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abstract

This PhD Thesis deals with the segmentation of hyperspectral images from the point
of view of Lattice Computing. We have introduced the application of Associative
Morphological Memories as a tool to detect strong lattice independence, which has
been proven equivalent to affine independence. Therefore, sets of strong lattice inde-
pendent vectors found using our algorithms correspond to the vertices of convex sets
that cover most of the data. Unmixing the data relative to these endmembers pro-
vides a collection of abundance images which can be assumed either as unsupervised
segmentations of the images or as features extracted from the hyperspectral image
pixels. Besides, we have applied this feature extraction to propose a content based
image retrieval approach based on the image spectral characterization provided by
the endmembers. Finally, we extended our ideas to the proposal of Morphological
Cellular Automata whose dynamics are guided by the morphological/lattice indepen-
dence properties of the image pixels. Our works have also explored the applicability
of Evolution Strategies to the endmember induction from the hyperspectral image
data.
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Chapter 1

Introduction

This chapter provides a general introduction to this Thesis. We discuss the
general motivation of the works in Section 1.1. We detail the contributions of
this Thesis in Section 1.2. Section 1.3 details the publications produced during
the work on this Thesis. Finally, Section 1.4 details the structure of the Thesis.

1.1 Introduction

The main topic of this Thesis, from an application point of view, is the unsuper-
vised processing of remote sensing hyperspectral images. Hyperspectral sensors
have been proposed as new evolution of the optical remote sensing devices, pro-
viding a fine sampling of the visible and near infrared spectrum. Each image
pixel is a high dimensional vector corresponding to a fine sampling of the incom-
ing radiance at this pixel. Such increased spectral resolution was expected to
improve the ability of automatic image processing techniques to identify materi-
als in the scene, allowing for better and more robust detection and segmentation
algorithms. The point of view in this thesis is that the processing algorithms
are unsupervised because no information about the true contents of the image
is assumed.

Our main interest is to perform unsupervised segmentation of the hyperspectral
images. More specifically, we assume a linear mixing model of the pixel spectra.
In this model, the observed spectra is assumed to be a linear composition of
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elemental spectra, called endmembers. These endmembers correspond to pure
materials in the scene, and the linear aggregation is assumed to be an effect of the
low spatial resolution of the image capturing device. The linear coefficients are
the fractiona abundances of each endmember in the pixel composition. Taking
the image as a whole, the abundance coefficients for each endmembers can be
viewed as an image, and the whole collection of abundace images as a multiband
image that provide a segmentation of the image into meaningful regions of high
abundance of specific materials.

Therefore, from the point of vew of computational techniques, our approach
consists in the induction (identification) of the endmembers from the image
data in an unsupervised way. To this end, we have considered the application
of the theory developed around the Autoassociative Morphological Memories
(AMM). The morphological independence is a key property for the detection of
endmembers in the image data. In our work we have proposed the AMM for this
detection task. Much of this Thesis is devoted to this single, but very important,
issue. We have also tested some evolutionary algorithm approaches for the
induction of the endmembers from the image data. The evolutionary algorithm
follows the Michigan approach, which implies some original reformulation of the
process.

Besides this we have found that the unmixing features, the endmembers, can
also be used for search in large scale hyperspectral image databases. This is an
application of our approach to Content Based Image Retrieval (CBIR) that is
unique, because no other approach deals with the spectral content of the images
in order to answer queries to the image database.

An issue that deserves special attention is that of validation. Labeled hyper-
spectral data is scarce, therefore we tried to develop resources for an improved
validation of the proposed approaches and their competing algorithms. We have
built a hyperspectral image synthesis toolbox allowing for extensive quantitative
validation procedures.

Finally, we have extended our work on AMM and morphological independence
to propose a Cellular Morphological Automaton which uses the morphological
independence to obtain robust segmentations of color images.

2



1.2 Contributions of this Thesis

• Endmembers in the image are the vertices of a convex polygon covering
the data samples. Therefore, endmembers are affinely independent vec-
tors. We have identified the morphological independence with the affine
independence. Further works by G.X. Ritter [79, 81] have developed the
theoretical foundations supporting this idea.

• The idea of detecting endmembers on the basis of morphological indepen-
dence properties has led to the application of AMM to the detection of
the endmembers proposed in the image spectra. We have proposed an
innovative algorithm exploiting this idea. This proposal has been tested
thoroughfully on real hyperspectral images and synthetic images. We have
made a strong effort in this validation process, showing the improvements
obtained with our algorithm versus other linear transformations and end-
member induction algorithms found in the literature.

• Validation of the AMM based approach to endmember induction includes
the use of the abundance coefficients as feature vectors for classification.
This approach has been found advantageous when tested on one hyper-
spectral image, building supervised classifiers of image pixel spectra.

• We have proposed and validated the use of endmembers as image fea-
tures for Content Based Image Retrieval (CBIR) in hyperspectral image
databases. We have defined a specific distance on the collections of end-
members that the image spectral features for CBIR. We apply two dif-
ferent Endmember Induction Algorithms (EIAs) to demonstrate that the
approach is robust and does not depend too much on the EIA applied or
on the underlying distance.

• We have proposed a Single Individual Evolutionary Strategy (SIES) fol-
lowing the Michigan approach for the induction of indemembers from the
data. The proposed algorithm is faster and much more effective than a
conventionalEvolutionary Strategy (ES), tailored to this task. The SIE
considers a set of endmembers as an evolving population. Individuals
correspond to hypothetical endmember spectra, and they are selected as
candidates for mutation on the basis of their partial abundance images.
The population’s global fitness when the mutated individual substitutes
its parent is the measure of the goodness of the individual. Although the
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aim of defining the SIE was to reduce the computational cost of applying
ES to the high volume data in hyperspectral images, we have found that
SIE also improves the fitness performance of conventional ES.

• We have proposed a Morphological Cellular Automaton (MCA) for the
segmentation of color images based on morphological independence in-
stead of linear filters. This MCA also posseses a scale parameter allow-
ing to tune the resolution of the segmentation. The MCA has assured
convergence to a state characterized by morphological dependences and
independences between neighboring cell states. Cell dynamic rules test
morphological dependence among neighboring cell’s states. When neigh-
boring cell states are morphological dependent in the erosive or dilative
sense, the morphologically dominant state colonizes the neighbor with
morphological dependent state. The resulting configuration of cell states
is composed of homogeneous regions whose boundaries are defined by the
morphological independence relation.

• From the operational point of view we have generated a collection of hyper-
spectral images which can be used as benchmark for other hyperspectral
image processing algorithms. The main advantage is the perfect knowl-
edge of all its ground truth information and the realistic appearance of
the generated images.

1.3 Publications produced during this PhD The-
sis
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ical Memories to Hyperspectral Image Analysis in Artificial Neural Nets
Problem Soving Methods (IWANN’2003) Parte II; LNCS 2687 pp. 567-
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1.4 Structure of the Thesis

Although we have not defined parts of the report, we can say that the first
chapters, from Chapter 2 up to Chapter 5 provide background information,
setting the theoretical framework for our works and defining the algorithms
for endmember induction which are a central contribution of this thesis. The
following chapters are devoted to validation and applications of these ideas.
Therefore, Chapters 6 to 9 contain a Conclusion section that gives the particular
conclusion and further work directions for this particular chapter. According
to this structure, we have not included a final chapter devoted to conclusions
which would be a mere repetition of these chapters’ conclusions.

Chapter 2 contains the motivation and some background information on the
PhD Thesis research topics.

Chapter 3 introduces the Linear Mixing Model and the Linear Unmixing as a
subpixel resolution hyperspectral image analysis.

Chapter 4 contains the theoretical background on Associative Morphological
Memories that supports the Endmember Induction Algorithm based on Mor-
phological Independence.

Chapter 5 contains the description of an Endmember Induction Heuristic Algo-
rithm based on Morphological Independence and Morphological Memories.

Chapter 6 contains the results of the application of the Endmember Induction
Heuristic Algorithm on simulated hyperspectral images and some publicly avail-
able hyperspectral images.

Chapter 7 contains the description of a CBIR system based on spectral infor-
mation for hyperspectral images.

Chapter 8 contains results on the MCA based on morphological independence
for the segmentation of (color) images.

Appendix A contains the description of the synthetic hyperspectral images used
in the computational validation experiments.

Appendix B contains the description of the public hyperspectral images used in
the computational validation experiments.
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Chapter 2

Background and Motivation

This chapter contains the motivations and some background to the works of this
Ph.D. Section 2.1 introduces the hyperspectral images. Section 2.2 discusses the
general approaches to hyperspectral image analysis and some comments on the
validation issue. Section 2.3 introduces the Associative Morphological Memo-
ries. Section 2.4 comments on the use of fractional abundances as classification
features. Section 2.5 introduces the problem of Content Based Image Retrieval
in hyperspectral image databases. Section 2.6 introduces the Morphological
Cellular Automata. Finally, section 2.7 introduces the Evolutionary Algorithms
and their application to endmember induction.

2.1 Hyperspectral images

Hyperspectral images are a central topic of this Thesis from the point of view
of application and materials used for the computational experiments. Hyper-
spectral images can be defined as images whose pixels contain a fine sampling
of the light spectra. Therefore each pixel is a high dimensional vector, whose
components are the received radiance values inside a fine wavelength band of
the spectra. Most of the hyperspectral sensors cover the visible light spectrum
and the near infrared (NIR) spectrum. In figure 2.1 we show the structure of
a hyperspectral image from a computational point of view. It consists of a 3D
matrix, whose third dimension corresponds to the radiance spectra sampled at
the pixel. The two first dimensions correspond to the spatial coordiantes in the
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Figure 2.1: Structure of a hypespectral image

image plane. Another view of the data in a hyperspectral image is given in
figure 2.2. In figure 2.3 we show an illustration of the hyperspectral iamge cap-
ture in a remote sensing setting. A high altitude device, either an airplane or a
satelite, goes over the land picking the images. On board sensors often capture
one line of the image, so that the motion of the device gives the second spatial
dimension. The figure shows that different land covers produce different spectra
in the corresponding image pixels. This additional spectral information has the
promise of allowing image automated detection of materials highly efficient and
robust without resorting to spatial processing [5, 11, 23, 43, 63, 84, 100, 101].

A central idea of this Thesis is that pixel spectra are in fact linear combina-
tion of elemental spectra called endmembers: the Linear Mixing Model (LMM)
[52, 84]. The physical justification for this model is illustrated in figure 2.4. The
model assumes that the land cover is composed of separated regions of differ-
ent materials, however the resolution of the imaging sensor aggregates several
covers inside each image pixel. The observed image pixel spectra is assumed
to be a combination of the elementary spectra proportional to the fraction of
pixel surface covered by each elementary material, thus the name of “fractional
abundances” given to the linear combination coefficients.
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Figure 2.2: The hyperspectral image datacube

Figure 2.3: An illustration of the remote sensing hyperspectral image capture
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Figure 2.4: Linear Mixing as a product of imaging resolution

2.2 Hyperspectral image analysis

The goal of hyperspectral image analysis is the realization of a thematic map
from the image data. A thematic map contains the labeling of the regions ac-
cording to the materials in the land cover. If no precise information about the
materials in the scene can be provided, the thematic map becomes a segmenta-
tion of the image. There are two basic strategies to build the the labeling of the
image: supervised and unsupervised. The supervised approaches use available
information on pixel classes in the image, to perform the classification of the
remaining (label unknown) pixels.

The main drawback of supervised analysis and classification of hyperspectral
remote sensing data is the difficulty in obtaining labeled sample data that can
be trusted to the point of using it for quantitative evaluation. The scarcity of
ground truth data has been recognized and specific training strategies have been
devised to cope with this handicap [33, 100, 101]. The point of view assumed
in this Thesis is that the efforts must be addressed to the unsupervised analysis
and segmentation of the hyperspectral data to obtain salient image regions that
may deserve further analysis and search for labeled data. In some applications,
i.e. content based image retrieval, the goal is to navigate through a database
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of images, so the system will require that all images are treated equal to obtain
equivalent image features for the computation of similarity measures.

Some unsupervised segmentation attempts have been based on clustering al-
gorithms, including competitive artificial neural networks related to the Self-
Organizing Map (SOM) [68, 106]. The main inconvenience of these approaches
is that they are guided by the data probability distribution, so they have a bias
to ignore small features of the data or must be over-parameterized to model
them. Therefore, it is difficult for them to detect and isolate small regions of
the image with salient spectral features. In essence, SOM related algorithms are
searching for data averages, while salient infrequent feature vectors are outliers
of the data space.

We follow the general approach of linear filter target detection [64], inducing the
filters from the image data. It is related to the “spectral unmixing” [52] image
analysis paradigm. Ideally, hyperspectral images may allow the identification
of materials in the image from the spectra of single pixels. However, image
pixel spectra are frequently the result of a combination of spectra of elementary
materials. We assume a linear mixing model, in which several basic materials
(endmembers) are combined according to some abundance coefficients at each
image pixel. In this model, the mixing linear coefficients have two constraints.

• The coefficients are positive, because negative contributions do not have
physical meaning.

• The coefficients add up to one, because they correspond to a complete
decomposition of the observed spectrum.

These conditions imply that the constituent materials, the endmembers, have
a specific geometrical disposition: they are the vertices of a convex polygon
convering the data points of the image in a high dimensional space [24].

