Continuous Pattern Mining Using The FCPGrowth Algorithm In Trajectory Data Warehouses

Marcin Gorawski, Paweł Jureczek Silesian University of Technology Institute of Computer Science e-mail: {Marcin.Gorawski, Pawel.Jureczek}@polsl.pl HAIS, San Sebastián, Spain, June 23-25, 2010

Outline

- Motivations
- FCP-Tree
- FCPGrowth
- Results
- Conclusion
- Future work

Motivations

- great interest in mining behavior patterns
- efficient mining of frequent continuous patterns of mobile objects
- large dataset of long trajectories

Frequent continuous patterns

Definitions:

- 1) Given two sequences $X = \langle b_1 b_2 ... b_m \rangle$ and $Y = \langle a_1 a_2 ... a_n \rangle$, where $m \le n$, the sequence X is a continuous subsequence of Y if there exists an integer i such that $b_1 = a_i$, $b_2 = a_{i+1}$, ..., $b_m = a_{i+m-1}$, and if for any two elements b_i and b_j ($i \ne j$) we have $b_i \ne b_j$.
- 2) $\sup(s) = |\{s | s_i \in S \land s \subseteq s_i\}|/m \text{ where } S = \{s_1, s_2, ..., s_m\}$

3) $sup(s) \ge min_sup$

Spatio-temporal continuous sequence

trajectory of points

Steps:

- determine grid resolution
- map the points of a given trajectory into regions of the sequence

The 5th International Conference on Hybrid Artificial Intelligence Systems

FCP-Tree

- prefix tree
- compressed data structure
- header table

Building FCP-Tree – Example (1)

a) sequence database with minimum support *minsup*=33,3%

Νο	Input sequence
1	$A \rightarrow G \rightarrow F \rightarrow I \rightarrow B$
2	$A \rightarrow G \rightarrow F \rightarrow J \rightarrow K$
3	$C \rightarrow G \rightarrow Z \rightarrow B$
4	$B \rightarrow G \rightarrow F$
5	$B \rightarrow C \rightarrow J \rightarrow K$
6	B→C→J

b) support for elements: A:2, B:5, C:3, F:3, G:4, I:1, J:3, K:2, Z:1

Building FCP-Tree – Example (2)

No	Input	Output
1	$A \rightarrow G \rightarrow F \rightarrow I \rightarrow B$	$A \rightarrow G \rightarrow F, \mathbf{B}$
2	$A \rightarrow G \rightarrow F \rightarrow J \rightarrow K$	$A \rightarrow G \rightarrow F \rightarrow J \rightarrow K$
3	$C \rightarrow G \rightarrow Z \rightarrow B$	C→G, B
4	$B \rightarrow G \rightarrow F$	$B \rightarrow G \rightarrow F$
5	$B \rightarrow C \rightarrow J \rightarrow K$	$B \rightarrow C \rightarrow J \rightarrow K$
6	$B \rightarrow C \rightarrow J$	$B \rightarrow C \rightarrow J$

Building FCP-Tree – Example (3)

Building FCP-Tree – Example (4)

S2: $A \rightarrow G \rightarrow F \rightarrow J \rightarrow K$

Building FCP-Tree – Example (5)

FCPGrowth

top-down approach

divide and conquerno intermediate subtrees

FCPGrowth – Example

Experimental results

- Brinkhoff's network-based generator
- No. of Sequences: 10 50k
- minsup: 0.1 0.5%
- Avg. length: ~14.3
- Unique elements: $550 \sim 630$

VAES (Vertical Approach for Exact Search)

The 5th International Conference on Hybrid Artificial Intelligence Systems

16

Experiments

Conclusion

- promising approach for compressing continuous sequences
- algorithm for mining continuous patterns
- experiments

Future work

- analysis of the tree size and complexity
- maximal and closed pattern extensions
- real data experiments

Thank you for your attention!