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Rosenblatt's Perceptron (the 1960s)

F. Rosenblatt suggested the �rst model of a learning machine,

the Perceptron.

He described the model as a program for computers and

demonstrated with simple experiments that this model can

generalize.

The Perceptron was constructed for solve pattern recognition

problems.

Simplest case: construct a rule for separating data of two
di�erent classes using given examples.
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Noviko�'s theorem (1962)

In 1962, Noviko� proved the �rst theorem about the

Perceptron and started learning theory.

It somehow connected the cause of generalization ability with

the principle of minimizing the number of errors on the

training set.

Noviko� proved that Perceptron can separate training data,

and that if the data are separable, then after a �nite number

of corrections, the Perceptron separates any in�nite sequence

of data.
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Applied and Theoretical Analysis of Learning Processes

Many researchers thought that minimizing the error on the

training set is the only cause of generalization. Two branches:

Applied analysis: to �nd methods for constructing the
coe�cients simultaneously for all neurons such that the
separating surface provides the minimal number of errors on
the training data.
Theoretical analysis: to �nd the inductive principle with the
highest level of generalization ability and to construct
algorithms that realize this inductive principle.
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Construction of the fundamentals of learning theory

1968: a philosophy of statistical learning theory was developed.

Essentials concepts of emerging theory, VC entropy and VC
dimension for indicator functions (pattern recognition
problem).
Law of large numbers.
Main non-asymptotic bounds for the rate of convergence.

1976-1981: previous results generalized to the set of real

functions.

1989: necessary and su�cient conditions for consistency of the

empirical risk minimization inductive principle and maximum

likelihood method.

1990: Theory of the Empirical Risk Minimization Principle.
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Neural Networks (1980s)

1986: several authors discover the Back Propagation method

for simultaneously constructing the vector coe�cients for all

neurons of the Perceptron.

Introduction of the neural network concept.

Researchers in AI became the main players in the

computational learning game.

Statistical analysis keeps apart from the attention of the AI

community, focused in constructing �simple algorithms� for the

problems where the theory is very complicated.

Example: over�tting is a problem of �false structure� (ill-posed

problems) solved in statistical analysis by regularization

techniques.
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Alternatives to NN (1990s)

Study of the Radial Basis Functions methods.

Structural Risk Minimization principle: SVM.

Minimum description length principle.

Small sample size theory.

Synthesis of optimal algorithms which posseses the highest

level of generalization ability for any number of observations.
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Support Vector Machines

Originated from the statistical learning theory developed by

Vapnik and Chervonenkis.

SVMs represent novel techniques introduced in the framework

of structural risk minimization (SRM) and in the theory of VC

bounds.

Instead of minimizing the absolute value of an error or an

squared error, SVMs perform SRM, minimizing VC dimension.

Vapnik showed that when the VC dimension of the model is

low, the expected probability of error is also low (good

generalization).

Remark: good performance on training data is a necessary but

insu�cient condition for a good model.
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Introduction

The VC dimension is a property of a set of approximatting

functions of a learning machine that is used in all important

results of statistical learning theory.

Unfortunately its analytic estimations can be used only for the

simplest sets of functions.
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Two-class pattern recognition case
Indicator functions

An indicator function, iF(x,w), is a function that can assume

only two values, say, iF(x,w) ∈ {0,1} or iF(x,w) ∈ {−1,1}.
The VC dimension of a set of indicator functions iF(x,w) is
de�ned as the largest number h of points that can be

separated (shattered) in all possible ways.

For two-class pattern recognition, a set of l points can be

labeled in 2l possible ways.
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Two-class pattern recognition case
Possible ways in ℜ2

Figure: Three points in all possible 23 = 8 ways by an indicator function
iF(x,w) = sign(u) = sign(w1x1 +w2x2 +w0) represented by the oriented
straight line u = 0.
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Two-class pattern recognition case
Labelings that cannot be shattered in ℜ2

Figure: Left: two labelings of a three co-linear points that cannot be
shattered by iF(x,w) = sign(u). Right: iF(x,w) = sign(u) cannot shatter
the depicted two out of sixteen labelings of four points. A quadratic
indicator function (dashed line) can easily shatter both sets of points.
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Two-class pattern recognition case
VC Dimension

In an n-dimensional input space, the VC dimension of the

oriented hyperplane indicator function, iF(x,w) = sign(u), is
equal to h = n+1.

In a two-dimensional space of inputs, h = 3.

If the VC dimension is h, then there exists at least one set of h
points in input space that can be shattered. This does not

mean that every set of h points in input space can be

shattered by a given set of indicator functions.