Under this model, if the endmembers are given, it is possible to obtain a subpixel
resolution material identification decomposing each pixel spectrum into their
constituent material spectra. Spectral unmixing can be done by unconstrained
least squares estimation or by some non-negative factorization algorithm, de-
pending on the desired stress in complying with the basic assumptions of the
linear mixing model. Taking its spatial distribution, the abundance coefficients
may be visualized as abundance images, which give a description of material
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distribution in the space. The computation of the abundance coefficients given
a pixel spectra and a set of endmembers is the unmixing procedure. If the
endmembers are given, the unmixing procedure is equivalent to the parallel
detection of the spectral features represented by the endmembers (i.e.: mate-
rials). If the endmembers are unknown, we must induce them from the image
data. Then, the unmixing procedure is unsupervised and may interpreted as an
unsupervised segmentation of the image.

Therefore, the identification of such endmembers is a process of growing rele-
vance in the hyperspectral image processing literature. Libraries of known pure
ground spectra or laboratory observations were used in the early approaches.
However, this approach has severe problems with varying illumination condi-
tions, the diference of sensor intrinsic parameters, and the a priori knowledge
about the material composition of the scene. Besides the methodological ques-
tions, this approach is not feasible when trying to process large quantities of
image data. Current approaches try to induce the endmembers from the image
data itself. The Endmember Induction Algorithms (EIA) either try to select
some image pixel spectra as the best approximation to the endmembers in the
image. There are several propositions in the literature for the extraction of the
endmembers from the data, like the Convex Cone Analysis (CCA) method [46],
the minimum volume transformations [24], the N-finder [109], extended morpho-
logical operators [69], or the fast pixel purity index [14], simulated annealing
[67]. Some of thema have been evaluted in [70].

The works of this Thesis have dealt with two different approaches to the in-
duction of the endmembers from the data. One stems from the works on the
Associative Morphological Memories (AMM), the other from the field of Evo-
lutionary Algorithms, more precisely Evolutionary Strategies. Both procedures
are unsupervised. The first finds the number of endmembers depending on the
setting of a variance related parameter, the second needs that the user specifies
this number.

The AMM based procedure is based on the relation between morphological in-
depence and the convex polygon defined by the endmembers. The existence of
this relation was an intuition that has been proved recently [84]. The algorithm
was based on the selective sensitivity to noise of the AMM for the detection
of the morphological independence conditions on the data. In its actual imple-
mentation it works in a single pass over the image, which is a desirable feature
given the large computational cost of processing hyperspectral images.
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The Evolutionary Strategy approach pursues the maximization of a fitness func-
tion that incorporates the objective of minimizing the error introduced by the
unmixing process and the linear coefficient constraints. The main contribution,
that will be commented later, is the formulation of a Michigan approach that is
less computationally expensive and more effective.

2.2.1 The issue of algorithm validation

A critical aspect of the evaluation of algorithms applied to hyperspectral images
is the lack of well-labeled test images. Benchmark images are roughly hand
labeled, so on top of the noise in the images, the algorithms must dealt with the
noise in the sample pixel labels. Besides, obtaining the images and performing
an accurate pixel labeling is a costly and time-consuming process. The use
of synthetic images allows the accurate validation of the algorithms and it is
very economic and automatic. Most of the examples found in the literature up
to now use simple hand designed spatial distributions of materials and linear
combinations where additive noise is introduced to regulate the difficulty of the
segmentation or identification problem. Our approach consists on the simulation
of gaussian fields [55] to generate the abundance images, which are used to
produce the linear mixing that gives the synthetic image. The covariance matrix
parameters control the randomness of the resulting image, without resorting to
the addition of noise. Although in this paper we present qualitative results on
such an image, the approach leads easily to quantitative evalutations of the
algorithms computing the correlation between the abundance images found by
the algorithms and the original ones.

2.3 Associative Morphological Memories

In a short definition Morphological Neural Networks are equivalent computa-
tional constructions to the well know Artificial Neural Networks, with the speci-
ficity that their non-linearities are the maximum (Max) and/or minimum (Min)
operators, which are the lattice theory basic operators. The Associative Mor-
phological Memories (AMM) [85, 78, 80] are the morphological counterpart of
the well known Hopfield Associative Memories [49]. AMM’s are constructed as
correlation matrices computed by either matrix Min- or Max-product, which
are like the conventional matrix products in the algebra defined by the lattice
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operators and the addition. Dual constructions can be made using the dual Min
and Max operators. The AMM are selectively sensitive to specific types of noise
(erosive and dilative noise). Memory recall is defined as a Min- or Max-product
of the corresponding type of AMM.

The notion of morphological independence and strong morphological indepen-
dence was introduced in [82] to study the construction of AMM exhibiting ro-
bustness against general noise, that is, simultaneous additive and erosive noise.
It was established that AMM are able to robustly store and recall morphologi-
cally strongly independent sets of patterns. Applying an input to the AMM for
recalling of a pattern morphologically dependent on one of the stored patterns
gives the stored pattern. When the input pattern is morphologically indepen-
dent of the stored patterns, the result of recall is a morphological polynomial
on the stored patterns [97, 98]. In essence our procedure tests if the recalled
pattern is different to the stored patterns to detect morphologically independent
patterns.

In the context of this Thesis, the strong morphological independence has been
a key concept to find endmembers in the hyperspectral images. We postulated
that strog morphological independent vectors where in fact the vertices of a con-
vex polytope which can be accepted as the endmembers in the image. Therefore,
the algorithms developed used the AMM to detect morphological independence
among pixel spectra.

2.4 Abundances as classification features

Linear feature extraction algorithms, like Principal Component Analysis (PCA)
[35], Linear Discriminant Analysis (LDA) [35], Independent Component Analy-
sis (ICA) [44] are defined as a linear transformation obtaining minimizing some
criterion function, like the mean square error (PCA), a class separability crite-
rion (LDA) or an independence criterion (ICA). Many classification approaches
use the linear features for the construction of the classifier, obtaining an im-
proved computational efficiency and accuracy. An alternative approach is to
characterize the data through the vertices of a convex region that encloses it
or most of it. The features extracted are the convex coordinates of the data
points in this region. Therefore the dimensionality reduction depends on the
degree of detail of the definition of this convex region: the number of vertices
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that describe it.

In the context of hyperspectral image processing, the computation of the con-
vex coordinates corresponds to the linear spectral unmixing of the image pixel
spectra relative to a set of endmembers, assuming the LMM [52], in which sev-
eral basic materials (endmembers) are combined according to some abundance
coefficients at each image pixel. The computation of the abundance coefficients
could be interpreted as a linear feature extraction algorithm or linear dimen-
sional reduction algorithm. The induction of the endmembers from the data
is performed by an unsupervised algorithm, the number of endmembers is not
set a priori. Therefore its use as a feature extraction algorithm is an innova-
tive method to combine unsupervised and supervised algorithms. We present
in chapter 6 some results of this approach on hyperspectral image pixel classi-
fication.

2.5 Content Based Image Retrieval

The increasing amount of Earth Observation data provided by hyperspectral
sensors, motivates research in some technological problems related with the
scale of the available data, such as the scalability of paralel implementations
of the analysis algorithms [71]. Content Based Image Retrieval (CBIR) [58,
61, 93] consist in the extraction of information from a query image in order to
find similar images in a database. It is intended to allow for easy nagivation
over huge databases. It has been applied to a number of image categories,
such as medical images [13, 73, 110], using a wide variety of computational
techniques [15, 17, 18, 19, 36, 48, 72, 25, 113, 114]. However, this problem
has not been properly addressed for the case of remote sensing hyperspectral
images. Approaches to CBIR in remote sensing images proposed up to now
are focused on panchromatic or low dimension multispectral images such as
LANDSAT [29, 32, 28, 30, 27, 90, 91]. There are few works in the literature
dealing with hyperspectral images, and only [62, 105] deal explicitly with the
spectral information to guide the search.

In CBIR systems, the images stored in the database are indexed by feature vec-
tors extracted from the images by means of computer vision and digital image
processing techniques. In the query-by-example approach, the interrogation to
the database is done through the presentation of a query image, and the answer
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are the most similar images in the database according to some similarity mea-
sure [93]. In the approach proposed in chapter 7 we use the endmembers induced
from the database images by a predefined endmember induction algorithm as
feature vectors. We define a dissimilarity measure between these feature vectors
which can deal with the inherent asymmetries between the sets of ednmembers
induced from the images. The aim is to declare as similar images that posses
similar material spectral signatures regardles of its spatial distribution on the
image, that is, we do not consider the spatial segmentation of the image. The
dissimilarity is a function of the individual distances between endmembers from
the images. We explore in chapter 7 the effect of using different endmember dis-
tances, Euclidean and Angular distances, and the use of different endmember
induction algorithms. Specifically we test the N-FINDER [109] and an Incre-
mental Lattice Independence Algorithm (ILIA) [37, 41] in the computational ex-
periments performed over a large collection of synthetic hyperspectral images.
Testing on synthetic datasets allows us to measure exactly the performance
of the search and perform quantitative measurements, because the underlying
ground thruth is know exactly. We have found that the approach is quite ro-
bust against changes in the endmember induction algorithm and endmember
distance employed. In all cases, the precision and recall obtained suggest that
the approach can be used in real life databases of hyperspectral images.

2.6 Morphological Cellular Automata

Cellular Neural Networks (CNN) are an specific class of Cellular Automata
[26, 34, 53, 60, 87, 89, 94, 112]. Specifically, CNN have been applied to image
processing and segmentation [20, 21, 22], however they are mostly restricted
to one channel images. We intend to perform the extension this approach to
multispectral images and to base this extension in morphological operators.
Therefore, we propose in chapter 8 the application of morphological operators
and properties arising from the work on Associative Morphological Memories
(AMM) [86, 77, 81, 79, 83]. Morphological Cellular Neural Network (MCNN)
provide a formal morphological extension to the CNN, consisting in using the
AMM as the synaptic operators between neighboring cells. Though theoreti-
cally appealing, and possesing a really fast convergence, segmentation results
are poor in practice. The goal is to provide a segmentation similar to the water-
shed algorithm [47, 107], which has had some difficulties in its generalization to
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color and multispectral images [50, 92], because of the difficulties in definition
of appropriate gradients. The MCNN is an attempt to reproduce the dynami-
cal definition of CNN in morphological terms, with AMM as the state change
operator. The system effectively converges to a configuration where each pixel
is morphologically dependent of its neighbors, but this is a very weak condition
to obtain perceivable homogenous regions, unless some labelling postprocess is
imposed which must be based on some specific properties of morphologically
dependent pixels still to be defined.

Maintaining the goal of obtaining a morphologically based image segmentation,
performed by a collection of autonomous agents in the shape of a Cellular Au-
tomata, we shifted our attention from the operator (the AMM) to the property
(morphological independence). That leads us to the idea of considering mor-
phological dependence as a kind of equivalence relation. Pixel regions could be
identified by being morphologically dependent on a given morphologically dom-
inant vector, which is some kind of morphological region representative vector
that can be found in the image. For the visual identification of the region,
we can substitute all the morphologically dependent pixels by the morphologi-
cally dominant one. This in essence the working of the Morphological Cellular
Automata (MCA) proposed and tested in chapter 8.

2.7 Evolutionary algorithms

In chapter 9 we study the application of evolutionary strategies to induce the
endmember spectra from the data in the image. The goal was to obtain robust
methods of endmember induction, insensitive to small variations in the algo-
rithm paramters or the image characteristics. Elitist Evolutionary Strategies
(ES) [9, 8, 10] are the class of algorithms that can be applied to the problema
having the required global convergence properties ensuring the robustness of
the algorithm. They have been applied to a wide spectra of problems in the
literature, i.e. a small sample [3, 2, 12, 4, 16, 42, 51, 59, 1, 76, 88, 95]In the
straightforward representation of the problem the population individuals are
sets of endmembers and their fitness is related to some optimality criteria of
the abundance images. That is, the objective function to be minimized is the
combination of the reconstruction error of the image pixels and the satisfaction
of the properties of a true abundance image: the full aditivity to one and non-
negativity of all the abundance image pixels. The high computational cost of ES
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motivates the proposition of a faster algorithm. The conventional ES follows
the so called Pittsburg approach, where each populaiton individual models a
complete solution to the problem. The evolutionary dynamics stablishes a com-
petition between individuals looking for the best solution. The opposite view
is sustained by the Michigan approach, where the whole population encodes a
solution to the problem and the individuals must somehow cooperate to obtain
the best solution. In our setting we propose to use the entire population as a
single set of endmembers. Each individual is an endmember spectrum. Selection
and mutation is performed over a singled out spectra, while the evaluation of
a mutated individual relies in the improvement that it introduces in the global
population fitness. The selection of the individual to be mutated needs of the
definition of a local fitness function for each individual spectra in the set of
hypothetical endmembers. We call this algorithm a Single Individual Evolution
(SIE) strategy.
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Chapter 3

Linear Mixing Model

This chapter introduces the Linear Mixing Model (LMM) that is a central con-
cept in the work of this Thesis. The LMM is based on the knowledge of the
endmembers, whose induction from the data is the subject of most of this The-
sis. We introduce also in this chapter the competing approaches used in the
validation of the computational results, including the linear feature extraction
algorithms that do not perform an endmember induction. Section 3.1 gives the
formal definition of LMM and the spectral unmmixing. Section 3.2 introduces
the problem of endmember induction. Section 3.3 introduces the Independent
Componenent Analysis (ICA) and Principal Component Analysis (PCA).

3.1 Spectral unmixing and the linear mixing model

The linear mixing model (LMM) [52] can be expressed as follows:

x =
M∑

i=1

aisi +w = Sa+w, (3.1)

where x is the d-dimension image pixel spectrum vector, S is the d × M ma-
trix whose columns are the d-dimension endmembers si, i = 1, ..,M, a is the
M -dimension fractional abundance vector, and w is the d-dimension additive
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observation noise vector. The linear mixing model is subjected to two con-
straints on the abundance coefficients.

