Consistency Theory of non-falsiability

Bounds on the rate of convergence

Statistical Learning Theory Consistency and bounds on the rate of convergence for ERM methods

Miguel A. Veganzones

Grupo Inteligencia Computacional Universidad del País Vasco

Consistency Theory of non-falsiability

Bounds on the rate of convergence o

Outline

- Introduction
- 2 Consistency
 - Introduction
 - VC entropy
 - Necessary and sufficient conditions for uniform convergence
- Theory of non-falsiability
- Bounds on the rate of convergence
 Three milestones of learning theory

Consistency Theory of non-falsiability

Bounds on the rate of convergence \odot

Consistency of learning processes

- Consistency: convergence in probability to the best possible result.
- Consistency of learning processes:
 - To explain when a learning machine that minimizes empirical risk can achive a small value of actual risk (to generalize) and when it can not.
 - Equivalently, to describe necessary and sufficient conditions for the consistency of learning processes that minimize the empirical risk.
- This guarantees that the constructed theory is general and cannot be improved from the conceptual point of view.

Bounds on the rate of convergence o

Theory of non-falsiability

- Kant's problem of demarcation (s. XVIII): is there a formal way to distinguish true theories from false theories?
 - One of the main questions of modern philosophy.
- Popper's theory of non-falsiability (s. XX): criterion for demarcation between true and false theories.
- Strongly related to what happens if the ERM method is not consistent.

Consistency Theory of non-falsiability

Bounds on the rate of convergence o

Bounds on the rate of convergence

- It is required for any machine minimizing empirical risk to satisfy consistency conditions.
- But, consistency conditions say nothing about the rate of convergence of the obtained risk R(α_l) to the minimal one R(α₀).
- It is possible to construct examples where the ERM principle is consistent, but where the risks have an arbitrary slow asymptotic rate of convergence.
- The theory of bounds on the rate of convergence tries to answer the following question:
 - Under what conditions is the asymptotic rate of convergence fast?

Introduction of the second sec	n n
mu ouu cu	

Consistency Theory of non-falsiability

Bounds on the rate of convergence

Outline

- Introduction
- ConsistencyIntroduction
 - VC entropy
 - Necessary and sufficient conditions for uniform convergence
 - Theory of non-falsiability
- Bounds on the rate of convergence
 Three milestones of learning theory

San

Intr	od		-t i	o n
	0 u	iu c		0.11

Consistency Theory of non-falsiability

Bounds on the rate of convergence

Notation

- - Let $Q(\mathbf{z}, \alpha_l)$ be a function that minimizes the empirical risk functional

$$R_{emp} = \frac{1}{l} \sum_{i=1}^{l} Q(\mathbf{z}_{i}, \alpha)$$

for a given set of i.i.d. observations z_1, \ldots, z_l .

Bounds on the rate of convergence o

Classical definition of consistency

• The ERM principle is consistent for the set of functions $Q(\mathbf{z}, \alpha), \alpha \in \Lambda$, and for the p.d.f. $F(\mathbf{z})$ if the following two sequences converge in probability to the same limit:

$$R(\alpha_l) \xrightarrow[l \to \infty]{P} \inf_{\alpha \in \Lambda} R(\alpha)$$
(1)

$$R_{emp}(\alpha_l) \xrightarrow[l \to \infty]{P} \inf_{\alpha \in \Lambda} R(\alpha)$$
(2)

- Equation (1) asserts that the values of achieved risks converge to the best possible.
- Equation (2) asserts that one can estimate on the basis of the values of empirical risk the minimal possible value of the risk.

Bounds on the rate of convergence o

Classical definition of consistency

Figure: The learning process is consistent if both the expected risks $R(\alpha_l)$ and the empirical risks $R_{emp}(\alpha_l)$ converge to the minimal possible value of the risk $\inf_{\alpha \in \Lambda} R(\alpha)$.

