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Consistency of learning processes

Consistency: convergence in probability to the best possible

result.

Consistency of learning processes:

To explain when a learning machine that minimizes empirical
risk can achive a small value of actual risk (to generalize) and
when it can not.
Equivalently, to describe necessary and su�cient conditions for
the consistency of learning processes that minimize the
empirical risk.

This guarantees that the constructed theory is general and

cannot be improved from the conceptual point of view.
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Theory of non-falsiability

Kant's problem of demarcation (s. XVIII): is there a formal

way to distinguish true theories from false theories?

One of the main questions of modern philosophy.

Popper's theory of non-falsiability (s. XX): criterion for

demarcation between true and false theories.

Strongly related to what happens if the ERM method is not

consistent.
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Bounds on the rate of convergence

It is required for any machine minimizing empirical risk to

satisfy consistency conditions.

But, consistency conditions say nothing about the rate of

convergence of the obtained risk R(αl) to the minimal one

R(α0).
It is possible to construct examples where the ERM principle is

consistent, but where the risks have an arbitrary slow

asymptotic rate of convergence.

The theory of bounds on the rate of convergence tries to

answer the following question:

Under what conditions is the asymptotic rate of convergence
fast?
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Notation

Let Q(z,αl) be a function that minimizes the empirical risk

functional

Remp =
1
l

l

∑
i=1

Q(zi,α)

for a given set of i.i.d. observations z1, . . . ,zl.
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Classical de�nition of consistency

The ERM principle is consistent for the set of functions

Q(z,α),α ∈ Λ, and for the p.d.f. F (z) if the following two

sequences converge in probability to the same limit:

R(αl)
P−→

l→∞

inf
α∈Λ

R(α) (1)

Remp (αl)
P−→

l→∞

inf
α∈Λ

R(α) (2)

Equation (1) asserts that the values of achieved risks converge

to the best possible.

Equation (2) asserts that one can estimate on the basis of the

values of empirical risk the minimal possible value of the risk.
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Classical de�nition of consistency

Figure: The learning process is consistent if both the expected risks
R(αl) and the empirical risks Remp (αl) converge to the minimal possible
value of the risk infα∈Λ R(α).
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Goal

To obtain conditions of consistency for the ERM method in

terms of general characteristics of the set of functions and the

probability measure.

This is an impossible task because the classical de�nition of

consistency includes cases of trivial consistency.
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Trivial consistency

Suppose that for some set of functions Q(z,α), α ∈ Λ, the

ERM method is not consistent.

Consider an extended set of functions including this set of

functions and the additinal function φ (z) that satis�es the

following inequality

inf
α∈Λ

Q(z,α) > φ (z) , ∀z
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Trivial consistency

For the extended set of functions (containing φ (z)) the ERM

method will be consistent.

For any distribution function and number of observations, the

minimum of the empirical risk will be attained on the function

φ (z) that also gives the minimum of the expected risk.

This example shows that there exist trivial cases of consistency

that depend on wether the given set of functions contains a

minorizing function.

http://www.ehu.es/ccwintco (Grupo Inteligencia Computacional Universidad del País Vasco)Vapnik UPV/EHU 12 / 39



Introduction Consistency Theory of non-falsiability Bounds on the rate of convergence

ERM consistency

In order to create a theory of consistency of the ERM method

depending only on the general properties (capacity) of the set

of functions, a consistency de�nition excluding trivial

consistency cases is needed.

This is done by non-trivial consistency de�nition.
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Non-trivial consistency

The ERM principle is nontrivially consistent for the set of

functions Q(z,α), α ∈ Λ, and the probability distribution

function F (z) if for any nonempty subset Λ(c), c ∈ (−∞,∞)
de�ned as

Λ(c) =
{

α :
∫

Q(z,α)dF (z) > c, α ∈ Λ

}
the convergence

inf
α∈Λ(c)

Remp (α) P−→
l→∞

inf
α∈Λ(c)

R(α) (3)

is valid.
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Key theorem of learning theory

Vapnik and Chervonenkins, 1989.