• First, to be physically meaningful, all abundance coefficients must be non-
negative

ai ≥ 0, i = 1, ..,M.

• Second, to account for the entire composition, they must be fully additive

M∑

i=1

ai = 1.

Once the endmembers have been determined, the unmixing process is the com-
putation of the matrix inversion that gives the fractional abundance of each
endmember in each pixel spectra and, therefore, the spectral unmixing. The
simplest approach is the unconstrained least squared error estimation given by:

â =
(
STS

)−1
STx. (3.2)

The abundance coefficients that result from this computation do not necessarily
fulfill the non-negativity and full additivity conditions. It is possible to enforce
each condition separately, but rather difficult to enforce both simultaneously
[52]. However, as our aim is to obtain qualitative segmentations of the image the
unconstrained estimation of equation (3.2) is convenient to compute the abun-
dance images efficiently. When presenting visual results, we will scale and shift
the abundance images to present them as grayscale images. This manipulation
is intended to enhance the visualization but may introduce some deformation of
the relative values of the abundance coefficients for the same pixel. Therefore,
when computing the correlation between abundance images we proceed on the
originally estimated images.

A final comment about the spectral unmixing: If we consider the normalized
abundance coefficients, they can be assimilated to posterior probabilities of the
classes represented by the endmembers. Therefore, the spectral unmixing can
be assimilated to a classification procedure, that provides a soft segmentation of
the hyperspectral image. If the endmembers are induced from the data without
any a priory selection, the procedure is an unsupervised soft segmentation of
the image.
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As a measure of the quality of the spectral unmixing obtained it is useful to
introduce the reconstruction error:

ε2 = ‖x− Sâ‖2 . (3.3)

This measure will be used in the fitness functions of the evolutionary strategies
in chapter 9.

3.2 Endmember induction

Once stated the LMM, a key issue is the determination of the endmembers wich
compose the basis for the linear decomposition of the data. Early approaches
to endmember determination were based on human expertise. The prior knowl-
edge about the contents of the imaged terrain was used by the expert to select
some candidate endmember spectra from a provided library. The spectra in the
library must come from the same sensor, in order to perform the matching and
unmixing. This approach is not feasible when trying to process large quantities
of image data. Current approaches try to induce the endmembers from the
image itself. Recent reviews are [70] which makes some emphasis on the degree
of automation to classify the algorithms, and [104] whose emphasis is on the
computational foundations, assuming that user interaction must be minimal or
null. We distinguish three fundamental approaches: Geometric approaches, that
try to find a simplex that covers the image data; Lattice Computing approaches,
that use some kind of lattice theoretic formalism or mathematical morphology
approach; and, Heuristic approaches, that are not very rigorously formalized
under a theoretical framework.

The first significant work on the automated induction of endmembers from im-
age data is [24], which starts with the observation that the scatter plots of
remotely sensed data are tear shaped or pyramidal, if two or three spectral
bands are considered. The apex lies in the so-called dark point. The endmem-
ber detection becomes the search for non-orthogonal planes that enclose the
data defining a minimum volume simplex, hence the name of the method. The
method is computationally expensive and requires the prior specification of the
number of endmenbers. A recent approach to the automatic endmember detec-
tion is the Convex Cone Analysis (CCA) method proposed in [46] and applied to
target detection. The CCA selects the greatest eigenvalue eigenvectors, as many
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as the specified number of endmembers. These eigenvectors define the basis of
the convex cone that covers the image data. The vertices of the convex cone
correspond to spectra with as many zero elements as the number of eigenvectors
minus one. The search for the convex cone vertices involves the exploration of
the combination of bands and the solution of a linear system for each combi-
nation. The complexity of the search for these vertices is O (bc) where b is the
number of bands and c the number of eigenvectors. At present we use a raw
random search for the experimental result in the experiment below. Another
approach is the modelling by Markov Random Fields and the detection of spa-
tially consistent regions whose spectra will be assumed as endmembers [75]. An
approach based on mathematical morphology in [69] involves the recursive mor-
phological filtering of image windows of increasing size to obtain progressively
pure endmember representatives. The erosion and dilation operators are based
on the local window statistics (average and eccentricity). In the following, we
present a brief review of the CCA and N-FINDER algorithms used on the com-
putational experiments to compare with our own proposed algorithms presented
in chapter 5.

3.2.1 The Convex Cone Analysis (CCA)

The CCA was proposed by [46]. The basic idea is that after performing a PCA
of the spectral correlation matrix, the data falls in a cone shaped region in
the positive subspace centered in the first eigenvector. Given the N ×M ×D

hyperspectral image, it is reorganized as a NM × D matrix S. The spectral
correlation matrix is computed as

C = STS.

Let it be C = PLPT the PCA decomposition of the correlation matrix, select
the first c eigenvectors [p1, ..,pc] = Pc and search for the boundaries of the
convex region characterized by

x = p1+a1p2+..+ ac−1pc≥ 0.

The vertices of this region are the points with exactly c − 1 zero components.
The CCA algorithm searches among all the

( b
c−1

)
possible combinations of eigen-
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Algorithm 3.1 N-FINDER algorithm
1. Apply Principal Component Analysis (PCA) to reduce the data dimen-

sionality. Keep the first p − 1 principal components to acumulate up to
99% of variance.

2. Randomly select p vectors from the data to initialize the set of induced
endmembers E.

3. Calculate the volume of the simplex v = V (E) (3.5). vactual = v.

4. For each endmember ek; k = 1, . . . p:

(a) For each data vector f (i) : i = 1, .., N :

i. Form a new matrix E′ by substituting the endmember ek by the
data vector f (i).

ii. Calculate the volume of the simplex v′ = V (E′).
iii. If v′ > vactual then E′ becomes E. vactual = v′.

5. If vactual > v then v = vactual. Go to step 4.

vectors performing the following test. Let it be

[p (γ1) , ..,p (γc−1)] = P′

the selected set of eigenvectors. Solve the set of equations

P′a = 0

and compute
x = Pca.

If x has exactly c − 1 zero components then it is a vertex of the convex region
data. In practice, each component is tested against a threshold. However, as the
combinatorial space grows the problem becomes intractable. We implemented
an straightforward random search. Application of more sophisticated random
search algorithms like genetic algorithms may be of interest for large problems.
The CCA algorithm provides the endmembers that may be used to compute
the abundance images.
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3.2.2 N-FINDER

The N-FINDER algorithm was introduced in [109], it is presented in Algorithm
3.1). Algorithm N-FINDER works by growing a simplex inside the data, be-
ginning with a random set of pixels. Previously, data dimensionality has to be
reduced to p− 1 dimensions, being p the number of endmembers searched for.

Let E be the matrix of endmembers augmented with a row of ones

E =

[
1 1 . . . 1

e1 e2 . . . ep

]
(3.4)

where ei is a column vector containing the spectra of the i-th endmember.
The volume of the simplex defined by the endmembers is proportional to the
determinant of E

V (E) =
abs(det(E))

(p− 1)!
(3.5)

The algorithm starts by selecting an initial random set of pixels as endmembers.
Then for each pixel and each endmember, the endmember is replaced with the
spectrum of the pixel and the volume recalculated by 3.5. If the volume of the
new simplex increases, the endmember is replaced by the spectrum of the pixel.
The procedure ends when no more replacements are done. The algorithm needs
of some random initializations to avoid local maxima.

3.3 Linear feature extraction: ICA and PCA

The Independent Component Analysis (ICA) [44] assumes that the data is a
linear combination of nongaussian, mutually independent latent variables with
an unknown mixing matrix. The ICA reveals the hidden independent sources
and the mixing matrix. That is, given a set of observations represented by a D

dimensional vector x, ICA assumes a generative model

x = As,

where s is the M dimensional vector of independent sources and A is the D×M

unknown basis matrix. Then, ICA searches for the linear transformation of the
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data W, such that the projected variables

Wx = s

are as independent as possible. It has been shown that the model is completely
identifiable if the sources are statistically independent and at least M − 1 of
them are non gaussian. If the sources are gaussian the ICA transformation
could be estimated up to an orthogonal transformation. Estimation of mix-
ing and unmixing matrices can be done maximizing diverse objective functions,
among them the non gaussianity of the sources and the likelihood of the sam-
ple. For the computational experiments, we have used the FastICA [44, 45]
algorithm available at http://www.cis.hut. /projects/ica/fastica. To apply it
we did reshape the hyperspectral images so that each band becomes a data
vector. The basis of vectors that specify the linear tranformation, equivalent to
our endmembers, are the columns of the estimated mixing matrix W, and the
estimated abundance coefficients are the independent sources s. Obviously, the
number of independent sources M searched for is equivalent to the number of
endmembers, and D is the number of spectral bands.

The Principal Component Analysis (PCA) [35] is a well-known linear dimen-
sion reduction procedure that has been proved to be optimal in the sense of
the mean squared error. It consists in the selection of the largest eigenvalue
eigenvectors of the data covariance matrix. These eigenvectors constitute the
transformation matrix. The selection of the number of eigenvectors or the inde-
pendent components can be made attending to some quantitative criteria, but
in our experiment below we selected the number of components in the ground
truth image. Eigenvectors are equivalent to the endmembers, and the linear
coefficients of the PCA projection are the corresponding
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Chapter 4

AMM and Morphological
Independence

The Associative Morphological Memories (AMM) [86, 77, 97, 98, 83] are the
morphological counterpart of the well known Hopfield Associative Memories
[49]. Dual AMM’s are constructed as correlation matrices computed by either
one of the dual matrix Min- or Max-product. The AMM are selectively sensitive
to specific types of noise (erosive and dilative noise). The notion of morpho-
logical independence and morphological strong independence was introduced in
[83] to study the construction of AMM robust to general noise. It was estab-
lished that AMM are able to robustly store and recall morphologically strongly
independent sets of patterns. Applying an input to the AMM for recalling of
a pattern morphologically dependent on one of the stored patterns gives the
stored pattern. When the input pattern is morphologically independent of the
stored patterns, the result of recall is a morphological polynomial on the stored
patterns [98]. These results set the stage for the definition in chapter 5 of
our procedure for endmember induction, which tests if the recalled pattern is
different to the stored patterns to detect morphologically independent patterns.

Section 4.1 gives the basic definitions of AMM. Section 4.2 introduces the ef-
fect of noise in AMM. Section 4.3 introduces the morphological independence.
Section 4.4 presents the relation between strong lattice indepencende and affine
independence. Section 4.5 gives the reason why our algorithms in chapter 5 are
defeined on binary AMMs.
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4.1 Associative Morphological Memories

The work on Associative Morphological Memories stems from the considera-
tion of partially ordered ring (R,∨,∧,+) instead of the algebraic ring (R,+, ·)
as the computational framework for the definition of Neural Networks com-
putation [86, 77]. The operators ∨ and ∧ denote, respectively, the max and
min operators, which correspond to the morphological dilation and erosion op-
erators, respectively. Given a set of input/output pairs of pattern (X,Y ) =
{(

xξ,yξ
)
; ξ = 1, .., k

}
, a linear heteroassociative neural network based on the

pattern’s cross correlation [49] is built up as

W =
∑

ξ

yξ ·
(
xξ

)′
.

Recall of an stored output pattern is achieved by the multiplication of the input
pattern with memory:

ŷξ = Wxξ.

When the recalled pattern is identical to the stored one, i.e. ŷξ = yξ, then
we have perfect recall. The robustness of the memory consists in its ability to
recall good approximations of the stored pattern even when the input pattern
is distorted by noise.

Mimicking this construction procedure [86, 77] propose the following construc-
tions of Heteroassociative Morphological Memories (HMM’s), the erosive HMM:

WXY =
k∧

ξ=1

[
yξ ×

(
−xξ

)′] (4.1)

and the dilative HMM:

MXY =
k∨

ξ=1

[
yξ ×

(
−xξ

)′]
, (4.2)

where × is any of the ∨! or ∧! operators. Here ∨! and ∧! denote the matrix
max- and min-product, respectively defined as follows:

C = A ∨! B = [cij ] ⇔ cij =
∨

k=1..n

{aik + bkj} , (4.3)
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C = A ∧! B = [cij ] ⇔ cij =
∧

k=1..n

{aik + bkj} . (4.4)

The recall operation is performed applying these morpholgical matrix products,
that is,

ŷξ = WXY ∨! xξ.

or
ŷξ = MXY ∧! xξ.

If X = Y then the HMM memories are Autoassociative Morphological Memories
(AMM). Conditions of perfect recall by the HMM’s and AMM’s of the stored
patterns are proved in [86, 77]. In the continuous case, the AMM’s are able to
store and recall any set of patterns, that is:

WXX ∨! x = x = MXX ∧! x, ∀x ∈ X, (4.5)

which can be stated in compact form as follows:

WXX ∨! X = X = MXX ∧! X, (4.6)

for any X.

That is, AMMs possess perfect recall for noiseless patterns [86, 77]. It is also
interesting to note that if we iterate the memory recall we obtain a fixed point
very fast, in fact it is obtained at the second iteration:

WXX ∨! z = v ⇒ WXX ∨! v = v, (4.7)

MXX ∧! z = u ⇒ MXX ∧! u = u. (4.8)

The set of fixed points F (X) of the morphological memories constructed from
the set of patterns X is the same for both types of AMM:

F (X) = {x |WXX ∨! x = x} = {x |MXX ∧! x = x} .
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4.2 Noise in AMM

The perfect recall results hold when we try to recover the output patterns from
the noise-free input pattern. Let it be x̃γ a noisy version of xγ . Two kinds of
noise can be distinguished from the morphological point of view:

• Erosive noise: If x̃γ ≤ xγ then x̃γ is an eroded version of xγ , alternatively
we say that x̃γ is corrupted by erosive noise.

