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Rosenblatt’s Perceptron (the 1960s)

@ F. Rosenblatt suggested the first model of a learning machine,
the Perceptron.

@ He described the model as a program for computers and
demonstrated with simple experiments that this model can
generalize.

@ The Perceptron was constructed for solve pattern recognition
problems.

o Simplest case: construct a rule for separating data of two
different classes using given examples.
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Novikoff's theorem (1962)

@ In 1962, Novikoff proved the first theorem about the
Perceptron and started learning theory.

@ It somehow connected the cause of generalization ability with
the principle of minimizing the number of errors on the
training set.

@ Novikoff proved that Perceptron can separate training data,
and that if the data are separable, then after a finite number
of corrections, the Perceptron separates any infinite sequence
of data.
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Applied and Theoretical Analysis of Learning Processes

@ Many researchers thought that minimizing the error on the
training set is the only cause of generalization. Two branches:

o Applied analysis: to find methods for constructing the
coefficients simultaneously for all neurons such that the
separating surface provides the minimal number of errors on
the training data.

o Theoretical analysis: to find the inductive principle with the
highest level of generalization ability and to construct
algorithms that realize this inductive principle.
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Construction of the fundamentals of learning theory

@ 1968: a philosophy of statistical learning theory was developed.

o Essentials concepts of emerging theory, VC entropy and VC
dimension for indicator functions (pattern recognition
problem).

o Law of large numbers.

e Main non-asymptotic bounds for the rate of convergence.

@ 1976-1981: previous results generalized to the set of real
functions.

@ 1989: necessary and sufficient conditions for consistency of the
empirical risk minimization inductive principle and maximum
likelihood method.

@ 1990: Theory of the Empirical Risk Minimization Principle.
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Neural Networks (1980s)

@ 1986: several authors discover the Back Propagation method
for simultaneously constructing the vector coefficients for all
neurons of the Perceptron.

@ Introduction of the neural network concept.

@ Researchers in Al became the main players in the
computational learning game.

@ Statistical analysis keeps apart from the attention of the Al
community, focused in constructing “simple algorithms” for the
problems where the theory is very complicated.

e Example: overfitting is a problem of “false structure” (ill-posed
problems) solved in statistical analysis by regularization
techniques.
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Alternatives to NN (1990s)

@ Study of the Radial Basis Functions methods.
@ Structural Risk Minimization principle: SVM.

@ Minimum description length principle.

@ Small sample size theory.

@ Synthesis of optimal algorithms which posseses the highest
level of generalization ability for any number of observations.
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Support Vector Machines

@ Originated from the statistical learning theory developed by
Vapnik and Chervonenkis.

@ SVMs represent novel techniques introduced in the framework
of structural risk minimization (SRM) and in the theory of VC
bounds.

@ Instead of minimizing the absolute value of an error or an
squared error, SVMs perform SRM, minimizing VC dimension.

@ Vapnik showed that when the VC dimension of the model is
low, the expected probability of error is also low (good
generalization).

@ Remark: good performance on training data is a necessary but
insufficient condition for a good model.
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Introduction

@ The VC dimension is a property of a set of approximatting
functions of a learning machine that is used in all important
results of statistical learning theory.

@ Unfortunately its analytic estimations can be used only for the
simplest sets of functions.
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Two-class pattern recognition case

Indicator functions

@ An indicator function, ir(x,w), is a function that can assume
only two values, say, ir(x,w) € {0,1} or ir(x,w) € {—1,1}.

@ The VC dimension of a set of indicator functions ir(x,w) is
defined as the largest number & of points that can be
separated (shattered) in all possible ways.

@ For two-class pattern recognition, a set of [ points can be
labeled in 2/ possible ways.
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Two-class pattern recognition case
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c © e ¢ . ®
o) . . o
LIy o/ a 9 Se
o] [ ] [ ] O

Figure: Three points in all possible 23 = 8 ways by an indicator function
ir (x,w) = sign(u) = sign (wix| +wyxy +wg) represented by the oriented
straight line u = 0.
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Two-class pattern recognition case
Labelings that cannot be shattered in %?