Consistency Theory of non-falsiability

Bounds on the rate of convergence o

Goal

- To obtain conditions of consistency for the ERM method in terms of general characteristics of the set of functions and the probability measure.
- This is an impossible task because the classical definition of consistency includes cases of *trivial consistency*.

Bounds on the rate of convergence o

Trivial consistency

- Suppose that for some set of functions $Q(\mathbf{z}, \alpha)$, $\alpha \in \Lambda$, the ERM method is not consistent.
- Consider an extended set of functions including this set of functions and the additinal function $\phi(\mathbf{z})$ that satisfies the following inequality

$$\inf_{\boldsymbol{\alpha}\in\Lambda}Q(\mathbf{z},\boldsymbol{\alpha})>\phi(\mathbf{z}),\qquad\forall\mathbf{z}$$

Trivial consistency

- For the extended set of functions (containing $\phi(\mathbf{z})$) the ERM method will be consistent.
 - For any distribution function and number of observations, the minimum of the empirical risk will be attained on the function φ(z) that also gives the minimum of the expected risk.
 - This example shows that there exist trivial cases of consistency that depend on wether the given set of functions contains a minorizing function.

Bounds on the rate of convergence o

ERM consistency

- In order to create a theory of consistency of the ERM method depending only on the general properties (capacity) of the set of functions, a consistency definition excluding trivial consistency cases is needed.
- This is done by non-trivial consistency definition.

Bounds on the rate of convergence o

Non-trivial consistency

• The ERM principle is nontrivially consistent for the set of functions $Q(\mathbf{z}, \alpha)$, $\alpha \in \Lambda$, and the probability distribution function $F(\mathbf{z})$ if for any nonempty subset $\Lambda(c)$, $c \in (-\infty, \infty)$ defined as

$$\Lambda(c) = \left\{ \boldsymbol{\alpha} : \int Q(\mathbf{z}, \boldsymbol{\alpha}) \, dF(\mathbf{z}) > c, \quad \boldsymbol{\alpha} \in \Lambda \right\}$$

the convergence

$$\inf_{\alpha \in \Lambda(c)} R_{emp}(\alpha) \xrightarrow{P} \inf_{l \to \infty} \inf_{\alpha \in \Lambda(c)} R(\alpha)$$
(3)
id.

is valid.

Bounds on the rate of convergence o

Key theorem of learning theory

• Vapnik and Chervonenkins, 1989.

Theorem

Let $Q(\mathbf{z}, \alpha)$, $\alpha \in \Lambda$, be a set of functions that satisfy the condition

$$A \leq \int Q(\mathbf{z}, \alpha) dF(\mathbf{z}) \leq B \quad (A \leq R(\alpha) \leq B)$$

then for the ERM principle to be consistent, it is necessary and sufficient that the empirical risk $R_{emp}(\alpha)$ converges uniformly to the actual risk $R(\alpha)$ over the set $Q(\mathbf{z}, \alpha)$, $\alpha \in \Lambda$, in the following sense:

$$\lim_{l\to\infty} P\left\{\sup_{\alpha\in\Lambda} \left(R\left(\alpha\right) - R_{emp}\left(\alpha\right)\right) > \varepsilon\right\} = 0, \quad \forall \varepsilon > 0$$
(4)

http://www.ehu.es/ccwintco

Consistency Theory of non-falsiability

Bounds on the rate of convergence O

Consistency of the ERM principle

- According to the key theorem, the uniform one-sided convergence (4) is a necessary and sufficient condition for (non-trivial) consistency of the ERM method.
- Conceptually, the conditions for consistency of the ERM principle are necessarily and sufficiently determined by the "worst" function of the set of functions Q(z, α), α ∈ Λ.

Intr		11	ct.	ion
	U G	u	C.C	1011

Consistency Theory of non-falsiability

Bounds on the rate of convergence

Outline

- Introduction
- 2 Consistency
 - Introduction
 - VC entropy

• Necessary and sufficient conditions for uniform convergence

Theory of non-falsiability

Bounds on the rate of convergence
 Three milestones of learning theory

Consistency Theory of non-falsiability

Bounds on the rate of convergence O

Introduction

- The key theorem expresses that consistency of the ERM principle is equivalent to existence of uniform one-sided convergence.
- Conditions for uniform two-sided convergence play an important role in constructing conditions for uniform two-sided convergence.
- Necessary and sufficient conditions for both uniform one-sided and two-sided convergence are obtained on the basis of the VC entropy concept.

