values, on the basis of empirical data
(xX1,01),- ., (x1,00).
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Empirical Risk Minimization
Pattern recognition problem (1)
@ Considering the empirical risk functional
)
emp Z wh Xla ))) acA

@ When L(w;,a) € {0,1} (0if o=¢ and 1 if ® # ¢ ),
minimization of the empirical risk functional is equivalent to
minimizing the number of training errors.
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Empirical Risk Minimization

Regression problem (I)

@ The resgression problem is considered as the minimization of
the functional

R(@) = [(r-f(xa) dF (0, aeA

on a set of functions {f (x,a),a € A}, on the basis of
empirical data (xq,y1),..., (X1,y1)-
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Empirical Risk Minimization

Regression problem (II)

o Considering the empirical risk functional

1 l
emp 721 Xla ))27 acA
1=

@ The method of minimizing the empirical risk functional is
known as the Least-Squares method.
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Empirical Risk Minimization

Density estimation problem (1)

@ The density estimation problem is considered as the
minimization of the functional

R(a):/lnp(x,a)dF(x), acA

on a set of densities {p (x, ), € A}, using i.i.d. empirical
data xq,...,X|.
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Empirical Risk Minimization

Density estimation problem (1)

e Considering the empirical risk functional

1
Remp (00) ==Y Inp(x, ), aEA
i=1

it is the same solution which comes from the Maximum

Likelihood method (in the Maximum Likelihood method a plus
sign is used in front of the sum instead of the minus sign).
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For Further Reading

[M The Nature of Statistical Learning Theory. Vladimir N. Vapnik.
ISBN: 0-387-98780-0. 1995.

[§ Statistical Learning Theory. Vladimir N. Vapnik. ISBN:
0-471-03003-1. 1998.
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Appendix

Questions?

Thank you very much for your attention.

o Contact:

Miguel Angel Veganzones

Grupo Inteligencia Computacional

Universidad del Pais Vasco - UPV/EHU (Spain)

E-mail: miguelangel.veganzones@ehu.es

Web page: http://www.ehu.es/computationalintelligence
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