In a two-dimensional set of inputs at least one set of three
points in input space can be shattered by iF(x,w) = sign(u).
In a two-dimensional set of inputs no set of four points can be
shattered by iF(x,w) = sign(u).
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Two-class pattern recognition case
VC Dimension and the space of features

In a n-dimensional input space, the VC dimension of the

oriented hyperplane indicator function, iF(x,w) = sign(u), is
equal to the number of unknown parameters that are elements

of the weight vector w = [w0w1 . . .wn].
It's a coincidence and the VC dimension does not necessarily

increases with the number of weights vector parameters.

Example: the indicator function iF(x,w) = sign(sin(wx)),
w,x ∈ℜ, has an in�nite VC dimension.
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VC Dimension of a Loss Function

The VC dimension of an speci�c loss function

L [y, fa(x,w)]

is equal to the VC dimension of the approximating function

fa(x,w) for both, classi�cation and regression tasks.
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VC Dimension for Linear Functions

The VC dimension of a set of linear functions as given by

fa(x,α) =
N

∑
i=1

αixi +α0

is equal to h = N +1, where N is the dimensionality of the

sample space.
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VC Dimension for Radial Basis Functions (RBFs)

For regression, the VC dimension of a set of RBFs as given by

fa(x,w) =
N

∑
i=1

wiϕi(x)+w0

is equal to h = N +1, where N is the number of hidden layer

neurons.
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VC Dimension for other functions

For nonlinear functions, calculate the VC dimension is a very

di�cult task, if possible at all.

Even, in the simple case of the sum of two basis functions,

each having a �nite VC dimension, the VC dimension of the

sum can be in�nite.
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Controlling the generalization ability of learning processes

Construct an inductive principle for minimizing the risk

functional using a small sample of training instances.

The sample size l is considered to be small if the ratio l/h is

small, say l/h < 20.

To construct small sample size
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Binary classi�cation problem de�nition

Given a training data set (x1,y1) , . . . ,(xl,yl), x ∈ℜn,

y ∈ {+1,−1}.
It's assumed that the data are linearly separable.

The equation of a decision surface in the form of an

hyperplane that does the separation is

wTx+b = 0 (1)

where w is an adjustable weight vector and b is a bias.

Under this considerations the optimal separating function must

be found without knowing the underlying probability

distribution F (x,y).
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Optimal hyperplane

For a given weight vector w and bias b, the separation between

the hyperplane de�ned in (1) and the closest data point is

called the margin of separation and denoted by ρ .

The goal of SVM is to �nd among all the hyperplanes that

minimize the training error (empirical risk), the particular one

that maximizes the margin of separation. This hyperplane is

called the optimal hyperplane.

Figure: Two out of separating lines. Right: a good one with a large
margin. Left: a less acepable one with a small margin.
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Problem de�nition

The issue at hand is to �nd the parameters wo and bo for the

optimal hyperplane given the training set (x1,y1) , . . . ,(xl,yl),
x ∈ℜn, y ∈ {+1,−1}.
The pair (wo,bo) must satisfy the constraints:{

wT
o xi +bo ≥ 1 f or yi = +1

wT
o xi +bo ≤ 1 f or yi =−1

(2)

The particular data points
(

x(s)
i ,y(s)

i

)
for which one of the

constraints is satis�ed with the equality sign are called support

vectors.
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Discriminant function, indicator function and decision
boundary

The discriminant function (3) gives an algebraic measure of

the distance from x to the hyperplane de�ned by (w,b).

g(x,w,b) = wTx+b (3)

The indicator function (4) whose value represents a learning or

support vector machine's output.

iF (x,w,b) = sign(g(x,w,b)) (4)

Both, the discriminant function and the indicator function, lie

in an n+1-dimensional space.

The decision boundary is an intersection of g(x,w,b) and the

input space ℜn.
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Discriminant function, indicator function and decision
boundary

Figure: Discriminant function, indicator function and decision boundary
illustration
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The algebraic distance

We have seen that the discriminant function gives an algebraic

measure of the distance from x to the hyperplane de�ned by

(w,b).
x can be expressed as

x = xp + r
w
‖w‖

where xp is the normal projection of x onto the hyperplane,

and r is the desired algebraic distance.