• Dilative noise: If x̃γ ≥ xγ then x̃γ is a dilated version of xγ , alternatively
we say that x̃γ is corrupted by dilative noise.

Morphological memories are selectively sensitive to these kinds of noise. The
conditions of robust perfect recall [86, 77] are on the basis of the proposed
endmember induction algorithms. Given a set of patterns X, the equality

WXX ∨! x̃γ = xγ (4.9)

holds when the noise affecting the pattern is erosive x̃γ ≤ xγ and the following
relation holds:

∀i∃ji; x̃γ
ji
= xγ

ji
∨




∨

ξ #=γ

(
xγ
i − xξ

i + xξ
ji

)


 . (4.10)

Similarly, the equality

MXY ∧! x̃γ = xγ (4.11)

holds when the noise affecting the pattern is dilative x̃γ ≥ xγ and the following
relation holds:

∀i∃ji; x̃γ
ji
= xγ

ji
∧




∧

ξ #=γ

(
xγ
i − xξ

i + xξ
ji

)


 . (4.12)

Therefore, the AMM will systematically fail to recall the pattern if the noise is
a mixture of erosive and dilative noise.
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4.3 Morphological independence

To obtain general noise robustness [74], some works proposed the kernel method
and some enhancements [77, 83]. Related to the construction of the kernels,
[83] introduced the notion of morphological independence. Here we distinguish
erosive and dilative versions of this definition. Given vectors x,y ∈ Rd, y is
morphologically dependent in the erosive sense of x if y ≤ x, y is morphologi-
cally dependent in the dilative sense of x if y ≥ x. In both cases, we say that x
is dominant. Given a set of pattern vectors X =

(
x1, ...,xk

)
, a pattern vector

y of the same dimensionality is

• Morphologically independent of X in the erosive sense if y ! xγ ; γ =

{1, .., k} , and

• Morphologically independent of X in the dilative sense if y " xγ ; γ =

{1, .., k} .

The set of pattern vectors X is said to be morphologically independent in either
sense when all the patterns are morphologically independent of the remaining
patterns in the set. For the endmember induction application we want to use
AMM as detectors of the of morphological independent vectors which correspond
to the set of extreme points, to obtain a rough approximation of the minimal
simplex that covers the data points. We note that given a set of pattern vectors
X =

(
x1, ...,xk

)
, and the erosive WXX and dilative MXX memories constructed

from it, and a test pattern y /∈ X, if y is morphologically independent of X in
the erosive sense, then WXX ∨! y /∈ X. Also, if y is morphologically independent
of X in the dilative sense, then MXX ∧! y /∈ X. Therefore the AMM’s can be
used as detectors of morphological independence.

Morphological independence has been generalized to lattice independence in
recent works [79, 81] stablishing its relation with affine independence. This
equivalence is very useful for the induction of endmembers from data for linear
unmixing processes [40, 38]. A vector x is lattice dependent on the set X if it
can be expressed as a linear minimax combination of the X :

x =
∨

j∈J

k∧

γ=1

(aγj + xγ) . (4.13)
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It is important to note [79] that a vector x is a fixed point of the erosive WXX

and dilative MXX memories if and only if it is lattice dependent on X. In other
words, F (X) is composed of the vectors that are lattice dependent on X.

4.4 Lattice independence and Affine Independence

It has been shown [79, 96] that given a set of vectors X =
{
x1, ...,xk

}
⊂ Rn, a

vector y ∈Rn
±∞ is a fixed point of WXX , that is WXX ∨! y = y, if and only if y

is lattice dependent on X.

A set of vectors X =
{
x1, ...,xk

}
⊂ Rn is said to be max dominant if and only

if for every λ ∈ {1, ..., k} there exists and index jλ ∈ {1, ..., n} such that

xλ
jλ − xλ

i =
k∨

ξ=1

(
xξ
jλ

− xξ
i

)
∀i ∈ {1, ..., n} .

Similarly, X is said to be min dominant if and only if for every λ ∈ {1, ..., k}
there exists and index jλ ∈ {1, ..., n} such that

xλ
jλ − xλ

i =
k∧

ξ=1

(
xξ
jλ

− xξ
i

)
∀i ∈ {1, ..., n} .

These expressions are identical to the ones given above for the robust recall of
noisy patterns. Their value as an identifiable property of the data has been
discovered in the context of the formalization of the relationship between strong
lattice independence, defined below, and the affine independence in the classical
linear analysis.

A set of lattice independent vectors
{
x1, ...,xk

}
⊂ Rn is said to be strongly

lattice independent (SLI) if and only if X is max dominant or min dominant or
both.

As said before, min and max dominance are the conditions for perfect recall.
Per construction, the column vectors of Lattice Autoassociative Memories are
diagonally min or max dominant, depending of their erosive or dilative nature,
therefore they will be strong lattice independent, if they are lattice independent.

In [81] it has been proven that if X =
{
x1, ...,xk

}
⊂ Rn is strongly lattice

independent then X is affinely independent. This result is the key result relating
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the linear convex analysis and the non-linear morphological/lattice analysis.
Building sets of strongly morphological/lattice independent vectors allows to
assume them as affine independent vertices of a convex polytope covering the
data.

4.5 Rationale for the use of binary AMM

The endmembers that we are searching for define a high dimensional box cen-
tered at the origin of the high dimensional space (the data mean is shifted to the
origin). They are morphologically independent vectors both in the erosive and
dilative senses, and they enclose the remaining vectors. Working with integer
valued vectors, given a set of pattern vectors X =

(
x1, ...,xk

)
and the erosive

WXX and dilative MXX memories constructed from it, if a test pattern y < xγ

for some γ ∈ {1, .., k} then WXX ∨! y /∈ X. Also, if the test pattern y > xγ for
some γ ∈ {1, .., k} then MXX ∧! y /∈ X. Therefore, working with integer valued
patterns the AMM will be useless for the detection of morphologically indepen-
dent patterns. However, if we consider the binary vectors obtained as the sign
of the vector components, then morphological independence can be detected as
suggested above: The already detected endmembers are used to build the ero-
sive and dilative AMM. If the output recalled by a new pattern does not coincide
with any of the endmembers, then the new pattern is a new endmember.
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Chapter 5

The AMM-based endmember
induction algorithm

We present in this chapter our computational procedure for the induction of
endmembers from hyperspectral image for spectral unmixing. This procedure
makes profit of the selective noise sensitivity of the Associative Morphological
Memories (AMM) to detect the morphological independence conditions that are
a necessary condition of endmember spectra. We present to equivalent versions
of the algorithm. The first is called Endmember Induction Heuristic Algorithm
(EIHA) corresponds to the earlier formulations when the theory underlying the
approach was not stablished. This algorithm was used to obtain the results
in chapter 6. The second is called Incremental Lattice Independent Algorithm
(ILIA) following a more recent notation. It has been used for the CBIR ex-
periments in chapter 7. Both algorithms work in a single pass over the image,
which is a desirable feature given the large computational cost of processing
hyperspectral images. The procedure is unsupervised and does not need the
explicit setting of the number of endmembers searched for.

Section 5.2 describes the EIHA algorithm. Section 5.3 describes the ILIA version
of the algorithm.
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5.1 Notation

We denote by
{
f (i, j) ∈ Rd; i = 1, .., n; j = 1, ..,m

}
the multispectral or hyper-

spectral image whose pixels are d-dimensional vector.

We denote µ and σ the d-dimensional vectors containing the the mean and
standard deviations of each pixel component computed over the image, that is

µk =
1

n ·m
∑

i,j

fk (i, j) ,

σk =
1

n ·m
∑

i,j

(fk (i, j)− µk)
2 .

We denote by α a tuning sensitivity parameter for the selection of endmembers.
This parameter filters out the pixels that are considered as random perturbation
of the already detected endmembers. The vector interval that is considered as
a perturbation is defined by the addition and subtraction of ασ. Therefore,
we assume some kind of normal distribution model of the data around each
endmember. Lowering α we allow for more endmembers to be discovered, bigger
values of α impose greater limitations to test pixels as candidate endmembers
thus lowering the number of endmembers discovered.

We denote by E = {e1, e2, . . . , ep} the set of endmembers induced by the algo-
rithm.

The sign function sign : Rd → {0, 1}d returns a binary vector corresponding
to the sign of each component of the input. Let it be b = sign (x), then the
function is characterized by:

bi =

{
1 xi > 0

0 xi ≤ 0
.

5.2 EIHA

The Endmember Induction Heuristic Algorithm (EIHA) starts by computing
the zero mean image, that is obtained by substracting the pixel spectra mean
from all the image pixels. This shifted image will allow the identification of
the space partitions relative to the mean. The set of endmembers is initialized
picking a pixel spectrum at random (it can be the first pixel in the image). The
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Algorithm 5.1 Endmember Induction Heuristic Algorithm
1. Compute the zero mean image

{f c (i, j) = f (i, j)− µ; i = 1, .., n; j = 1, ..,m}.

2. Initialize the set of endmembers E = {e1} with a pixel spectrum e1 =
f c (i∗, j∗) randomly picked from the image. Initialize the set of morpho-
logically independent binary signatures X = {x1} with x1 = sign (e1).

3. Construct the AMM’s based on the morphologically independent binary
signatures: MXX and WXX .

4. For each pixel f c (i, j)

(a) compute the vector of the signs of the Gaussian noise corrections
f+ (i, j) = sign (f c (i, j) + ασ) and f− (i, j) = sign (f c (i, j)− ασ)

(b) compute y+ = MXX ∧! f+ (i, j)

(c) compute y− = WXX ∨! f− (i, j)

(d) if y+ /∈ X or y− /∈ X then f c (i, j) is a new endmember to be added
to E, go to step 3 and resume the exploration of the image.

(e) if y+ ∈ X and f c (i, j) > ey+ , then the current pixel spectral sig-
nature is more extreme than the stored endmember, then substitute
ey+ with f c (i, j) .

(f) if y− ∈ X and f c (i, j) < ey− then the current pixel is more extreme
than the stored endmember, then substitute ey− with f c (i, j) .

5. The final set of endmembers is the set of original spectral signatures f (i, j)
of the pixels selected as members of E.
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algorithm keeps for each endmember its signature, consisiting on its sign. The
endmembers’ signatures X will be used to detect morphologically independent
vectors that give the first condition about the strong morphological indepen-
dence of the endmembers, required to be affinely independent. Therefore, the
algorithm computes the signature of the first found endmember. The endmem-
bers’ signatures are the basis vectors to compute the erosive and dilative AMM
MXX and WXX used to detect the morphological independence.

The algorithm proceeds testing each image pixel as follows. First computes the
signatures (the sign) of the upper and lower bound of the allowable perturbations
of the pixel, adding and substracting ασ. These signatures are applied to the
erosive and dilative morphological memories respectively obtaining recall vectors
y+ and y−, respectively. If one or both of these vectors do not belong to the
set of signatures X then a new endmember has been found, which is added to
the set E and its signature is added to X.

If the recalled signatures belong to X means that there is an identified endmem-
ber in this quadrant of the spectral space, nevertheless we test if the current
pixel is further away from the data mean than the considered extreme. We
denote ey+ the endmember vector whose signature is y+.

The algorithm returns the original spectra (before shifting to zero mean) of the
detected endmembers. The endmembers correspond to separate spectral space
quadrants about the mean of the data, and are the most extreme spectrum
found in this quadrant. The steps in the procedure are shown in the Algorithm
5.1

5.3 ILIA

The ILIA is an evolved formulation of the Endmember Induction Heuristic Algo-
rithmm (EIHA). This approach is based on the recent theoretical results showing
that Strong Lattice Independent (SLI) sets of vectors are Affine Independendent
[79, 81], and, thus, can be interpreted as a collection of endmembers for the anal-
ysis of hyperspectral data. This theoretical results confirms the intuition behind
EIHA, allowing a more clear formulation. The SLI involves two conditions: Lat-
tice Independence and max/min dominance. Lattice Independence is detected
based on results on fixed points for Lattice Autoassociative Memories (LAM)
[74, 81, 96]. A lattice dependent vector will be a fixed point of anyone of the
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Algorithm 5.2 A LAAM based Incremental Lattice Independence Algorithm
(ILIA) for the induction of endmembers

1. Shift the data sample substracting f̄ the mean of the image pixels’ spectra{
f c (i) = f (i)− f̄ ; i = 1, .., n

}
.

2. Initialize the set of endmembers E = {e1 = f c (i∗)} where i∗ is a randomly
picked sample index. The initial set of endmember sample indices is I =
{i∗}.

3. Construct the LAAM’s based on the set of endmembers: MEE .

4. For each input image feature vector f c (i)

(a) If there is any e ∈ E such that ∀j :
∥∥f c

j (i)− ej
∥∥ < ασj discard f c (i),

otherwise proceed to test SLI
(b) If f c (i) = MEE ∧! f c (i) then discard f c (i) because it is lattice de-

pendent on the already discovered endmembers.
(c) Test max/min dominance to ensure SLI, consider the enlarged set of

endmembers E′ = E ∪ {f c (i)}
i. µ1 = µ2 = 0

ii. for i = 1, . . . ,K + 1

iii. s1 = s2 = 0

A. for j = 1, . . . ,K + 1 and j 0= i
d = ei − ej ; m1 = max (d); m2 = min (d).
s1 = s1 + (d == m1), s2 = s2 + (d == m2).

B. µ1 = µ1 + (max (s1) == K) or µ2 = µ2 + (max (s2) == K).
iv. If µ1 = K+1 or µ1 = K+1 then E′ is a set of SLI vectors, go to

3 with the enlarged set of lattice sources and resume exploration
with the next input.

