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Introduction

Rosenblatt's Perceptron (the 1960s)

F. Rosenblatt suggested the �rst model of a learning machine,

the Perceptron.

He described the model as a program for computers and

demonstrated with simple experiments that this model can

generalize.

The Perceptron was constructed for solve pattern recognition

problems.

Simplest case: construct a rule for separating data of two
di�erent classes using given examples.
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Introduction

Noviko�'s theorem (1962)

In 1962, Noviko� proved the �rst theorem about the

Perceptron and started learning theory.

It somehow connected the cause of generalization ability with

the principle of minimizing the number of errors on the

training set.

Noviko� proved that Perceptron can separate training data,

and that if the data are separable, then after a �nite number

of corrections, the Perceptron separates any in�nite sequence

of data.
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Introduction

Applied and Theoretical Analysis of Learning Processes

Many researchers thought that minimizing the error on the

training set is the only cause of generalization. Two branches:

Applied analysis: to �nd methods for constructing the
coe�cients simultaneously for all neurons such that the
separating surface provides the minimal number of errors on
the training data.
Theoretical analysis: to �nd the inductive principle with the
highest level of generalization ability and to construct
algorithms that realize this inductive principle.
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Construction of the fundamentals of learning theory

1968: a philosophy of statistical learning theory was developed.

Essentials concepts of emerging theory, VC entropy and VC
dimension for indicator functions (pattern recognition
problem).
Law of large numbers.
Main non-asymptotic bounds for the rate of convergence.

1976-1981: previous results generalized to the set of real

functions.

1989: necessary and su�cient conditions for consistency of the

empirical risk minimization inductive principle and maximum

likelihood method.

1990: Theory of the Empirical Risk Minimization Principle.
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Neural Networks (1980s)

1986: several authors discover the Back Propagation method

for simultaneously constructing the vector coe�cients for all

neurons of the Perceptron.

Introduction of the neural network concept.

Researchers in AI became the main players in the

computational learning game.

Statistical analysis keeps apart from the attention of the AI

community, focused in constructing �simple algorithms� for the

problems where the theory is very complicated.

Example: over�tting is a problem of �false structure� (ill-posed

problems) solved in statistical analysis by regularization

techniques.
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Alternatives to NN (1990s)

Study of the Radial Basis Functions methods.

Structural Risk Minimization principle: SVM.

Minimum description length principle.

Small sample size theory.

Synthesis of optimal algorithms which posseses the highest

level of generalization ability for any number of observations.
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Support Vector Machines

Originated from the statistical learning theory developed by

Vapnik and Chervonenkis.

SVMs represent novel techniques introduced in the framework

of structural risk minimization (SRM) and in the theory of VC

bounds.

Instead of minimizing the absolute value of an error or an

squared error, SVMs perform SRM, minimizing VC dimension.

Vapnik showed that when the VC dimension of the model is

low, the expected probability of error is also low (good

generalization).

Remark: good performance on training data is a necessary but

insu�cient condition for a good model.
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Introduction

The VC dimension is a property of a set of approximatting

functions of a learning machine that is used in all important

results of statistical learning theory.

Unfortunately its analytic estimations can be used only for the

simplest sets of functions.
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Two-class pattern recognition case
Indicator functions

An indicator function, iF(x,w), is a function that can assume

only two values, say, iF(x,w) ∈ {0,1} or iF(x,w) ∈ {−1,1}.
The VC dimension of a set of indicator functions iF(x,w) is

de�ned as the largest number h of points that can be

separated (shattered) in all possible ways.

For two-class pattern recognition, a set of l points can be

labeled in 2l possible ways.
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Two-class pattern recognition case
Possible ways in ℜ2

Figure: Three points in all possible 23 = 8 ways by an indicator function
iF(x,w) = sign(u) = sign(w1x1 +w2x2 +w0) represented by the oriented
straight line u = 0.
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Two-class pattern recognition case
Labelings that cannot be shattered in ℜ2

Figure: Left: two labelings of a three co-linear points that cannot be
shattered by iF(x,w) = sign(u). Right: iF(x,w) = sign(u) cannot shatter
the depicted two out of sixteen labelings of four points. A quadratic
indicator function (dashed line) can easily shatter both sets of points.
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Two-class pattern recognition case
VC Dimension

In an n-dimensional input space, the VC dimension of the

oriented hyperplane indicator function, iF(x,w) = sign(u), is
equal to h = n+1.

In a two-dimensional space of inputs, h = 3.

If the VC dimension is h, then there exists at least one set of h
points in input space that can be shattered. This does not

mean that every set of h points in input space can be

shattered by a given set of indicator functions.

In a two-dimensional set of inputs at least one set of three
points in input space can be shattered by iF(x,w) = sign(u).
In a two-dimensional set of inputs no set of four points can be
shattered by iF(x,w) = sign(u).
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Appendix

Two-class pattern recognition case
VC Dimension and the space of features

In a n-dimensional input space, the VC dimension of the

oriented hyperplane indicator function, iF(x,w) = sign(u), is
equal to the number of unknown parameters that are elements

of the weight vector w = [w0w1 . . .wn].
It's a coincidence and the VC dimension does not necessarily

increases with the number of weights vector parameters.

Example: the indicator function iF(x,w) = sign(sin(wx)),
w,x ∈ℜ, has an in�nite VC dimension.
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Appendix

Questions?

Thank you very much for your attention.

Contact:

Miguel Angel Veganzones
Grupo Inteligencia Computacional
Universidad del País Vasco - UPV/EHU (Spain)
E-mail: miguelangel.veganzones@ehu.es
Web page: http://www.ehu.es/computationalintelligence
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