Bounds on the rate of convergence o

Empirical process

• An empirical process is an stochastic process in the form of a sequence of random variables

$$\xi^{l} = \sup_{\alpha \in \Lambda} \left| \int Q(\mathbf{z}, \alpha) dF(\mathbf{z}) - \frac{1}{l} \sum_{i=1}^{l} Q(\mathbf{z}_{i}, \alpha) \right|, \quad l = 1, 2, \dots$$
(5)

that depend on both, the probability measure $F(\mathbf{z})$ and the set of functions $Q(\mathbf{z}, \alpha)$, $\alpha \in \Lambda$.

• The problem is to describe conditions under which this empirical process converges in probability to zero.

Bounds on the rate of convergence

Consistency of an empirical process

• The necessary and sufficient conditions for an empirical process to converge in probability to zero imply that the equality

$$\lim_{l \to \infty} P\left\{ \sup_{\alpha \in \Lambda} \left| \int Q(\mathbf{z}, \alpha) \, dF(\mathbf{z}) - \frac{1}{l} \sum_{i=1}^{l} Q(\mathbf{z}_{i}, \alpha) \right| > \varepsilon \right\} = 0, \quad \forall \varepsilon > 0$$
(6)
hols true.

hols true.

Consistency Theory of non-falsiability

Bounds on the rate of convergence o

Law of large numbers and its generalization

- If the set of functions contains only one element, then the sequence of random variables ξ^l always converges in probability to zero: law of large numbers.
- Generalization of the law of large numbers for the case where a set of functions has a finite number of elements:

Definition

The sequence of random variables ξ^l converges in probability to zero if the set of functions $Q(\mathbf{z}, \alpha)$, $\alpha \in \Lambda$, contains a finite number N of elements.

Consistency Theory of non-falsiability

Bounds on the rate of convergence \circ

Law of large numbers and its generalization

- When Q(z, α), α ∈ Λ, has an infinite number of elements, the sequence of random variables ξ^l does not necessarily converges in probability to zero.
- Problem of the existence of a law of large numbers in functional space (uniform two-sided convergence of the means to their probabilities): generalization of the classical law of large numbers.

Consistency Theory of non-falsiability

Bounds on the rate of convergence o

Entropy

- - Necessary and sufficient conditions for both uniform one-sided convergence and uniform two-sided convergence are obtained on the basis of a concept called *the entropy of a set of functions* $Q(\mathbf{z}, \alpha)$, $\alpha \in \Lambda$, for a sample of size *l*.

Introduction

Consistency Theory of non-falsiability

Bounds on the rate of convergence o

Entropy of the set of indicator functions Diversity

- Lets characterize the *diversity* of a set of indicator functions $Q(\mathbf{z}, \alpha), \ \alpha \in \Lambda$, on the given set of data by the quantity $N^{\uparrow}(\mathbf{z_1}, \ldots, \mathbf{z_l})$ that evaluates how many different separations of the given sample can be clone using functions from the set of indicator functions.
- Consider the set of *l*-dimensional binary vectors:

 $q(\alpha) = (Q(\mathbf{z_1}, \alpha), \dots, Q(\mathbf{z_l}, \alpha)), \quad \alpha \in \Lambda$

Geometrically, the diversity is the number of different vertices of the *l*-dimensional cube that can be obtained on the basis of the sample z_1, \ldots, z_l and the set of functions.

Consistency Theory of non-falsiability

Bounds on the rate of convergence O

Entropy of the set of indicator functions Diversity (geometrics)

Figure: The set of *l*-dimensional binary vectors $q(\alpha)$, $\alpha \in \Lambda$, is a subset of the set of vertices of the *l*-dimensional unit cube.