5. The output set of endmembers is the set of original data vectors
{f (i) : i ∈ I} corresponding to the vectors selected as members of E.

39



dual LAMs constructed with the current E. The max/min dominance is tested
using algorithms inspired in the ones described in [103].

The ILIA (Algorithm 5.2) is a greedy incremental algorithm that passes only
once over the sample. It starts as EIHA computing the zero mean shifted image.
The endmember set E is initialized with a randomly picked zero mean shifted
pixel spectrum vector. The dilative AMM is built with the current set of end-
members. All the pixels are tested following the ensuing steps. First, if the
pixel lies in the interval defined by the sensitivity factor α around some of the
already detected endmembers, then it is discarded as a random perturbation of
the endmember. Second, if the recall obtained from the endmemembers AMM
appluing the pixel is the pixel itself, then the pixel is lattice dependent on the
current endmembers in E. If not, then the pixel is a candidate endmember, that
must be considered for testing min or max-dominance. This is done counting
the number of times that each vector contains a maximum or minimum compo-
nent of the pairwise differences between endmbers. If the count is equal to the
number of endmembers including the candidate endmember, then the new set of
endmembers is effectively SLI. The algorithm rebuilds MEE with the enlarged
set and proceeds with the remaining pixels.

The final endmember set is guaranteed to have a set of SLI vectors. There is
not, however, any kind of optimality ensured.
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Chapter 6

Experimental results of the
EIHA

In this chapter we gather the experimental results produced along the work
of this PhD. We will first report the results obtained on synthetic hyperspec-
tral images, which allow a very precise quantification of algorithm performances
because we have available both the abundance and the endmembers that consti-
tute the ground truth of the image. We can compute the correlations between
the ground truth abundance images and the ones induced by the algorithms to
obtain precise evaluations of the endmember accuracies. The image generation
process allow to obtain various spatial distributions easily, with great realism as
described in Appendix A . We also include the experimental results obtained
with the real life hyperspectral images described in Appendix B. The End-
member Induction Heuristic Algorithm (EIHA) of Chapter 5 is compared with
the Convex Cone Analysis (CCA), Independent Component Analysis (ICA),
Principal Component Analysis (PCA) on those images.

6.1 Experiments on synthetic hyperspectral im-
ages

We will consider three collections of synthetic images of increasing number of
ground truth endmembers: 2, 3 and 5 endmembers were used in the linear
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mixing simulating the image generation process. As the number of endmembers
increase, the complexity of the problem increases. The aim is to appreciate how
the algorithms degrade their response as the number of endmembers grows. For
our algorithm, that increase in complexity means tuning the gain parameter
α. For CCA means that the search space grows exponentially and for ICA
means that it reaches numerical stability problems. When we deal with the 5
endmember images, our algorithm found for some images 4 endmembers instead
of 5, and the ICA sometimes was only able to find 3 endmembers. CCA was
able to obtain always the desired number of endmembers at the cost of increased
time search.

The experiments consisted on the computation of the endmembers and abun-
dance images induced by each method. When applying the ICA and CCA
methods we have set the number of endmembers desired to the exact number of
ground truth endmembers. Our approach needed the setting of the noise gain
parameter α. For the 2 endmember images we set α = 2. After some trials, we
set α = 0.3 for the 5 endmember images. The comparison is qualitative regard-
ing the shape of the endmembers and the likeness of the abundance images, but
also quantitative because we can compute the correlation between the ground
truth abundance images and the ones obtained after computing the spectral
unmixing with the endmembers given by the algorithms.

6.1.1 Quantitative results

Even if the shape of the induced endmember spectra does not correspond to the
shape of the ground truth endmember spectra, it is still possible that the abun-
dance images obtained after spectral unmixing may reflect the same spatial dis-
tribution of the ground truth synthetic images. To what degree the algorithms
are able to uncover the hidden ground truth abundances? It is well known
[35] that unsupervised approaches, e.g. clustering algorithms, can perform data
analysis, discovering latent classes in the data, up to some permutation of the
original classes. That means that the unsupervised algorithms can not identify
the original latent classes. Therefore, to evaluate the quality of the unsuper-
vised approaches we must test all possible combination of algorithm result and
ground truth information.

To answer this question we first considered some concrete images in the 2, 3,
and 5 endmember collections. We compare first the CCA and the EIHA ap-
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proaches. After applying the algorithms and computing the abundance images,
we computed the correlation coefficient between each ground truth abundance
image and the induced ones.

First we consider the case of the 2 endmembers image. Table 6.1 presents the
correlation coefficients between the ground truth abundances (columns GT#)
and abundances estimated on the basis of the endmembers obtained by EIHA
(left) and CCA (right), by rows. We note two things:

• Both algorithms obtain good identification of the ground truth abun-
dances. There is only one entry with high correlation for each ground
truth abundance at each row, and the other entry has strong negative
correlation.

• The EIHA is slightly better than the CCA.

Let us consider now the case of the 3 endmembers image. In table 6.2 we present
the correlation of ground truth and estimated abundance images. We note as
in the previous case that the identification of the ground truth is performed
by each algorithm, though in different permutations. Besides we note that the
strong negative correlation of the other abundances is dimished. Increasing the
complexity of the problem decreases the blind class identification ability of the
algorithms.

Finally, we consider the 5 endmember image case. In tables 6.3 and 6.4 we
present the correlation results for 5 ground truth endmembers, for the EIHA
and CCA, respectively. We note the following facts:

• The EIHA is able to biunivocally identify all the ground truth images, that
is, each row and column contains only one strong positive correlation, with
the remaining entries showing negative correlation.

• The CCA does not achieve the blind indentification. Row #1 has two high
correlation entries, meaning confusion between them. Rows #2, #3 and
#4 do not have strong positive correlations, meaning indiference. Row
#5 has some moderate positive correlations but shows confusion between
several ground truth classes.

• EIHA is much better than CCA in this task.
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EIHA CCA
GT#1 GT#2 GT#1 GT#2

#1 -0.99 0.99 -0.97 0.97
#2 1.00 -0.99 0.97 -0.98

Table 6.1: Correlations between ground truth and estimated abundance images,
2 ground truth endmembers.

EIHA CCA
GT#1 GT#2 GT#3 GT#1 GT#2 GT#3

#1 -0.43 -0.28 0.98 -0.69 0.88 -0.46
#2 0.99 -0.73 -0.60 0.95 0.01 -0.57
#3 -0.61 0.98 -0.27 -0.33 -0.79 0.99

Table 6.2: Correlations between ground truth and estimated abundance image,
3 ground truth endmembers

GT#1 GT#2 GT#3 GT#4 GT#5
#1 -0.42 -0.27 0.99 -0.40 -0.40
#2 -0.22 -0.19 -0.28 0.99 -0.10
#3 -0.15 -0.11 -0.16 -0.14 0.97
#4 -0.23 0.99 -0.26 -0.21 -0.18
#5 0.99 -0.33 -0.35 -0.25 -0.11

Table 6.3: Correlation of ground truth and estimated abundance images ob-
tained by the EIHA endmembers, 5 ground truth endmembers.

GT#1 GT#2 GT#3 GT#4 GT#5
#1 0.92 -0.92 -0.92 0.93 -0.94
#2 -0.16 0.09 0.22 -0.15 0.18
#3 0.03 -0.02 -0.08 0.02 -0.02
#4 -0.22 0.27 0.23 -0.26 0.22
#5 -0.60 0.61 0.57 -0.58 0.57

Table 6.4: Correlation of ground truth and estimated abundance images ob-
tained by the CCA endmembers, 5 ground truth endmembers.
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It is evident that our algorithm is able to “discover” the ground truth abundances
in the sense of obtaining images with high correlation and no confussion.

Next we extend this experiment to the whole collection of synthetic images,
applying EIHA, CCA and ICA. As said above, the estimated abundance images
and the induced endmembers are given in an order which is, in the best case,
a permutation of the true classes in the ground truth information. Giving the
detailed correlation matrices for each image would be an annoying amount of
information. Therefore, we will only consider aggregated information, in the
form of the best or the worst correlation with the ground truth images.

The experimental database contains several images generated with 2 ground
truth endmembers, varying the θ parameter of the correlation function used to
generate the abundances. Let us consider only the positive correlations that may
be associated with a positive identification of the gorund truth abundance image.
We plot in figure 6.1 the highest of such correlations obtained by the competing
methods: EIHA (denoted AMM in the figures in this section), ICA and CCA.
The plot gives a best value for each θ value, corresponding to an image. It
can be appreciated that the EIHA provides the best identification of one of the
ground truth classes, very close to 1. Next best is ICA and the CCA provides
less optimal identification. We assume that the identification for this class in
the images is as in the table 6.1, so that both classes are identified with positive
correlations. If we consider the lowest positive correlation, we obtain the plot
in figure 6.2. This plot corresponds to the strength of identification of the other
ground truth class. Then, ICA results are very bad, while EIHA (denoted AMM)
and CCA have similar values as in the figure 6.1. The explanation of ICA’s
behavior lies in the fact that ICA identifies non-Gaussian sources. Only one
Gaussian source can be identified. In the present case, that means that only one
of the two ground truth classess can be identified. So the results are consistent
with the theoretical expectations. This highlights an intrinsic problem in the
application of ICA to hyperspectral image unmixing, that it is very difficult to
find images with non-Gaussian sources in the real life applications. It must be
noted that the figures have been ordered by the correlation parameter of the
gaussian random field aiming to detect influences of the noisiness of the ground
truth in the performance of the algorithms. We do not detect any one. That is,
our approach is robust against spatial noise in the abundance images.
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Figure 6.1: Highest positive correlations obtained on the 2 endmember synthetic
images between the ground truth abundance images and the ones induced by
each method: EIHA (denoted AMM), CCA and ICA.
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Figure 6.2: Lowest correlations obtained on the 2 endmember synthetic images
between the ground truth abundance images and the ones induced by each
method: EIHA (denoted AMM), CCA and ICA.

For the images generated with 5 ground truth endmembers we will consider the
best correlations obtained for each ground truth image all over the database.
This is shown in figure 6.3. This plot does not give information about the
possible confusion in the matrix that can be appreciated in table 6.4. We are,
thus, focusing on the strength of the best identification found in the correlation
table. It can be appreciated that EIHA is the best approach again. ICA is
the worst approach most of the times, while CCA is in between. Low positive
correlations are a sure symptom for the existence of confusions. If we consider
now the lowest positive correlation for each ground truth abundance image, we
obtain the plot in figure 6.4. We find that EIHA provides the best results, ICA
repeats the worst results, indicative of confusions, and CCA is in between.

Finally we plot all the correlations (after sorting them in ascending order) found
by the algorithms in all the images. In figure 6.5 we show them. The abscissa
is the ordinal of the estimated abundance image. Note that the curves for ICA
are sometimes shorter, because it is not able to obtain the 5 endmembers from
the image. Overall EIHA gives the best results again, outperforming CCA and
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Figure 6.3: Higest correlations obtained on the 5 endmember synthetic images
between the ground truth abundance images and the ones induced by each
method: EIHA (denoted AMM), CCA and ICA.

Figure 6.4: Lowest correlations obtained on the 5 endmember synthetic images
between the ground truth abundance images and the ones induced by each
method: EIHA (denoted AMM), CCA and ICA.
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ICA. As said before, ICA can only identify one Gaussian source. It can be
appreciated that sometimes one of the ICA abundance correlation result comes
close to the EIHA results. This correspond to the identified Gaussian source,
the other are very far below.

Figure 6.5: Correlations obtained of the induced abundance images with the
ground truth for all the 5 endmember synthetic images and methods: EIHA
(denoted AMM), CCA and ICA.

6.1.2 Visual qualitative results

We present some instances of the abundance images in figures 6.6, 6.7 and 6.8, to
give a qualitative assessment of the results. In the case of 2 endmember images,
we present the results without ordering, while for the 5 endmember images we
have ordered the induced abundances by their correlation with the ground truth
abundance. It can be appreciated that EIHA’s estimated abundance images
almost reproduce the ground truth abundance images. This is not true for CCA
and ICA. For them some of the abundance images are unrelated with the ground
truth, while others appear like combinations of several ground truth abundances.
Nevertheless these qualitative observations may be of no use with very noisy
images, like the ones in figure 6.6, where it is very difficult to ascertain visually
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the identification of original abundance structure in the induced images. For
this reason, the quantitative evaluation is more useful than the visual inspection
of the results.

Figure 6.6: Abundance images generated with covariance parameters θ = 2,
used to synthetize a 2 endmember hyperspectral image, and the abundance
images induced by the EIHA (denoted AMM), ICA and CCA

Figure 6.7: Abundance images generated with covariance parameters θ = 20,
used to synthetize a 2 endmember hyperspectral image, and the abundance
images induced by the EIHA (denoted AMM), ICA and CCA
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Figure 6.8: Abundance images generated with parameters θ = 20, used to syn-
thetize a 5 endmember hyperspectral image, and the abundance images induced
from the data by the EIHA (denoted AMM), ICA, and CCA.

We can perform a visual inspection of the induced endmembers. We must
recall that our approach selects spectra from the image, therefore it does not
introduce additional noise. We have considered two images of 2 ground truth
endmembers, generated with θ = 2 and θ = 20, and an image of 5 ground truth
endmembers generated with θ = 20. We show in figures 6.9, 6.12, 6.15 the
EIHA induced endmembers. It can be appreciated that they are very similar
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to the ones reproduced in the Appendix A. The endmembers induced by CCA
(figures 6.10, 6.13, 6.16) and ICA (figures 6.11, 6.14, 6.17) have no relation
with the ground truth endmembers used to generate the images. However, if
we want to obtain unsupervised segmentations of the images, then the exact
shape of the induced endmembers is not important because very different sets
of endmembers may give very similar abundance images.

