# Results of an Adaboost approach on Alzheimer's Disease detection on MRI

Maite García-Sebastián<sup>1</sup> Alexandre Savio<sup>1</sup> Manuel Graña<sup>1</sup> Jorge Villanúa<sup>2</sup>

<sup>1</sup>Computational Intelligence Group, University of the Basque Country

<sup>2</sup>Osatek, Hospital Donostia

3rd International Work-Conference on the INTERPLAY between NATURAL and ARTIFICIAL COMPUTATION (IWINAC 2009)

Maite García-Sebastián, Alexandre Savio

AdaBoost SVM vs. AD (results)

IWINAC 09 1 / 29

### Outline

### Introduction

- Alzheimer's Disease
- Motivation
- Introduction to the Analysis Methods
- Materials and Methods

### Results



institution-log

2 / 29

WINAC 09

Maite García-Sebastián, Alexandre Savio

### Outline

### Introduction

### Alzheimer's Disease

- Motivation
- Introduction to the Analysis Methods
- Materials and Methods

### Results

Conclusions and Further Work

institution-log

3 / 29

WINAC 09

Maite García-Sebastián, Alexandre Savio

### Alzheimer's Disease

 Neurodegenerative disorder and one of the most common cause of dementia in old people.

• Incurable, degenerative and terminal.

• Definitive diagnosis can only be made after a postmortem study of the brain tissue.

• T1 weighted MRI scans of the brain may detect changes on the AD patient's brain years before the first clinical signs of dementia.

institution-log

4 / 29

WINAC 09

Maite García-Sebastián, Alexandre Savio

## Outline



### Introduction

- Alzheimer's Disease
- Motivation
- Introduction to the Analysis Methods
- Materials and Methods

### Results

Conclusions and Further Work

institution-log

5 / 29

WINAC 09

Maite García-Sebastián, Alexandre Savio

### Motivation

### **Motivation**

## Objective

• Detection of patients with very mild to mild Alzheimer's disease.

Using sMRI and standard classifiers

- Feature extraction based on VBM analysis

### Motivation

### Motivation

### Objective

• Detection of patients with very mild to mild Alzheimer's disease.

Using sMRI and standard classifiers

- Feature extraction based on VBM analysis
- Classification using AdaBoost and Support Vector Machines (SVM) as weaklearners.

## Differential features of our work

• This issue has been addressed in many other works.

### The differences here are:

- Freely available database with good quality images and well-documented.
- The number of subjects selected for this study is relatively high.

Maite García-Sebastián, Alexandre Savio

AdaBoost SVM vs. AD (results)

institution-log

7 / 29

### Outline

### 1

### Introduction

- Alzheimer's Disease
- Motivation

### • Introduction to the Analysis Methods

Materials and Methods

### Results

Conclusions and Further Work

institution-log

8 / 29

WINAC 09

Maite García-Sebastián, Alexandre Savio

### Voxel-based Morphometry

 Morphometry analyses allow a measurement of structural differences within or across groups throughout the entire brain.

• VBM measures differences in local concentrations of brain tissue, through a voxel-wise comparison of multiple brain images.

Maite García-Sebastián, Alexandre Savio

AdaBoost SVM vs. AD (results)

institution-log

9 / 29

ution-ldg

10 / 29

### **VBM** Preprocessing Pipeline

## Voxel-Based Morphometry Pre-processing Overview



Maite García-Sebastián, Alexandre Savio

### VBM and the General Linear Model (GLM)

• After preprocessing we fit a linear statistical model to the data, each grey matter voxel independently.

- Use the estimated model parameter values to look for a specific effect we are interested in.
  - Identifying and characterizing structural differences among populations.

### VBM and GLM

• The GLM equation expresses the observed response variable in terms of a linear combination of regressors.

 $Y = X\beta + \varepsilon$ 

- Y: observation vector (Mx1)
- X: design matrix (MxL). Each column corresponds to an effect that the user has built into the experiment or that may confound the results.
- $\beta$ : regressor or covariate vector (Lx1). Unknown parameters
- E: vector of error terms (Mx1)

institution-log

12 / 29

### VBM (Statistical Inference)

• On the results of GLM a t-test is computed at each voxel.