Consistency Theory of non-falsiability

Bounds on the rate of convergence o

Entropy of the set of indicator functions Random entropy and entropy

The random entropy

$$H^{\uparrow}(\mathbf{z}_{1},\ldots,\mathbf{z}_{l}) = \ln N^{\uparrow}(\mathbf{z}_{1},\ldots,\mathbf{z}_{l})$$

describes the diversity of the set of functions on the given data.

The expectation of the random entropy over the joint distribution function F (z₁,...,z_l):

$$H^{(l)} = E\left[\ln N^{(\mathbf{z}_{1},\ldots,\mathbf{z}_{l})\right]$$
(7)

is the *entropy* of the set or indicator functions $Q(\mathbf{z}, \alpha)$, $\alpha \in \Lambda$, on samples of size l.

Consistency Theory of non-falsiability

Bounds on the rate of convergence \odot

Entropy of the set of real functions Diversity

- Let $A \leq Q(\mathbf{z}, \alpha) \leq B$, $\alpha \in \Lambda$, a set of bounded loss functions.
- Considering this set of functions and the training set z₁,..., z_l one can construct the following set of *l*-dimensional vectors:

$$q(\alpha) = (Q(\mathbf{z}_1, \alpha), \dots, Q(\mathbf{z}_l, \alpha)), \quad \alpha \in \Lambda$$

The diversity, N = N[^] (ε, z₁,..., z_l), indicates the number of elements of the minimal ε-net of this set of vectors q(α), α ∈ Λ.

Consistency Theory of non-falsiability

Bounds on the rate of convergence O

Entropy of the set of real functions $\min_{e-net} \varepsilon$

- The set of vectors $q(\alpha)$, $\alpha \in \Lambda$, has a minimal ε -net $q(\alpha_1), \ldots, q(\alpha_N)$ if:
- There exist N = N^(ε, z₁,..., z_l) vectors q(α₁),...,q(α_N) such that for any vector q(α*), α* ∈ Λ, one can find among these N vectors one q(α_r) that is ε-close to q(α*) in a given metric.
 N is the minimum number of vectors that posseses this property.

Consistency Theory of non-falsiability

Bounds on the rate of convergence O

Entropy of the set of real functions Diversity (geometrics)

Q (z_ε, α)

 $Q(z_{\ell}, \alpha)$ $Q(z_{\ell}, \alpha)$ $Q(z_{1}, \alpha)$

Figure: The set of *l*-dimensional vectors $q(\alpha)$, $\alpha \in \Lambda$, belongs to an *l*-dimensional cube.

Introduction

Bounds on the rate of convergence O

Entropy of the set of real functions Random entropy and entropy

• The random VC entropy of the set of functions $A \leq Q(\mathbf{z}, \alpha) \leq B, \ \alpha \in \Lambda$, on the sample $\mathbf{z}_1, \dots, \mathbf{z}_l$ is given by:

$$H^{(\varepsilon;\mathbf{z}_1,\ldots,\mathbf{z}_l) = \ln N^{(\varepsilon;\mathbf{z}_1,\ldots,\mathbf{z}_l)$$

• The expectation of the random VC entropy over the joint distribution function $F(\mathbf{z_1}, \dots, \mathbf{z_l})$:

$$H^{(\varepsilon;l)} = E \left[\ln N^{(\varepsilon;\mathbf{z}_1,\ldots,\mathbf{z}_l) \right]$$

is the VC entropy of the set of real functions $A \leq Q(\mathbf{z}, \alpha) \leq B$, $\alpha \in \Lambda$, on samples of size l.