Figure 6.9: Endmembers induced by EIHA on a 2 endmembers synthetic image
of parameter θ = 2.
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Figure 6.10: Endmembers induced by CCA on a 2 endmembers synthetic image
of parameter θ = 2

Figure 6.11: Endmembers induced by ICA on a 2 endmembers synthetic image
of parameter θ = 2
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Figure 6.12: Endmembers induced by EIHA on a 2 endmembers synthetic image
of parameter θ = 20

Figure 6.13: Endmembers induced by CCA on a 2 endmembers synthetic image
of parameter θ = 20
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Figure 6.14: Endmembers induced by ICA on a 2 endmembers synthetic image
of parameter θ = 20

Figure 6.15: Endmembers induced by the EIHA on a 5 endmembers synthetic
image of parameter θ = 20.
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Figure 6.16: Endmembers induced by the CCA on a 5 endmembers synthetic
image of parameter θ = 20 (after normalization).

Figure 6.17: Endmembers induced by the ICA on a 5 endmembers synthetic
image of parameter θ = 20 (after normalization).
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6.2 Experimental results on remote sensing im-
ages

We have tested our approach on the Indian Pines image and on the Salinas
image which are described in Appendix B. There are two kinds of validation
processes involved: one is the qualitative visual inspection of the abundance
images, the other is the realization of classification experiments based on the
abundance coefficients as feature vectors for the classification systems.

6.2.1 Visual results on Indian Pines

6.2.1.1 Results after PCA

We have performed a Principal Component Analysis (PCA) pixel spectra di-
mension reduction from 220 to 11 coefficients. The EIHA algorithm has been
applied to the PCA coefficients. Working with the PCA reduced data has the
advantage of reducing the computational requirements, however it is not clear
whether significant information is lost in the dimension reduction process. An
important remark: the endmember spectra are taken from the original image,
not from the PCA reconstruction. Thus the spectral unmixing is performed on
the original image.

Setting α = 0.2, we have obtained 8 endmembers. This number of endmembers
seems reasonable for this image. We can not use information about the ground
truth number of classes in a pure unsupervised approach.

The spectral unmixing based on the endmember spectra found produces abun-
dance images that can be interpreted according to the ground truth in Appendix
B assuming that the white corresponds to high concentrations of the correspond-
ing endmember, and, therefore, to the detection of a specific kind of cover. The
abundance images are presented in figure 6.18.

• Endmember #1 seems to identify some brushwood marginal regions. These
results do not fit well in the ground truth characterization, corresponding
mainly to background.

• Endmember #2 identifies the metal towers and shows some confusion with
crop fields. Crops in an early stage of growth show mostly bare soil. This
confusion is typical of unsupervised methods.
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• Endmember #3 identifies a highway, and has negative response to veg-
etation covers, specially woods. If we consider the fact that due to the
early growth stages most of the surface area corresponding to a pixel in
the cultivated land is bare soil, we may assume that the endmember that
generates this abundance image corresponds to soil cover spectra.

• Endmember #4 has very little contrast. It may be confused with noise
background. Endmember #8 has a similar low contrast appearance.

• Endmember #5 gives a more discriminant identification of the steel and
stone towers, also seems to detect asphalt-like materials corresponding to
roads. Our interpretation is that this endmember corresponds to a generic
opposite to the vegetal cover spectra.

• Endmember #6 seems to detect some grass related cover class.

• Endmember #7 is definitively a positive detector of woods and tree-like
vegetal covers. The background cover in the ground truth does correspond
to woods in a high percentage of its area. This result agrees with the
results of careful supervised classification experiments reported in [100].

• The wheat cover is not detected by any endmember. Other unsupervised
approaches have also found difficulties in detecting this region of the image.

6.2.1.2 Results on the raw data

We have applied EIHA and CCA to the Indian Pines image. Setting EIHA’s
parameter α = 2, we have obtained 8 endmembers. The abundance images
resulting from the unmixing with the induced endmembers are shown in fig-
ure 6.19. Comparison with the results of careful supervised classification [100]
explain their discrepancies relative to the ground truth areas. Regarding the
EIHA results we can note the following facts:

• The endmember #1 does identify stone or asphalt like materials, because
it detects clearly the steel and stone towers as well as the roads in the
image. The towers are also strongly detected by endmember #5.

• Endmember #7 is a good detector for woods and vegetal covers alike to
them, trees and brushwood.
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Figure 6.19: Abundance images obtained by spectral unmixing using the end-
member spectra obtained with the EIHA on the Indian Pines raw image data.
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Figure 6.20: Abundance images obtained by spectral unmixing using the end-
member spectra obtained with the CCA method on the Indian Pines raw image
data.
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• Endmember #5 is a good detector of soil and mineral cover, because it
detects crop fields that seem to be in early growth stages and the steel
and stone towers, as well as some other buildings.

• Endmembers #2, #3 and #8 have little contrast. They detect mostly
vegetation.

• The wheat cover regions is not detected.

The comparison with the abundance images obtained from the spectral unmix-
ing with the CCA endmembers serves also to the qualitative validation of our
procedure. We have applied the CCA method with the number of endmembers
set to 6 (a number of endmembers greater than that gave very large compu-
tation times). The abundance images are presented in figure 6.20. Note that
they are two basic images repeated three times. The endmember spectra cor-
responding to two similar abundance images are almost proportional. We note
the following facts:

• Endmembers #1, #2, #5 show good detection of soil and stone like struc-
tures. It detects the steel and stone towers, the crop fields in early growth
stage and the highway.

• Endmbers #3, #4, #6 show good detection of vegetal cover, specially
woods. The ground truth background class pixels identified also with
woods in some areas of these abundance images agree with the results of
careful supervised classification experiments reported in [100].

• The wheat cover region is not detected.

Comparing the CCA with the EIHA results on this image raw data we find that
the EIHA gives more endmembers with better discrimination properties of some
of the basis ground truth classes. The correspondence with the ground truth
information is also better in some cases. The EIHA shows the ability to obtain
improved unsupervised segmentations of the hyperspectral images.

6.2.2 Classification results on the Salinas A

The approach in this section is an indirect validation of the unmixing algorithms
through the realization of classification experiments using the abundance coef-
ficients as the feature vectors for the classification at the pixel level. The pixel
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Figure 6.21: From left to right the ground truth abundance images for the
Salinas A image, the abundance images obtained from the endmembers induced
by EIHA (denoted AMM) and the CCA approaches, the image planes of the
coefficients of the linear transformations: ICA and PCA
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1-NN Gauss SVM
raw 0.25 (0.0055) 0.22 (0.0303) 0.48 (0.0068)
PCA 0.49 (0.0078) 0.17 (0.0042) 0.49 (0.0052)
ICA 0.45 (0.0083) 0.12 (0.0204) 0.48 (0.0084)
CCA 0.62 (0.0095) 0.46 (0.0067) 0.69 (0.0066)
EIHA 0.63 (0.0078) 0.48 (0.0070) 0.72 (0.0062)

Table 6.5: Classification accuracy and its standard deviation for the 1-NN,
Gaussian and SVM classifiers using the raw data of Salinas A and the fea-
tures extracted by the linear dimension reduction algorithms and the AMM
approaches

Algorithm 6.1 Endmember induction validation using on supervised classifi-
cation.

1. For each endmember induction algorithm

(a) Compute the endmember induction
(b) Compute the abundance images by spectral unmixing with the found

endmembers.
(c) Abundance coefficients are the feature vectors of each pixel. Class

labels are given by the ground truth.
(d) Partition the image data into train and test datasets.
(e) For each classifier sytem

i. Train the classifier on the train data.
ii. Test the classifier.

labels correspond to the ground truth classes provided with the image. The
approach is summarized in Algorithm 6.1. To test the supervised classification
based on the dimension reduction discussed above we focused the study in a
subscene of the Salinas dataset (Salinas A) which comprises 83x86 pixels, (de-
scribed in Appendix B). The different ground truth classes for this data appear
as binary images in the left column of images in figure 6.21.

We compute the endmember induction using the EIHA, PCA, CCA and ICA
algorithms. The parameter setting is as follows:

• For the EIHA we set α = 3 obtaining 6 endmembers.

• For the PCA, ICA and CCA methods we have set the target dimension
to the exact number of ground truth components.
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The columns in figure 6.21 show the abundance images obtained by the spectral
unmixing of the Salinas A image using the endmembers obtained by the differ-
ent algorithms. Some of the approaches produce abundance images similar to
the ground truth images in the leftmost column. It can be appreciated from the
images that the CCA and AMM abundance images identify more clearly some
of the ground truth regions, than ICA and PCA images. Computing the corre-
lation between these images and the ground truth ones confirms this qualitative
intuition.

The supervised classifiers employed were the two simplest ones: the Nearest
Neighbor (1-NN) and the Gaussian Classifier (Gaussian) using the Euclidean
distance. These classifiers are the simplest ones , so they will not introduce ad-
ditional bias in the experiment, which is aimed to show the value of the spectral
unmixing as a feature extraction algorithm. Finally, we have also applied the
SVM 1, with a Radial Basis Function (RBF) kernel of identical variances. As
said in the introduction, no attempt has been made to tune the SVM in order
to improve the results, because the idea we want to stress is that the abun-
dance images produced by the EIHA induced endmembers improve the other
approaches as a feature extraction process.

The experiment consisted in 30 repetitions of the construction and validation
of the clasifiers on 2-fold crossvalidation partitions of the data which preserve
the a priori distributions of the classes. It must be said that the Salinas data
is highly noisy, with a very low Signal to Noise Ratio (SNR) in the region of
visible light. The SNR improves somehow in the infrared range, but still some
of the bands appear almost random. We did not perform any band selection
or smoothing of the pixel spectra in the experimental results presented here,
although we did a large exploratory experimentation.

The classification accuracy results of the experiment are presented in table 6.5.
They consist of the average accuracy of the classifiers and the standard deviation
between brackets. Rows correspond to the feature used. First row is the result
for the raw pixel spectra, the second row for PCA, the third for ICA, the fourth
for the unmixing features using CCA endmembers and the last row for the
unmixing features using EIHA endmembers.

The The 1-NN classifier shows a substantial improvement compating the linear
feature extraction algorithms PCA and ICA over the raw spectral data. Using

1Using the implementation by Anton Schwaighofer available in
http://www.cis.tugraz.at/igi/ aschwaig/software.html
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the unmixing features obtained from CCA and EIHA endmembers improves the
linear feature extraction. The Gauss classifier shows lower performance in the
linear feature extraction relative to the raw data. This may be due to the low
SNR of the data. The spectral unmixing feature approaches however show a
significant improvement over the raw data. Nevertheless, the Gaussian classifier
performance is very poor. The SVM improves over the 1-NN and Gaussian
classifiers on the spectral unmixing features. However, the results on the raw
data, PCA and ICA features are undistinguishable. Overall the EIHA features
provide the best results in all classifier instances.

6.3 Conclusions

In this chapter we report our results on hyperspectral image segmentation based
on both unsupervised and supervised approaches. For the unsupervised ap-
proach, we consider that the abundance images obtained after the endmember
induction and unmixing process are the region segmentation of the image, where
high abundances of each endmember determine image segmentation regions. For
the supervised approach, we assume the abundances as features vectors charac-
terizing each pixel, therefore we built supervised classifiers to test the quality
of these features. The endmember induction algorithm presented in previous
chapters has been applied to both synthetic hyperspectral images and real life
remote sensing hyperspectral images obtained from public repositories. We have
compared the results of our approach with other linear feature extraction, such
as PCA and ICA, and other endmember induction algorithms, such as CCA.

Comparison with other approaches has been qualitative and quantitative. In the
qualitative comparison we visualize the extracted endmembers or components
and the corresponding abundance images. For synthetic images this approach
is of little use, because of the random appearance of the ground truth syn-
thetic images. However, for real life images provided with some ground truth
information, this qualitative comparison has some value. We found that our
approach compares well with the state of the art algorithms, obtaining visually
meaningful segmentations of the images. The quantitative comparison involves
the computation of the correlation of the obtained abundances with the ground
truth images. For the synthetic images, the knowledge of the ground truth
abundances is perfect, so the performance evaluation is perfect in this regard.
For the real life images, the ground truth information is approximated and the
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correlations obtained are not a perfect measure of performance. Despite that,
we found that our approach give very good results on the images tested, finding
abundance images with good ground truth correlation, sometimes improving
all other approaches. As a further quantitative comparison we performed su-
pervised classification experiments on natural images. In these experiments,
abundances where taken as feature vectors input to the trained classifiers. We
found that using the abundances, whether the endmembers have been obtained
with our algorithm or with other endmember induction algorithms, improves
the classification results over PCA and ICA. We find these results encouraging
towards the development of a feature extraction methodology based on image
unmixing with unsupervisedly extracted endmembers.
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Chapter 7

Spectral CBIR system

In this chapter we present some ideas about Content Based Image Retrieval
(CBIR) systems for hyperspectral image databases. The approach followed is to
provide a spectral characterization of the images, because the ability to provide
spectral information is their most distinctive property. The spectral character-
ization is naturally provided by the endmembers that can be identified in the
image by an endmember induction algorithm (EIA). We have tested our own
proposal, the ILIA described in Chapter 5, and other state of the art algorithm
in order to evaluate the sensitivity of the approach to the EIA used. The CBIR
system core is the definition of an appropriate dissimilarity measure that allow
to find images with similar spectral characterizations. We have defined a dis-
similarity measure computed over the matrix of individual distances among the
respective endmembers of the images being compared. The endmember distance
can be either the Euclidean distance or the spectral angle (SAM) distance. We
have also tested the sensitivity of the system to this underlying distance. The
structure of the proposed Spectral CBIR system is illustrated in figure 7.1. In
order to validate our approach we needed a large quantity of images, to make
the validation realistic. To that end we have generated a large collection of
synthetic images.