Figure: Left: two labelings of a three co-linear points that cannot be
shattered by ir(x,w) = sign(u). Right: ir(x,w) = sign(u) cannot shatter
the depicted two out of sixteen labelings of four points. A quadratic
indicator function (dashed line) can easily shatter both sets of points.

http://www.ehu.es/ccwintco SVM UPV/EHU 15 / 24



Introduction
00000®00000

Two-class pattern recognition case
VC Dimension

@ In an n-dimensional input space, the VC dimension of the
oriented hyperplane indicator function, ir(x,w) = sign(u), is
equal to h=n+1.

e In a two-dimensional space of inputs, A = 3.

o If the VC dimension is A, then there exists at least one set of &
points in input space that can be shattered. This does not
mean that every set of & points in input space can be
shattered by a given set of indicator functions.

o In a two-dimensional set of inputs at least one set of three
points in input space can be shattered by ir(x,w) = sign(u).

e In a two-dimensional set of inputs no set of four points can be
shattered by ir(x,w) = sign(u).

http://www.ehu.es/ccwintco SVM UPV/EHU 16 / 24



Introduction
00000080000

Two-class pattern recognition case

VC Dimension and the space of features

@ In a n-dimensional input space, the VC dimension of the
oriented hyperplane indicator function, ir(x,w) = sign(u), is
equal to the number of unknown parameters that are elements
of the weight vector w = [wowy ... wy].

@ It's a coincidence and the VC dimension does not necessarily
increases with the number of weights vector parameters.

o Example: the indicator function ir(x,w) = sign(sin(wx)),
w,x € R, has an infinite VC dimension.
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VC Dimension of a Loss Function

@ The VC dimension of an specific loss function

L[y, fa(x,w)]

is equal to the VC dimension of the approximating function
fa(x,w) for both, classification and regression tasks.
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VC Dimension for Linear Functions

@ The VC dimension of a set of linear functions as given by

N
fa(x,0) =) o4x; + 0

i=1
is equal to h =N+ 1, where N is the dimensionality of the
sample space.
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VC Dimension for Radial Basis Functions (RBFs)

@ For regression, the VC dimension of a set of RBFs as given by

N
Ja(x,w) = Y wigi(x) +wo
i=1

is equal to h =N+ 1, where N is the number of hidden layer
neurons.
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VC Dimension for other functions

@ For nonlinear functions, calculate the VC dimension is a very
difficult task, if possible at all.

@ Even, in the simple case of the sum of two basis functions,
each having a finite VC dimension, the VC dimnesion of the
sum can be infinite.

http://www.ehu.es/ccwintco SVM UPV/EHU 21 /24



Introduction

Outline

@ Introduction

@ Structural Risk Minimization (SRM) Inductive Principle

http://www.ehu.es/ccwintco SVM UPV/EHU 22 /24



Introduction Support Vector Machines (SVM) Appendix
00000000000000000000

For Further Reading

The Nature of Statistical Learning Theory. Vladimir N. Vapnik.
ISBN: 0-387-98780-0. 1995.

Statistical Learning Theory. Vladimir N. Vapnik. ISBN:
0-471-03003-1. 1998.

Neural Networks: A Comprenhesive Foundation, 2" Edition.
Simon Haykin. ISBN: 81-7808-300-0. 1999.
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Learning and Soft Computing: Support Vector Machines,
Neural Netowrks and Fuzzy Logic Models. Vojislav Kecman.
ISBN: 0-262-11255-8. 2001.
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Questions?

Thank you very much for your attention.

o Contact:

Miguel Angel Veganzones

Grupo Inteligencia Computacional

Universidad del Pais Vasco - UPV/EHU (Spain)

E-mail: miguelangel.veganzones@ehu.es

Web page: http://www.ehu.es/computationalintelligence
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