Intr		11	ct.	ion
	U G	u	C.C	1011

Consistency Theory of non-falsiability

Bounds on the rate of convergence

Outline

- Introduction
- 2 Consistency
 - Introduction
 - VC entropy
 - Necessary and sufficient conditions for uniform convergence
 - Theory of non-falsiability
- Bounds on the rate of convergence
 Three milestones of learning theory

Bounds on the rate of convergence o

Conditions for uniform two-sided convergence

Theorem

Under some conditions of measurability on the set of real bounded functions $A \leq Q(\mathbf{z}, \alpha) \leq B$, $\alpha \in \Lambda$, for uniform two-sided convergence it is necessary and sufficient that the equality

$$\lim_{l \to \infty} \frac{H^{\hat{}}(\varepsilon; l)}{l} = 0, \quad \forall \varepsilon > 0$$
(8)

be valid.

Introduction Consistency Theory of non-falsiability Bounds on the rate of convergence of Conditions for uniform two-sided convergence Corollary

Corollary

Under some conditions of measurability on the set of indicator functions $Q(\mathbf{z}, \alpha)$, $\alpha \in \Lambda$, for uniform two-sided convergence it is necessary and sufficient that

$$\lim_{l \to \infty} \frac{H^{\,\hat{}}(l)}{l} = 0$$

which is a particular case of (8).

10100

Consistency Theory of non-falsiability

Bounds on the rate of convergence O

Uniform one-sided convergence

• Uniform two-sided convergence can be described as

$$\lim_{\ell \to \infty} P\left\{ \left[\sup_{\alpha} \left(R(\alpha) - R_{emp}(\alpha) \right) \right] \lor \left[\sup_{\alpha} \left(R_{emp}(\alpha) - R(\alpha) \right) \right] \right\} = 0$$

which includes uniform one-sided convergence, and it's sufficient condition for ERM consistency.

 But for consistency of ERM principle, left-hand side of (9) can be violated.

Consistency Theory of non-falsiability

Bounds on the rate of convergence

Conditions for uniform one-sided convergence

• Consider the set of bounded real functions $A \leq Q(\mathbf{z}, \alpha) \leq B$, $\alpha \in \Lambda$, together with a new set of functions $Q^*(\mathbf{z}, \alpha^*)$, $\alpha^* \in \Lambda^*$, such that

$$Q(\mathbf{z}, oldsymbol{lpha}) - Q^*(\mathbf{z}, oldsymbol{lpha}^*) \geq 0, \quad orall \mathbf{z}$$

 $\int \left(Q\left(\mathbf{z},\alpha\right) - Q^{*}\left(\mathbf{z},\alpha^{*}\right) \right) dF\left(\mathbf{z}\right) \leq \delta$

(10)

Bounds on the rate of convergence o

Conditions for uniform one-sided convergence

Theorem

Under some conditions of measurability on the set of real bounded functions $A \leq Q(\mathbf{z}, \alpha) \leq B$, $\alpha \in \Lambda$, for uniform one-sided convergence it is necessary and sufficient that for any positive δ , η and ε there exist a set of functions $Q^*(\mathbf{z}, \alpha^*)$, $\alpha^* \in \Lambda^*$, satisfying (10) such that the following holds:

$$\lim_{l \to \infty} \frac{H^{\,\hat{}}(\varepsilon;l)}{l} < \eta \tag{11}$$

Inte	00		- t- i-	on
111 U	00	iu c		

Consistency Theory of non-falsiability

Bounds on the rate of convergence

Outline

- 1 Introduction
 - Consistency
 - Introduction
 - VC entropy
 - Necessary and sufficient conditions for uniform convergence
 - Theory of non-falsiability
- 4

Bounds on the rate of convergence • Three milestones of learning theory

Sac

For Further Reading

- The Nature of Statistical Learning Theory. Vladimir N. Vapnik. ISBN: 0-387-98780-0. 1995.
- Statistical Learning Theory. Vladimir N. Vapnik. ISBN: 0-471-03003-1. 1998.

Appendix

Questions?

Thank you very much for your attention.

- Contact:
 - Miguel Angel Veganzones
 - Grupo Inteligencia Computacional
 - Universidad del País Vasco UPV/EHU (Spain)
 - E-mail: miguelangel.veganzones@ehu.es
 - Web page: http://www.ehu.es/computationalintelligence