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Motivation

Description

@ We use a hybrid ACO/PSO system in order to reverse engineer
the topology of a gene regulatory network from temporal data
that capture the network’s dynamical behavior.

o RNN for modeling the dynamical behaviour of gene regulatory
systems.

o ACO for generating biologically plausible candidate
architectures.

e PSO for training the RNN models.
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Motivation

Difficulties

@ The analysis of gene expression data to identify the underlying
relationships has important difficulties as:

o Information contained in a gene expression data set is polluted
by considerable amounts of biological and experimental noise.

o Number of genes whose expression levels are measured in the
data set is, typically, two to three orders of magnitude greater
than the number of observations or time points (“curse of
dimensionality”).
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Motivation

Proposal

@ A novel solution construction process for artificial ants:

o It is used for the generation of candidate solutions.

o It consists of extending a stochastic graph generation model
proposed by Bolloba's et al. adding stigmergic
pheromone-based information.
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Structure of a Gene Network

@ Can be represented as a directed graph: G = (V,E), where
each vertex v; € V represents a gene and each edge ¢; € E
correspondes to the regulatory influence of genes v; (regulator)
to v; (target).

@ Equivalently, network can be represented as an adjacency
matrix M = [m;], . where N is the fixed number of nodes
and mj; is a binary value that determines whether a directed
edge exists from nodes v; to v;.

»
P

Figure: Left - Directed Graph. Right - Undirected Graph.
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Recurrent Neural Network

Dynamics of the system are expresed by RNN formalism.

The expression level x; of the ith gene, varies temporally as:
At
it + At) = —f(zwu-'ﬂ; 0)+(1-5)=0. 0

b; is the bias term (basal expression level of the ith gene).
¢j is a time constant (scaling factor).

w;; is the weight associated to ith and jth genes.

f is a sigmoidal function (logistic function).
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Problem decomposition strategy

@ Quality of a candidate network architecture is evaluated by
estimating the parameters of the corresponding RNN model
that minimize the error between the actual and simulated
time series.

@ We apply problem decomposition strategy to the global
problem of estimating the full set N(N+2) RNN parameters,
splitting to N independent subproblems, each associated with
estimating the parameters of an individual target gene.

Maite Termenon (GIC) Sesién de Seguimiento 2012 February 10 13 / 32



Gene Network Representation
Methods Model training using PSO
Network reconstruction using ACO

Problem decomposition strategy

@ For the ith subproblem, the parameters under training include
only the weights W; = {wj; | mjj = 1} that correspond to the
incoming connections of gene i, the bias term b; and the time
constant ¢;.

@ Objective: minimize the prediction error & according to:

=3 (a0 - 50 @

e where x;(t) and X;(t) are the actual and simulated expression
levels of gene i at time point t, respectively, and T is the
number of available time points.
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Problem decomposition strategy

@ Quality of the candidate architecture under consideration is
determined by an error vector & = [g];,,, where € represents
the minimum achieved prediction error for the temporal
expression pattern of gene i.

@ PSO is applied separately to each independent subproblem i
for estimating the corresponding model parameters.

Maite Termenon (GIC) Sesién de Seguimiento 2012 February 10 15 / 32



Gene Network Representation
Methods Model training using PSO
Network reconstruction using ACO

Particle Swarm Optimization

@ Particle position vectors encode the RNN parameters
associated with the current (ith) subproblem under
consideration.

o Particles interact by communicating their best position 7, to
other particles within a neighborhood to determine the
neighborhood's best position Db

o Each particle randomly selects K = 3 particles to share its 7 p.
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Updating Particle Interaction

Ta(t + 1) = wia(t) + U(0,61) @ [ (t) — Za(2)]

. _ . (5)
+U(0, ¢2) @ [Bult) — Zn(t)]

En(t + 1) = Zn(t) + Va(t + 1), (6)

@ where w is the inertia weight parameter that controls the scope
of the search (balance between exploration and exploitation).

e ¢ and ¢, are the particle’s acceleration coefficients that
control the magnitude of stochastic attraction toward 7,

and B p (¢1 = ¢ = 1.496).

e Each vector (_J>(O,¢,-) contains random numbers drawn from a
uniform distribution in [0, ¢;].
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Ant Colony Optimization

e ACO is a metaheuristic optimization algorithm.
@ Two sources of information:

e Stigmergic information: represented by pheromone matrix
T = [7jj] un+ Where each 7j; is associated with the corresponding
directed edge ej; in the network architecture.

o Heuristic information: each solution component is associated
with a heuristic value 1;; representing the desirability of adding
edge ej; to the solution under construction.
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Stochastic Generation of Candidate Solution

@ Graph-theoretic approaches generate topologies that exhibit
the scale-free property.

@ A parametric, generative process is the directed scale-free
(DSF) model, based on growth and degree-based preferential
attachment that yields directed graphs with tunable degree
distributions.

e We propose an extension to the DSF (eDSF) model that
augments the heuristic degree-based preferential principle of
the original model, with a stigmergic pheromone-based
preferential principle.
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Extended DSF (eDSF)

@ eDSF describes a stochastic process where a graph (network)
grows by adding a single directed edge (regulatory
relationship) at each discrete time step.

@ At each such step, three possible operations are possible:

e an edge is added from a new node u to an existing node w.

e an edge is added from an existing node v to an existing node
w.

e a new edge is added from an existing node u to a new node w.
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Extended DSF (eDSF)

@ A node u is considered to be existing (connected) if it has a
degree k (u) = kin(u) + kout (u) > 0. Otherwise, it is a new
(unconnected) node.