• The t-test values constitute a Statistical Parametric Map (SPM).

 The decision threshold for the test is set using Random Field Theory to account for spatial dependencies.

institution-log

13 / 29

WINAC 09

Maite García-Sebastián, Alexandre Savio

### SPM Example

|                              |                                     |                                                                      |                                         |                                                                      | hc>                                                                           | ad                                                                            |                                                                      |                                                                      |                                                                                        |                                                   |                                                                                    |                |        |       |             |
|------------------------------|-------------------------------------|----------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------|----------------|--------|-------|-------------|
|                              | 10                                  | *                                                                    |                                         | ¢                                                                    |                                                                               |                                                                               | -                                                                    | C                                                                    | ontrast(s)                                                                             |                                                   |                                                                                    |                |        |       |             |
|                              | [0, 0,                              | 1.1                                                                  |                                         |                                                                      |                                                                               |                                                                               | 20                                                                   |                                                                      |                                                                                        |                                                   |                                                                                    |                |        |       |             |
|                              |                                     | š                                                                    |                                         | SF                                                                   | •M{T <sub>96</sub>                                                            | }                                                                             | 40                                                                   | 4                                                                    | 8                                                                                      |                                                   |                                                                                    |                |        |       |             |
|                              |                                     | 5                                                                    |                                         |                                                                      |                                                                               |                                                                               | 60                                                                   |                                                                      |                                                                                        | 1                                                 |                                                                                    |                |        |       |             |
|                              | SPMre<br>Height thre<br>Extent thre | suits:<br>shold T = 4<br>shold k = 0                                 | emale/Ri<br>.778414<br>voxels           | esultados_<br>{p<0.05 (l                                             | smth10<br>=WE)}                                                               |                                                                               | 80                                                                   | L                                                                    | ı                                                                                      |                                                   |                                                                                    |                |        |       |             |
|                              |                                     |                                                                      |                                         |                                                                      |                                                                               |                                                                               |                                                                      | 1                                                                    | 2                                                                                      | 2                                                 |                                                                                    |                |        |       |             |
|                              | Statistics:                         | n-values                                                             | adiuste                                 | d for sear                                                           | ch volume                                                                     |                                                                               |                                                                      | De                                                                   | sign matri                                                                             | ix                                                |                                                                                    |                |        |       |             |
|                              | set-level                           | clu                                                                  | ister-leve                              | əl                                                                   |                                                                               | vox                                                                           | el-leve                                                              | 1                                                                    |                                                                                        |                                                   | _                                                                                  |                |        |       |             |
|                              | p c                                 | P corrected                                                          | . к <sub>е</sub>                        | P uncorrected                                                        | P FWE-0                                                                       | P FDR-co                                                                      | πT                                                                   | (Z_)                                                                 | P uncorrected                                                                          | mmn                                               |                                                                                    |                |        |       |             |
|                              | 0.00012                             | 0.000                                                                | 1764<br>1355                            | 0.000                                                                | 0.000<br>0.000<br>0.007<br>0.001<br>0.001                                     | 0.000<br>0.000<br>0.000<br>0.000<br>0.000                                     | 7.59<br>6.43<br>5.33<br>5.91<br>5.87                                 | 6.70<br>5.85<br>4.98<br>5.44<br>5.41                                 | 0.000<br>0.000<br>0.000<br>0.000<br>0.000                                              | 24<br>34 -<br>-34 -<br>-30 -                      | -8 -16<br>-24 -12<br>-8 -48<br>-20 -16<br>-12 -18                                  |                |        |       |             |
|                              |                                     | 0.000                                                                | 161<br>195                              | 0.004                                                                | 0.002                                                                         | 0.000                                                                         | 5.68                                                                 | 5.26                                                                 | 0.000                                                                                  | 40<br>58 -                                        | 24 -30                                                                             |                |        | 1.    | _           |
| 101000100                    |                                     | 0.005<br>0.003<br>0.018<br>0.024<br>0.034<br>0.027<br>0.034<br>0.042 | 42<br>60<br>13<br>8<br>3<br>6<br>3<br>1 | 0.106<br>0.058<br>0.358<br>0.475<br>0.679<br>0.541<br>0.679<br>0.830 | 0.018<br>0.007<br>0.011<br>0.015<br>0.030<br>0.038<br>0.041<br>0.043<br>0.049 | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000 | 5.07<br>5.33<br>5.21<br>5.12<br>4.93<br>4.86<br>4.84<br>4.82<br>4.79 | 4.76<br>4.98<br>4.88<br>4.80<br>4.64<br>4.58<br>4.57<br>4.55<br>4.55 | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000 | 62 -<br>-56<br>-48<br>-58 -<br>56 -<br>62 -<br>48 | 10 -22<br>4 -8<br>20 -32<br>12 -2<br>54 -10<br>10 -12<br>44 -18<br>-22 10<br>8 -40 | 0<br>00<br>(≣) | (王)    | in st | itution-log |
| Maite García-Sebastián, Alex | an dre Sav                          | /io                                                                  | Ada                                     | Boost                                                                | SVM                                                                           | vs. A                                                                         | D (r                                                                 | esult                                                                | s)                                                                                     |                                                   |                                                                                    | IWI            | NAC 09 |       | 14 / 29     |