The structure of the chapter is as follows: Section 7.1 gives our dissimilarity
measure. Section 7.2 describes the synthetic images used in the validation ex-
periments. Section 7.3 describes the performance measures used for validation.
Section 7.4 gives the results of the validation experiment. Finally, section 7.5
gives some conclusions and future work directions.
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Figure 7.1: Spectral CBIR structure using the Euclidean distance among end-
members.

7.1 Dissimilarity distance

We propose a CBIR system for databases of hyperspectral images where images
are indexed by the endmembers E induced from them [62, 105]. A dissimilarity
function between two hyperspectral images, s (Hα, Hβ) is defined on the basis
of the distances between their corresponding set of endmembers Eα and Eβ .
Let it be Eα =

{
eα1 , e

α
2 , . . . , e

α
pα

}
the set of endmembers induced from the

hyperspectral image Hα in the database, where pα is the number of induced
endmembers from the α-th image. Given two images, Hα, Hβ , we compute the
following matrix whose elements are the distances between the endmembers of
each image:

Dα,β = [di,j ; i = 1, . . . , pα; j = 1, . . . , pβ ] , (7.1)

where di,j is any defined distance between the endmembers eαi , e
β
j ∈ Rq; i.e. the

Euclidean distance, deuc, or the Angular distance, also known as Spectral Angle
Mapper (SAM) distance in remote sensing applications, dsam:

deuc (e1, e2) =

√√√√
q∑

k=1

(e1,k − e2,k)
2 (7.2)

dsam (e1, e2) = cos−1




∑q

k=1 (e1,k · e2,k)√∑q
k=1 (e1,k)

2
√∑q

k=1 (e2,k)
2



 (7.3)
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eβ1 eβ2 eβ3 eβ4 minr
eα1 0.9 0.8 0.8 0.8 0.8
eα2 0.4 0.3 0.5 0.4 0.3
eα3 0.9 0.7 0.7 0.8 0.7

minc 0.3 0.3 0.4 0.4

Table 7.1: Example of a matrix of endmember distances Dα,β

Then the disimilarity between two hyperspectral images, Hα, Hβ , is given as a
function of the distance matrix (7.1) by the following equation:

s (Hα, Hβ) = (mr +mc) (|pα − pβ |+ 1) (7.4)

where mr and mc are the mean of the vectors of minimal values, minr and minc,
of the distance matrix, Dk,l, computed by rows and columns, respectively. The
value of mr represents the degree of inclusion of the set Eα in Eβ , that is a
meassure of how the materials displayed in the image Hα are also presented
in the image Hβ . In the same way, the value of mc represents the degree of
inclusion of the set Eβ in Eα. The factor (|pα − pβ |+ 1) of 7.4 penalizes the
difference on the number of materials found in each image pα, pβ . Note that the
endmember induction algorithm can give different number of endmembers for
each image. The proposed dissimilarity function can cope with this asymmetry
avoiding the combinatorial problem of trying to decide which endmembers can
be matched and what to do in case that the number of endmembers is different
from one image to the oher.

Example Given a matrix Dα,β of endmember distances for some sets of end-
members Eα = {eα1 , eα2 , eα3 } and Eβ =

{
eβ1 , e

β
2 , e

β
3 , e

β
4

}
induced from the

images Hα and Hβ respectively, we calculate the vectors of minimum val-
ues by rows and columns (Table 7.1). The means of the minima computed
by rows and columns are respectively mr = 0.6 and mc = 0.35. All the
materials presented on the image Hβ are somehow similars to one of the
materials presented in Hα; however, only the second material in image Hα

is similar to any of the materials in image Hβ . This illustrates the asym-
metry between the image characterizations. The dissimilarity between the
images is then s (Hα, Hβ) = (0.6 + 0.35) (|3− 4|+ 1) = 1.850.
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7.2 Synthetic hyperspectral images

The synthetic hyperspectral images are synthesized as linear mixtures of a set of
spectra (the ground truth endmembers) mixed according to selected abundance
coefficients for each pixel. Because the generation of the abundance coefficients
follows a spatial distribution, we generate independent images for each abun-
dance coefficient corresponding to an endmember, later we fuse them into a
multidimensional abundance image imposing normalization conditions for each
pixel independently. The ground truth endmembers were randomly selected
from a subset of the USGS spectral library.

The synthetic ground truth multidimensional abundance images were generated
in a two-step procedure. First, we simulate each abundance image corresponding
to an endmember as a gaussian random field with Matern correlation function of
parameters θ1 = 10 and θ2 = 1. We applied the procedure proposed by [56] for
the efficient generation of gaussian random fields with large domains. Second,
to ensure that there are regions of almost pure endmembers, we selected for
each pixel the abundance coefficient with the greates value and we normalize
the remaining to ensure that the abundance coefficients sum up to one. It can be
appreciated observing the abundance images that each endmember has several
regions of almost pure pixels, viewed as brighter regions in the images.

We have synthesized a total of 6000 hyperspectral images divided in three
datasets of 2000 images each. Each dataset of images is characterized by the
number of endmembers in the collection of ground truth endmembers. We de-
fined three collections of ground truth endmembers, with 5, 10 and 20 endmem-
bers each, used to synthesize the datasets, respectively denoted as 5-dataset,
10-dataset and 20-dataset; representing an incresing diversity in the materials.
The size of the images is 256x256 pixels with 269 spectral bands per pixel.
Each dataset contains 500 hyperspectral images, each image built from with 2
to 5 endmembers randomly selected from the corresponding collection of ground
truth endmembers. Figure 7.2 shows the collection of ground truth endmem-
bers which is the basis for the generation of the 10-dataset. Figure 7.3 shows an
example of ground truth endmembers and corresponding generated abundance
images used to synthesize an hyperspectral image.
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Figure 7.2: Collection of endmembers selected from the USGS library to be the
basis to synthesize the hyperspectral images in the 10-dataset.

7.3 Methodology

We have performed independent experiments over each of the three hyperspec-
tral datasets using the dissimilarity function (7.4), where the distance between
endmembers is meassured by the Euclidean distance of equation (7.2), seuc, or
the SAM distance of equation (7.3), ssam. For each image, we apply indepen-
dently the N-FINDER and the ILIA algorithms presented in sections 3.1 , 5.3
to induce the set of endmembers.

For each image Hα in a dataset we calculate the dissimilarity between Hα and
each of the remaining images in the dataset. These dissimilarities are repre-
sented as a vector sα = [sα1, . . . , sα,n], where n is the number of images in the
dataset (2000 in our experiments) and sα,β is the dissimilarity between the image
Hα and the image Hβ , with α,β = 1, . . . , n . Let us distinguish between sGT

α the
vector of dissimilarities computed using the known ground truth endmembers,
and sIND

α the vector of dissimilarities computed using the endmembers induced
by one of the EIA (either N-FINDER or ILIA). We can define the ranking of
the dataset relative to one of the images Ωα = [ωα,p ∈ {1, . . . , n} ; p = 1, . . . , n]

as the set of image indices ordered according to increasing values of their cor-
responding entries in the dissimilarity vector sα. That is, we sort in increasing
order the components of sα, and the resulting shuffled image indices constitute
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Figure 7.3: Example, from the 10-dataset, of an image’s ground truth endmem-
bers and abundance images used to generate it. (a) The three ground truth
endmembers randomly selected from a collection of 10 spectra from USGS. (b,
c, d) synthetic abundance images corresponding to each of the endmembers in
(a).
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Ωα, so that sα,ωα,p≤ sα,ωα,p+1 . We distinguish rankings ΩGT
α and ΩIND

α corre-
sponding to the ground truth and induced dissmilarites, respectively. A query
Qk(Hα) is formulated as a search for the k most similar (less dissimilar) images
Hβ in the dataset respect to the image Hα. The set of returned images Tk(Hα)

and the set of relevant images Vk(Hα) for a query Qk(Hα) are defined as follows:

Tk(Hα) = ΩIND
α,k =

[
ωIND
α,p s.t. sα,ωIND

α,p
≤ sα,ωIND

α,k

]
, (7.5)

Vk(Hα) = ΩGT
α,k =

[
ωGT
α,p s.t. sα,ωGT

α,p
≤ sα,ωGT

α,k

]
. (7.6)

This definition allows for the inclusion in the query answer of images whose
dissimilarity is equal to the maximum one, thus allowing that the cardinality of
both returned and relevant sets may be bigger than k. The Precision Pk(Hα)

and Recall Rk(Hα) for a query Qk(Hα) are standard performance measures in
CBIR literature, they are defined as:

Pk(Hα) =
|Vk(Hα) ∩ Tk(Hα)|

|Tk(Hα)|
, (7.7)

Rk(Hα) =
|Vk(Hα) ∩ Tk(Hα)|

|Vk(Hα)|
; (7.8)

and the average Precision and Recall of the system for a query of size k are
defined as:

Pk =
1

n

n∑

α=1

Pk(Hα),

Rk =
1

n

n∑

α=1

Rk(Hα).

7.4 Experimental results

We performed the following computational experiments: for each dataset of
2000 synthetic images we computed independently the Precision and Recall
obtained using the endmembers induced by either EIA (N-FINDER and ILIA)
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and either distance (Euclidean and SAM). Therefore, for each dataset we have
four curves when we vary the size of the query in the range [1, . . . , 2000] . We
present these results in figures 7.4, 7.5 and 7.6 for the 5-dataset, 10-dataset
and 20-dataset, respectively. Each figure is composed of two plots, the left
and right plot correspond to the results obtained using the Euclidean and the
SAM distance, respectively, to compute the image dissimilarity function. The
expected behavior of the Precision as a funtion of the size of the query k is as
follows: for small k it is near 1 (optimal performance), as k grows it decreases
because allowing more responses introduces more uncertainty in the response,
and for large k it comes back to 1 because increasingly almost all the images are
accepted as response. We observe that in all combinations of dataset, distance
and EIA the Precision follows this pattern. We can also observe that increasing
the source endmember collection produces a deeper loss of Precision in the
middle region of k values. Regarding the EIA considered, the ILIA algorithm
consistently has better Precision values for small k but, when k is the middle
region, N-FINDER has better Precision values until both converge to 1. This
trend of the results is relatively independent of the distance considered or the
dataset. The conclusion, regarding Precision results is that the approach is able
to discriminate the underlying classes of images defined regarding their spectral
content.

The Recall is low when k is small because it is more difficult to obtain a relevant
image when we allow a small query, as the size of the query grows the Recall
usually grows accordingly up to 1 when all the images are considered as answers.
In the results of our computational experiment we find that the size of the
collection of source endmembers has a definite effect in the Recall for small
query sizes: increasing the source of endmembers increases the Recall. This may
be due to the specific distribution of the source endmembers, with some specific
physical material classes that have more than one representative. Nevertheless,
the Recall performance is also relatively insensitive to the EIA applied, altough
the N-FINDER gives better results again in the intermediate region of values of
k, and ILIA is better for small queries.

Summarizing the goals of the computational experiments were:

• Test if the approach proposed can discover the classification of the images
induced by the underlying ground truth endmembers. The experimental
design, were the ground truth endmembers were known, allows to give a
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Figure 7.4: Precision and Recall results for the 5-dataset using Euclidean dis-
tance (left) and SAM distance (right) based dissimilarities.

positive response as far as the Precision values are very high.

• Test if the type of distance among endmembers has any specific effect
on the system’s performance: we found that the system performance is
similar for Euclidean and SAM distance, so the approach is robust relative
to this design element.

• Test if the EIA used has any impact on the system’s performance: we
found similar evolution of the performance indices with both EIAs tested,
in spite of the fact that they rely on quite different fundamental ap-
proaches. We think that the proposed system will behave well using other
EIAs, as far as it remains the same all along the system’s life.

7.5 Conclusions

In this paper we introduce a CBIR system for databases of hyperspectral im-
ages using as image features the spectral characterization of the image provided
by the endmembers of the image. The system uses an EIA to induce the end-
members from the data. To test its sensitivity to the EIA used, we tested two
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Figure 7.5: Precision and Recall results for the 10-dataset using Euclidean dis-
tance (left) and SAM distance (right) based dissimilarities.

Figure 7.6: Precision and Recall results for the 20-dataset using euclidean dis-
tance (left) and SAM distance (right) based dissimilarities.
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quite different algorithms, obtaining a rather similar response as measured by
the evolution of the Precision and Recall of the answer to the queries. We also
found that the system is rather insensitive to the endmember’s type of distance
employed. The results offered are based on several datasets of synthetic hyper-
spectral images, thus allowing us to give precise quantitative results. Overall,
we have demostrated that the system can perform searches on databases of
hyperspectral images. Among the paths of future research, the study of ap-
propriate image normalization procedures is of paramount importance, because
data variations due to the image capture conditions and parameters may have
a big impact on system performance. Also we are very interested in the devel-
opment of CBIR systems allowing for some relevance feedback from the user to
guide the navigation over the image database [15, 18, 31, 54, 108, 57, 110, 111].
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Chapter 8

A Morphological Cellular
Automata

We discuss a definition of Morphological Cellular Neural Networks (MCNNs)
where the state change operator are Auto-associative Morphological Memories
(AMMs). The fast convergence property of the AMM and the shape of its
fixed point set make the MCNN dynamics trivial. However, segmentation re-
sults are poor. We propose a Morphological Cellular Automata (MCA) with
assured convergence to a state characterized by morphological dependences and
independences between neighboring cell states. Cell dynamic rules test mor-
phological dependence among neighboring cell’s states. When neighboring cell’s
states are morphological dependent in the erosive or dilative sense, the morpho-
logically dominant state colonizes the neighbor with morphological dependent
state. The resulting configuration of cell states is composed of homogeneous
regions whose boundaries are defined by the morphological independence rela-
tion. Results are given on image segmentation, where MCA cells correspond to
image pixels.