Since, by de�nition, g(xp) = 0, it follows that

g(x) = wTx+b = r‖w‖ or r =
g(x)
‖w‖
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The algebraic distance
Illustraton

Figure: Geometric iterpretation of algebraic distance of points to the
optimal hyperplane for a two-dimensional case.
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SVM's induction principle for the two separable class
problem

The algebraic distance from the support vector x(s) to the

optimal hyperplane is

r =
g
(
x(s))
‖wo‖

=

{
1
‖wo‖ i f iF

(
x(s),wo,bo

)
= +1

− 1
‖wo‖ i f iF

(
x(s),wo,bo

)
=−1

Let ρ denote the optimum value of the margin of separation

between the two classes that constitute the training set. It

follows that

ρ = 2r =
2
‖wo‖

(5)

Equation (5) states that maximizing the margin of separation

between classes is equivalent to minimizing the euclidean norm

of the weight vector.
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The primal problem

Given the training sample (x1,y1) , . . . ,(xl,yl), x ∈ℜn,

y ∈ {+1,−1}, �nd the optimum values of the weight vector w
and bias b such that they satisfy the constraints

yi
(
wTxi +b

)
≥ 1 f or i = 1, . . . , l

and the weight vector w minimizes the cost function

Φ(w) =
1
2

wTw

This constrained optimization problem is called the primal

problem and it's characterized as follows:

The cost function Φ(w) is a convex function of w.
The constraints are linear in w.
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Method of Lagrange multipliers

The primal problem can be solved using the method of

Lagrange multipliers. The Lagrange function is de�ned as

J (w,b,α) =
1
2

wTw−
l

∑
i=1

αi
[
yi
(
wTxi +b

)
−1
]

(6)

where the auxiliary non-negative variables αi are called

Lagrange multipliers.

The solution to the primal problem is determined by he saddle

point of the Lagrangian function J (w,b,α) which has to be

minimized with respect to w and b, and maximized respect to

α .
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Conditions of optimality

Di�erenciating (6) with respect to w and b and setting the

result equal to zero, the following two conditions of optimality

are gotten:

Condition 1 :
∂J (w,b,α)

∂w
= 0

Condition 2 :
∂J (w,b,α)

∂b
= 0

Application of condition 1 and condition 2 to the Lagrangian

function (6) yields:

w =
l

∑
i=1

αiyixi and
l

∑
i=1

αiyi = 0 (7)
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Considerations about the primal problem

The solution vector w is unique by virtue of the convexity of

the Lagrangian function but the Lagrange multipliers αi are

not.

At the saddle point, the product of each Lagrangian multiplier

with its corresponding constraints vanishes:

αi
[
yi
(
wTxi +b

)
−1
]
= 0 f or i = 1,2, . . . , l (8)

Therefore, only multipliers exactly meeeting Eq. (8) can

assume non-zero values (Kuhn-Tucker conditions of

optimization theory).
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The dual problem

Equivalent to the primal problem, but here the optimal

solution is provided by the Lagrange multipliers.

Duality theorem:

If the primal problem has an optimal solution, the dual
problem has also an optimal solution, and both optimal values
are equal.
In order for wo to be an optimal primal solution and αo to be
an optimal dual solution, it's necessary and su�cient that wo
is feasible for the primal problem, and

Φ(wo) = J (wo,bo,αo) = min
w

J (w,bo,αo)
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Dual problem postulate

Expanding Eq. (6), term by term, as follows:

J (w,b,α) =
1
2

wTw−
l

∑
i=1

αiyiwTxi−b
l

∑
i=1

αiyi +
l

∑
i=1

αi

and applying optimality conditions (7), J (w,b,α) can be

reformulated as:

Q(α) = J (w,b,α) =
l

∑
i=1

αi−
1
2

l

∑
i=1

l

∑
j=1

αiα jyiy jxT
i xj

subject to the constraints:

l

∑
i=1

αiyi = 0 and αi ≥ 0 f or i = 1,2, . . . , l
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Computing wo and bo

having determined the optimum Lagrange multipliers, denoted

as αo,i, wo and bo are computed by:

wo =
l

∑
i=1

αo,iyixi

bo = 1−wT
o x(s) f or y(s) = +1
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For Further Reading

The Nature of Statistical Learning Theory. Vladimir N. Vapnik.

ISBN: 0-387-98780-0. 1995.

Statistical Learning Theory. Vladimir N. Vapnik. ISBN:

0-471-03003-1. 1998.

Neural Networks: A Comprenhesive Foundation, 2nd Edition.

Simon Haykin. ISBN: 81-7808-300-0. 1999.

Learning and Soft Computing: Support Vector Machines,

Neural Netowrks and Fuzzy Logic Models. Vojislav Kecman.

ISBN: 0-262-11255-8. 2001.
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Questions?

Thank you very much for your attention.

Contact:

Miguel Angel Veganzones
Grupo Inteligencia Computacional
Universidad del País Vasco - UPV/EHU (Spain)
E-mail: miguelangel.veganzones@ehu.es
Web page: http://www.ehu.es/computationalintelligence
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