### Outline



### Introduction

- Alzheimer's Disease
- Motivation
- Introduction to the Analysis Methods
- Materials and Methods

Results

Conclusions and Further Work

Maite García-Sebastián, Alexandre Savio

AdaBoost SVM vs. AD (results)

institution-log

15 / 29

### **Subjects**

• The set of subjects used consists in 98 women selected from the Open Access Series of Imaging Studies (OASIS) database

|                      | Very mild to mild AD | Normal        |
|----------------------|----------------------|---------------|
| No. of subjects      | 49                   | 49            |
| Age                  | 78.08 (66-96)        | 77.77 (65-94) |
| Education            | 2.63 (1-5)           | 2.87 (1-5)    |
| Socioeconomic status | 2.94 (1-5)           | 2.88 (1-5)    |
| CDR (0.5 / 1 / 2)    | 31 / 17 / 1          | 0             |
| MMSE                 | 24 (15-30)           | 28.96 (26-30) |

We find many subjects with high MMSE and low CDR.

Maite García-Sebastián, Alexandre Savio

AdaBoost SVM vs. AD (results)

institution-log

16 / 29

### Feature Extraction

- - The clusters (regions) detected as result of VBM were used as a mask on the grey matter (GM) segmentation images to select the potentially most discriminant voxels.

institution-log

17 / 29

### Adaptive Boosting (AdaBoost)

• Meta-algorithm for machine learning that can be used in conjunction with many other learning algorithms to improve their performance.

• Adaptive in the sense that subsequent classifiers built are adjusted in favor of those instances misclassified by previous classifiers.

• Sensitive to noisy data and outliers. Otherwise, less susceptible to over-fitting.

institution-log

19 / 29

WINAC 09

## Support Vector Machines (SVM)

• Standard SVM to perform classification of patients with mild AD vs. control subjects.

• Algorithm included in the libSVM software package.

• Two kernels: linear and radial basis function (RBF) kernel.

Maite García-Sebastián, Alexandre Savio

### Experiments

- Three different AdaBoost classifier were created:
  - Independent SVM classifiers for each VBM detected cluster and the combination of their responses by a simple majority voting.
  - Independent SVM classifiers for each VBM detected cluster and the combination of their responses by taking into account a given weight based on their training errors.
  - Using all the voxels within the SPM; we trained SVM with different RBF kernel sigma values, weighted them taking into account its training error and then, selected the classifiers with highest diversity based on its weight.

institution-log

20 / 29

WINAC 09

Maite García-Sebastián, Alexandre Savio

### Results

### Features extracted

- Mean and standard deviation of grey matter probability voxels within each cluster
- 2 All grey matter voxels within clusters in a vector

Maite García-Sebastián, Alexandre Savio

AdaBoost SVM vs. AD (results)

WINAC 09

21 / 29

#### Results

### Showing the results

- All the results were extracted from the VBM detected clusters.
- We performed 10 times a 10-fold cross-validation for each experiment.
- For each experiment we show:
  - Size of feature vector
  - Classification accuracy
  - Sensitivity (controls correctly classified)
  - Specificity (AD patients correctly classified)