Theorem

Let Q(z,α), α ∈ Λ, be a set of functions that satisfy the condition

A≤
∫

Q(z,α)dF (z)≤ B (A≤ R(α)≤ B)

then for the ERM principle to be consistent, it is necessary and

su�cient that the empirical risk Remp (α) converges uniformly to the

actual risk R(α) over the set Q(z,α), α ∈ Λ, in the following sense:

lim
l→∞

P
{

sup
α∈Λ

(R(α)−Remp (α)) > ε

}
= 0, ∀ε > 0 (4)
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Consistency of the ERM principle

According to the key theorem, the uniform one-sided

convergence (4) is a necessary and su�cient condition for

(non-trivial) consistency of the ERM method.

Conceptually, the conditions for consistency of the ERM

principle are necessarily and su�ciently determined by the

�worst� function of the set of functions Q(z,α), α ∈ Λ.
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Introduction

The key theorem expresses that consistency of the ERM

principle is equivalent to existence of uniform one-sided

convergence.

Conditions for uniform two-sided convergence play an

important role in constructing conditions for uniform two-sided

convergence.

Necessary and su��cient conditions for both uniform one-sided

and two-sided convergence are obtained on the basis of the VC

entropy concept.
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Empirical process

An empirical process is an stochastic process in the form of a

sequence of random variables

ξ
l = sup

α∈Λ

∣∣∣∣∣
∫

Q(z,α)dF (z)− 1
l

l

∑
i=1

Q(zi,α)

∣∣∣∣∣ , l = 1,2, . . . (5)

that depend on both, the probability measure F (z) and the set

of functions Q(z,α), α ∈ Λ.

The problem is to describe conditions under which this

empirical process converges in probability to zero.
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Consistency of an empirical process

The necessary and su�cient conditions for an empirical process

to converge in probability to zero imply that the equality

lim
l→∞

P

{
sup
α∈Λ

∣∣∣∣∣
∫

Q(z,α)dF (z)− 1
l

l

∑
i=1

Q(zi,α)

∣∣∣∣∣> ε

}
= 0, ∀ε > 0

(6)

hols true.
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Law of large numbers and its generalization

If the set of functions contains only one element, then the

sequence of random variables ξ l always converges in

probability to zero: law of large numbers.

Generalization of the law of large numbers for the case where

a set of functions has a �nite number of elements:

De�nition

The sequence of random variables ξ l converges in probability to

zero if the set of functions Q(z,α), α ∈ Λ, contains a �nite number

N of elements.
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Law of large numbers and its generalization

When Q(z,α), α ∈ Λ, has an in�nite number of elements, the

sequence of random variables ξ l does not necessarily converges

in probability to zero.

Problem of the existence of a law of large numbers in

functional space (uniform two-sided convergence of the means

to their probabilities): generalization of the classical law of

large numbers.
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Entropy

Necessary and su�cient conditions for both uniform one-sided

convergence and uniform two-sided convergence are obtained

on the basis of a concept called the entropy of a set of

functions Q(z,α), α ∈ Λ, for a sample of size l.
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Entropy of the set of indicator functions
Diversity

Lets characterize the diversity of a set of indicator functions

Q(z,α), α ∈ Λ, on the given set of data by the quantity

N�(z1, . . . ,zl) that evaluates how many di�erent separations of

the given sample can be clone using functions from the set of

indicator functions.

Consider the set of l-dimensional binary vectors:

q(α) = (Q(z1,α) , . . . ,Q(zl,α)) , α ∈ Λ

Geometrically, the diversity is the number of di�erent vertices

of the l-dimensional cube that can be obtained on the basis of

the sample z1, . . . ,zl and the set of functions.
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Entropy of the set of indicator functions
Diversity (geometrics)

Figure: The set of l-dimensional binary vectors q(α), α ∈ Λ, is a subset
of the set of vertices of the l-dimensional unit cube.
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Entropy of the set of indicator functions
Random entropy and entropy

The random entropy

H�(z1, . . . ,zl) = lnN�(z1, . . . ,zl)

describes the diversity of the set of functions on the given data.

The expectation of the random entropy over the joint

distribution function F (z1, . . . ,zl):

H�(l) = E [lnN�(z1, . . . ,zl)] (7)

is the entropy of the set or indicator functions Q(z,α), α ∈ Λ,

on samples of size l.
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Entropy of the set of real functions
Diversity

Let A≤ Q(z,α)≤ B, α ∈ Λ, a set of bounded loss functions.