@ ACO is introduced by T matrix, where 7; € R is the
pheromone value associated with edge ej;.

o If for all edges, 7jj = ¢, with ¢ € R, the selection of any node
is equiprobable with respect to the stigmergic information. So,
eDSF model is equivalent to the original DSF model.
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Example of Operations |

@ Node u is selected according to the pheromone values
corresponding to its outgoing edges, with probability:

(u = u;) =M

EK ZZ Tir ’

where i € Ng4(t) and j, & € N er(£).

o Node w is selected according to kj, + &;, and the pheromone
value corresponding to its incoming edge from node u;, with
probability:

[Fin (w:) + Bin] [755]

3 [ (w) + a7l
where 4, & € Ngq(t) and j € N oo ().

Mw=w; |u=wu)=

@ Where §;, is nonnegative, real number.
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ACO algorithm

Algorithm 4 ACO algorithm

Initialize pheromone matrix T = [Ei] NxN
Initialize global adjacency maNtrix M =[0]nxn
Initialize global error vector £ = [oc]i1x v
for each ACO step do .
Initialize local adjacency matrix M = [0]nxn
Initialize local error vector £ = 00|y x N
for each artificial ant k do
Generate candidate architecture with adjacency matrix M;,
Obtain error vector &y, for My, (parameter estimation)
Update M £ with M., & (see Algorithm 1)
end for
Update pheromone matrix T with i\.’ £ (see Algorithm 2)
Update M, £ with M g (see Algorlthm 1)
Update pheromone matrix T" with M, £ (see Algorithm 2)
Perform pheromone evaporation (see Algorithm 3)
end for o
return solution (M, £)
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ACO algorithm

Algorithm 1 Update an adjacency matrix M = [m;;] and an error

vector £ = [¢;] with an adjacency matrix M’ = [m{;] and an error ~ Algorithm 2 Update the pheromone matrix 7' = [r;] using an
vector £ = [¢]] adjacency matrix M = [m;;] and an error vector £ = [¢;].
for each target i do for each target i do
if €, < ¢; then for each regulator j do
for each regulator j do if m;; = 1 then
myj — ml; Tij + Tij + log ei /(loge; — 1)
end for end if
end if end for

end for end for

Algorithm 3 Perform evaporation of the pheromone matrix 7' =
[7i;] using the evaporation rate p

for each target i do
for each regulator j do
i — (L= p)7i;
end for
end for
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Experiments and results

Three Experiments

@ Experiment 1: Reconstructing a small ANN with artificial data.

@ Experiment 2: Reconstructing a real-world Network with
artificial data.

@ Experiment 3: Reconstructing a real-world Network with
real-world data.
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Experiments and results

Description

@ ACO framework, incorporating the eDSF model of generating
candidate architectures.

e L =10 ACO trials, population size of 5 artificial ants,
pheromone evaporation rate set to p =0.1

o Create a RNN from the candidate architectures inferred by
ACO.

o Train 100 RNN instances that corresponded to the inferred
topology M using PSO.
o Different time points (50, 21, 21).
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Experiments and results

Exp 3 - Inference using Real-World Data

e ACO/PSO framework, incorporating the eDSF model of
generating candidate architectures, is applied to SOS response
system of E. coli.

@ It is a transcriptional network consisting of proteins that are
involved in DNA repair activities.

@ DNA repair is regulated by the interplay between two proteins:
LexA and RecA.

@ ACO/PSO framework settings used were the same as in the
artificial data experiments.
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Inferred network topologies

TABLE 3
Results from the SOS Experiments

Dataset [ TP FP [ TPR FPR PPV
1 3 10 | 038 021 023
2 8 5 08 010 062 N
3 4 9 | 050 019 031 Fig. 9. The predicted topology M of the SOS network, resulting from
4 0 9 | 000 019 0.00 10 independent ACO runs, with a strict threshold set at o =0.9.
Metric values for the inferred topologies M with a strict threshold value ~ Correctly inferred edges (true positives) have been drawn with solid
o = 0.9 for the four SOS data sets. lines and falsely inferred edges (false positives) with dashed lines.

@ Best prediction was achieved using the second time series, with
an inferred topology consisting of 13 edges, 8 of which were
TP and 5 FP.
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Actual and Predicted Dynamics using PSO

Maite Termenon (GIC)
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Fig. 10. Actual and predicted dynamics for the SOS experiment, using
the second data set. The prediction MSE is 1.2 x 1072, The actual
dynamics consist of the second time series in the data set of Ronen
et al. [68]. The predicted dynamics were generated using a trained RNN
model that corresponded to the inferred network topology M, with a
strict threshold set at o = 0.9. Actual expression levels have been
plotted using solid lines and cross marks, while predicted expression
levels using dotted lines and x marks.
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Experiments and results

Results Comparison

TABLE 4
Comparison of Predictions for the SOS Data Set

Known interaction Predictions by
2] (73] [e91" [25]* [70]' [71]f [72]] ACO/PSO

lexA — TexA yes  yes yes no yes yes yes yes
lexA — recA yes  yes no yes yes yes yes yes
recA — lexA yes yes yes no  yes  yes  yes no
lexA — uvrA yes  yes yes yes no yes yes yes
lexA — uvrD no no yes yes yes yes yes yes
lexA — uvrY no no - no - - - yes
lexA — umuD no yes yes yes yes yes yes yes
lexA — ruvA no no - no - - - yes
lexA — polB no no yes yes yes yes yes yes
Spurious edges (FP) 5 10 6 2 15 16 11 5
Precision (PPV) 044 033 050 0.71 0.29 0.30 0.39 0.62

1 The profiles of genes uvrY and ruvA were not included in these experiments.
1 In addition to this prediction, Xu et al. [25] also report a “less conservative” prediction
which includes all nine true relations but more false positives (FP=7), leading to
a lower precision value (PPV=0.56).
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