Maite García-Sebastián, Alexandre Savio

AdaBoost SVM vs. AD (results)

institution-log

22 / 29

### Results of SVM and global feature vectors

• Using all voxels within all clusters and only one SVM.

| Feature extracted | Features | Accuracy ( k/n k)          | Sensitivity ( k/n k)     | Specificity ( k/n k) |
|-------------------|----------|----------------------------|--------------------------|----------------------|
| Mean & StDev      | 24       | 78.57 / <mark>80.61</mark> | 0.72 / <mark>0.75</mark> | 0.88 / 0.89          |
| Voxel intensities | 3611     | 73.47 / 76.53              | 0.72 / 0.77              | 0.75 / 0.76          |

Table: Classification results with a linear kernel (lk) and a non-linear RBF kernel (nlk). The values of  $\gamma = (2\sigma^2)^{-1}$  for non linear kernel were 0.5, 0.031, 0.0078 for each feature extraction process, respectively.

institution-log

23 / 29

WINAC 09

Maite García-Sebastián, Alexandre Savio

### Results of AdaBoost and majority voting

Using one SVM for each voxel cluster and majority voting to final decision.

| Feature extracted | Features | Accuracy (lk/nlk)      | Sensitivity ( k/n k)     | Specificity ( k/n k) |
|-------------------|----------|------------------------|--------------------------|----------------------|
| Mean & StDev      | 24       | 74% / 75%              | 0.51 / 0.56              | 0.97 / 0.95          |
| Voxel intensities | 3611     | 77% / <mark>78%</mark> | 0.74 / <mark>0.76</mark> | 0.80 / 0.82          |

Table: Majority voting classification results with linear kernel (lk) and non-linear kernel (nlk) SVM built independently for each VBM cluster.

Maite García-Sebastián, Alexandre Savio

AdaBoost SVM vs. AD (results)

institution-log

24 / 29

### Results of AdaBoost and weighted classifiers

 Using one SVM for each voxel cluster and classifying based on the weight of each classifier.

| Feature extracted | Features | Accuracy (lk/nlk)      | Sensitivity ( k/n k)     | Specificity ( k/n k)     |
|-------------------|----------|------------------------|--------------------------|--------------------------|
| Mean & StDev      | 24       | 71% / 79%              | 0.54 / 0.78              | 0.88 / 0.80              |
| Voxel intensities | 3611     | 73% / <mark>86%</mark> | 0.76 / <mark>0.80</mark> | 0.70 / <mark>0.92</mark> |

Table: Weighted individual SVM per cluster classification results. The value of the RBF kernels for the nonlinear (nlk) classifiers were searched for the best fit to the training set.

institution-log

25 / 29

WINAC 09

Maite García-Sebastián, Alexandre Savio

### Results of Diverse AdaBoost

• Using many SVM classifiers trained with different RBF variance values  $(\sigma)$  and using weights to decide.

| Feature extracted | Features | Accuracy | Sensitivity | Specificity |
|-------------------|----------|----------|-------------|-------------|
| Mean & StDev      | 24       | 85%      | 0.78        | 0.92        |
| Voxel intensities | 3611     | 78%      | 0.71        | 0.85        |

Table: Diverse AdaBoostSVM classification results.

• The  $\sigma_{min}$  is set as 0.1, the  $\sigma_{ini}$  is set as 100 and  $\sigma_{step}$  is set as 0.1.

institution-log

26 / 29

### Conclusions

• We performed feature extraction processes based on VBM analysis to classify MRI volumes of AD patients and normal subjects.

• We used the basic GLM design without any covariate to detect subtle changes between AD patients and controls.

 As we don't have post-mortem confirmation of AD subjects, the very mild demented subjects could be false positives.

### Further work

• Using other morphometry methods such as Deformation-based morphometry.

 Try these methods with real clinical subjects and different types of dementia like MD1 and FTD.

institution-log

28 / 29

### Questions?

Thank you for your attention. institution-log 29 / 29 Maite García-Sebastián, Alexandre Savio AdaBoost SVM vs. AD (results) IWINAC 09