Considering this set of functions and the training set z1, . . . ,zl
one can construct the following set of l-dimensional vectors:

q(α) = (Q(z1,α) , . . . ,Q(zl,α)) , α ∈ Λ

The diversity, N = N�(ε,z1, . . . ,zl), indicates the number of

elements of the minimal ε-net of this set of vectors q(α),
α ∈ Λ.
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Entropy of the set of real functions
Minimal ε-net

The set of vectors q(α), α ∈ Λ, has a minimal ε-net

q(α1) , . . . ,q(αN) if:

1 There exist N = N�(ε,z1, . . . ,zl) vectors q(α1) , . . . ,q(αN) such
that for any vector q(α∗), α∗ ∈ Λ, one can �nd among these
N vectors one q(αr) that is ε-close to q(α∗) in a given metric.

2 N is the minimum number of vectors that posseses this
property.
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Entropy of the set of real functions
Diversity (geometrics)

Figure: The set of l-dimensional vectors q(α), α ∈ Λ, belongs to an
l-dimensional cube.
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Entropy of the set of real functions
Random entropy and entropy

The random VC entropy of the set of functions

A≤ Q(z,α)≤ B, α ∈ Λ, on the sample z1, . . . ,zl is given by:

H�(ε;z1, . . . ,zl) = lnN�(ε;z1, . . . ,zl)

The expectation of the random VC entropy over the joint

distribution function F (z1, . . . ,zl):

H�(ε; l) = E [lnN�(ε;z1, . . . ,zl)]

is the VC entropy of the set of real functions A≤ Q(z,α)≤ B,
α ∈ Λ, on samples of size l.
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Conditions for uniform two-sided convergence

Theorem

Under some conditions of measurability on the set of real bounded

functions A≤ Q(z,α)≤ B, α ∈ Λ, for uniform two-sided

convergence it is necessary and su�cient that the equality

lim
l→∞

H�(ε; l)
l

= 0, ∀ε > 0 (8)

be valid.
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Conditions for uniform two-sided convergence
Corollary

Corollary

Under some conditions of measurability on the set of indicator

functions Q(z,α), α ∈ Λ, for uniform two-sided convergence it is

necessary and su�cient that

lim
l→∞

H�(l)
l

= 0

which is a particular case of (8).
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Uniform one-sided convergence

Uniform two-sided convergence can be described as

lim
l→∞

P
{[

sup
α

(R(α)−Remp (α))
]
∨
[

sup
α

(Remp (α)−R(α))
]}

= 0

(9)

which includes uniform one-sided convergence, and it's

su�cient condition for ERM consistency.

But for consistency of ERM principle, left-hand side of (9) can

be violated.
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Conditions for uniform one-sided convergence

Consider the set of bounded real functions A≤ Q(z,α)≤ B,
α ∈ Λ, together with a new set of functions Q∗ (z,α∗),
α∗ ∈ Λ∗, such that

Q(z,α)−Q∗ (z,α∗)≥ 0, ∀z∫
(Q(z,α)−Q∗ (z,α∗))dF (z)≤ δ (10)

Figure: Graphical representation
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Conditions for uniform one-sided convergence

Theorem

Under some conditions of measurability on the set of real bounded

functions A≤ Q(z,α)≤ B, α ∈ Λ, for uniform one-sided

convergence it is necessary and su�cient that for any positive δ , η

and ε there exist a set of functions Q∗ (z,α∗), α∗ ∈ Λ∗, satisfying
(10) such that the following holds:

lim
l→∞

H�(ε; l)
l

< η (11)
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Appendix

For Further Reading

The Nature of Statistical Learning Theory. Vladimir N. Vapnik.

ISBN: 0-387-98780-0. 1995.

Statistical Learning Theory. Vladimir N. Vapnik. ISBN:

0-471-03003-1. 1998.
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Appendix

Questions?

Thank you very much for your attention.

Contact:

Miguel Angel Veganzones
Grupo Inteligencia Computacional
Universidad del País Vasco - UPV/EHU (Spain)
E-mail: miguelangel.veganzones@ehu.es
Web page: http://www.ehu.es/computationalintelligence
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