The structure of the chapter is as follows. Section 8.1 reviews the definition and
basic results of Cellular Neural Networks. Section 8.2 introduces the MCNN.
Section 8.3 introduces the MCA. Section 8.4 gives results on image segmentation
of MCNN and MCA. Finally, section 8.5 gives our conclusions.

81



8.1 Cellular Neural Networks

Cellular Neural Networks (CNNs) have been introduced in [20, 21, 22] as a pow-
erful distributed computational model. A standard CNN architecture consists of
an M ×N rectangular array of cells C (i, j) where (i, j) are the cell’s Cartesian
coordinates on a grid, i = 1, 2, . . . ,M , j = 1, 2, . . . , N . The sphere of influence
Sr (i, j) of radius r of the cell C (i, j) is the set of cells in grid site coordinates
whose Manhattan distance is less than the radius:

Sr (i, j) =

{
C (k, l)

∣∣∣∣ max
1≤k≤M,1≤l≤N

{|k − i| , |l − j|} ≤ r

}
, (8.1)

where r is a positive integer.

A M ×N standard CNN is defined by a rectangular grid of cells C (i, j), each
defined mathematically by its state and output equations:

ẋij = −xij +
∑

Sr(i,j)

A (i, j; k, l) ykl +
∑

Sr(i,j)

B (i, j; k, l)ukl + zij (8.2)

yij = f (xij) (8.3)

where xij ∈ R, yij ∈ R, uij ∈ R, and zij ∈ R are the state, output, in-
put signal and threshold of cell C (i, j), respectively. The output function is
a non-linear function, corresponding to the activation function of conventional
Artificial Neural Networks. The simplest one is the standard nonlinearity [20]:
f (xij) = 1

2 |xij + 1| + 1
2 |xij − 1|. The evolution of the CNN cell states starts

from an initial condition xij (0), i = 1, 2, . . . ,M , j = 1, 2, . . . , N . The synaptic
connections A (i, j; k, l) and B (i, j; k, l) can be non-linear operators, denoted
A (i, j; k, l)◦ykl and B (i, j; k, l)◦ukl. They can be time variant, though usually
they are assumed time invariant. If the synaptic connections are space invariant
they are denote A (k, l) and B (k, l).

The CNN efectively implements a system of ordinary differential equations. The
existence and uniqueness of solutions are guaranteed in the case of linear synap-
tic operators and continuous input signal, threshold and Lipschitz continuous
non-linearity f (x). If the initial state, input signal and threshold are bounded
then the solution of the standard CNN is bounded.

The time and space invariant CNN with a linear output function implements a
linear system that performs linear filtering of the input signal, usually an image.

82



Therefore they can be designed to perform edge detection, smoothing, contrast
boosting and othe linear filtering operations on the input image [20]. Synaptic
connections may have delays, so that they are systems with memory and inner
states. The inclusion of delays allows to work on image sequences, performing
temporal filtering for motion detection and other time based operations. Mor-
phological image operators, such as erosion and dilation, can be approximated
with appropriate nonlinearities.

8.2 The Morphological Cellular Neural Network
(MCNN)

The aim of Morphological Cellular Neural Network (MCNN) is to perform the
segmentation of images with multidimensional range, such as color, multispec-
tral or hypspectral images, on the basis of the morphological properties of the
pixel values. First, we consider the definition of MCNN along the lines of the
conventional CNN described in section 8.1. Let us consider that cells C (i, j)

have a multidimensional state xij ∈ Rd. Let us denote Yij (t) the set of the
states of the neighboring cells in Sr (i, j) at time t. The MCNN synaptic op-
erators will be based on the erosive and dilative memories: WY Y and MY Y ,
respectively, built from Yij (t)1. According to the kind of the AMM, we can
define dual MCNN dynamics. The erosive MCNN

xij (t+ 1) = WY Y ∨! xij (t) , (8.4)

and the dilative MCNN. The dynamics of the MCNN can be defined formally
as follows:

xij (t+ 1) = MY Y ∧! xij (t) . (8.5)

The convergence of the MCNN dynamics is related to the properties of AMM
fixed points. Although both memories share the same fixed point set they do
not obtain the same result for non-fixed point vectors, therefore dynamics of
equations (8.4) and (8.5) will produce divergent behaviors starting from the
same initial conditions.

Will the MCNN converge to a fixed point global state in finite time?. If
xij (t+ 1) 0= xij (t) and the neighboring cells do not change Yij (t) = Yij (t+ 1),

1(We have taken the notation liberty Yij (t) ≡ Y )
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then xij (t+ 2) = xij (t+ 1) by equation (4.7) or (4.8), depending on the MCNN
type. If there is a change in the neighboring cells, i.e. Yij (t) 0= Yij (t+ 1), there
will be a finite number of state changes before the cell’s state reaches a fixed
point even if all the neighboring cells change their states. However, there is
not guarantee that no indefinite cycling behaviors may appear. For any two
neighboring cells C (i, j) and C (k, l), a change in xij (t+ 1) 0= xij (t) implies
that Ykl (t+ 1) 0= Ykl (t) so that it may happen that xkl (t+ 2) 0= xkl (t+ 1), so
that it is possible that Yij (t+ 2) 0= Yij (t+ 1), and, as a consequence, we may
have that xij (t+ 3) 0= xij (t+ 2). This cyclic process will only be proved to
converge if it is possible to prove that the sequences of fixed points F (Yij) and
F (Ykl) are ordered and have a limit value. To our knowledge, convergence to
a stationary configuration of cell states of the erosive and dilative MCNN is an
open question.

Let us examine the case when the erosive MCNN does converge to a stationary
global configuration of cell states, corresponding dual assertions may apply to
the dilative MCNN. In the stationary configuration we have that each cell state
is a fixed point of the AMM constructed with the corresponding:

xij = WYijYij ∨! xij , i = 1, 2, . . . , N ; j = 1, 2, . . . ,M.

From the review of the section 4.1, this condition holds when some of the fol-
lowing situations arise:

• xij = xkl for at least one (k, l) ∈ Sr (i, j). If all the neighboring cells have
the same state, then the cell is in the middle of an homogenous region of
the MCNN configuration. If some of the neighboring cells have different
states, then it is in the boundary between regions.

• xij is lattice dependent of Yij . That means that stationary regions can
be composed of cell states which are different. Stationarity would be due
to some mutuall lattice dependence. This is a drawback from the image
segmentation point of view, unless some kind of equivalence relation can
be defined allowing to identify the same region.

The erosive and dilative MCNN, with dynamics defined by equations (8.4) and
(8.5) respectively, have a big potential appeal, the segmentation of multispectral
images based on morphological properties. There are two major drawbacks: (1)
the risk of indefinite convergence and (2) the stationary state is composed of
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mutually lattice dependent cell states. Unless some kind of equivalence relation
could be defined, they would not constitute homogeneous segmentation regions.
Besides, there is no evident way to compose both erosive and dilative MCNN
dynamics on the same image that may help to improve the convergence to
homogeneous regions.

8.3 The Morphological Cellular Automata (MCA)

We are looking for the detection of homogeneous regions. It seems from the
discussion above and the results in section 8.4 that lattice independence is not
strong enough to define easiliy identifiable regions. We return to the concept of
morphological independence. Our aim is to obtain as bondaries morphological
independent neighborhs, while using morphological dependence to “assimilate”
neighboring pixels. This Morphological Cellular Automata (MCA) is summa-
rized in Algorithm 8.1.

Let us define
{
f (i, j) ∈ Rd; i = 1, .., N ; j = 1, ..,M

}
the RGB, multispectral or

hyperspectral image, µ and σ the vectors of the mean and standard deviations
of each band computed over the image, α the band-wise equivalence interval
factor. The addition and substraction of ασ to each state vector allows to
define an interval of equivalence between cell states intended to overcome over-
segmentation when morphological independence is due to noise conditions. The
image is preprocessed as in the previous algorithm so that each pixel is a zero
mean vector {f c (i, j) = f (i, j)− µ; i = 1, .., N ; j = 1, ..,M}. Algorithm 8.1 is
initialized with this centered image. It repeats the computation of the new
configuration X (t) until convergence is reached. Convergence consists in the
absence of changes. Cells are considered in pairs, and their state is changed ac-
cording to the following reasoning: If there is morphological dependence (either
erosive or dilative) the dominant cell assimilates the dependent cell. Previ-
ously, we consider the existence of an equivalence interval defined on the basis
of the band-wise variance. If the neighboring cell falls in this interval, then
the one with the greatest norm dominates, regardless of morphological indepen-
dence/dependence relation.
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Algorithm 8.1 Morphological Cellular Automata dynamics
1. Initialize the MCNN state to the image pixel values: X (0) =

{xij (0) = f c (i, j)} .

2. Repeat until convergence X (t) = X (t+ 1), for increasing t:

(a) For each pair of neighboring cells (i, j), (k, l) ∈ S1 (i, j):

i. compute the upper and lower bounds of the interval defined as-
suming independent Gaussian noise sources x−

ij = xij (t) − ασ

and x+
ij = xij (t) + ασ

ii. if (x−
ij < xkl (t) < x+

ij and ‖xij (t)‖ < ‖xkl (t)‖ ) or(
x−
ij ≤ xkl (t)

)
or

(
xkl (t) ≥ x+

ij

)

• then xij (t+ 1) = xkl (t+ 1) = xkl (t),
• else xij (t+ 1) = xij (t); xkl (t+ 1) = xkl (t)

8.4 Results on image segmentation

We first present computational results of the erosive MCNN2 showing the con-
vergence features that can be expected in practice. The experimental image is
the well known “clown” image featured in Matlab. Figure 8.1 plots the amount
of change, measured by the difference image norm, introduced by each iteration.
The convergence is very fast. Besides the changes are very isolated, as shown
in figure 8.2, and they do not produce regions of homogeneous colors as desired
for a segmentation procedure. We do not reproduce the final image because it
does not give any additional information.

The previous results serve as a motivation for the definition of the MCA in
section 8.3. In this section we present image segmentation obtained by the
MCA algorithm 8.1 whose cells correspond to the image pixels. The cell state
is given by the pixel color after the MCA iterations. Initial state of the MCA
is given by the actual image to be segmented.

The experimental image is the well known “lena” image. To reduce the compu-
tational burden, we have downsampled it to a 64 × 64 size. The actual image
used in the experiments is shown in figure 8.3. The segmentation obtained
with the algorithm of the MCA without noise tolerance is shown in figure 8.4.
This segmentation is obtained when the algorithm reaches an invariant state.

2We have made available the code for MCNN at
http://www.ehu.es/ccwintco/uploads/a/a6/MCNN_code.zip
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Figure 8.1: Plot of the amount of change introduced by each MCNN iteration
in its application to the clown image

Figure 8.2: Location of the pixels that have suffer some change by the applica-
tion of erosive MCNN to the clown image

87



The colors shown correspond to the morphologically independent colors that
have propagated from their original pixel sites, absorving morphologically de-
pendent pixel sites. The main features of the image can be distinguished in
this segmentation. Observe that some regions of similar color are not identified
because they are separated by connected regions of an morphologically indepen-
dent color. For comparison we show in figure 8.5 the results of the identification
of color regions performed by standard Color Quantization algorithms based on
the minimization of the quantization distortion. To give an idea of how the
spatial process has developed to reach the segmentation of figure 8.4 we have
kept track of the original pixel position whose color has been propagated as
a morphologically dominant color. In figure 8.6 we show these regions in the
following form. Each pixel site (i, j) is identified by the a number given by the
function n (i, j) = 64j + i. A table with those values is built at the begining of
the MCA evolution. Each time that a cell propagates its color to a neighboring
cell, the corresponding entries in the table are updated. Figure 8.6 shows the
final distribution. Note that the regions in this figure do not match exactly to
the ones appreciated in figure 8.4. That is, the same color, from different parts
of the image ends up merging in a single region in an autonomous way. Further,
the histogram of pixel ids shown in figure 8.7 demonstrate that the evolution
of the MCA converges to coherent spatial aggregations of the pixels. At the
beginning of the MCA evolution, this histogram is uniform, each entry with a
1 value. The MCA evolution concentrates most of the pixel ids in some values,
corresponding to the propagation of the values of morphologically dominant
colors until boundaries of morphological independence are settled down.

The activation of the noise related filter has the effect of allowing the fusion of
regions of morphologically independent colors. As can be appreciated in figure
8.8, increasing α decreases the number of identified regions until all detail is
lost. The effect on the distribution of the propagation regions can be observed
in figure 8.9, where the number of dominance regions decreases as in figure 8.8
when the parameter α increases. Finally, figure 8.10 shows how the histogram
of pixel-ids evolves towards a more concentrated distibution, which may end in
a couple of peaks when α is large enough.
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Figure 8.3: Original Lena image

Figure 8.4: Segmentation of the lena image obtained without noise parameter
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(a) (b)

Figure 8.5: Color quantization into 8 colors (a) and 32 colors (b).

Figure 8.6: Regions in the image according to morphological dominance ob-
tained by the MCA without noise filter.
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Figure 8.7: Histogram of pixel-ids showing the aggregation of pixels into spa-
tially coherent regions.
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Figure 8.8: Evolution of the segmentation obtained increasing the parameter α
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Figure 8.9: Evolution of the dominance regions increasing parameter α
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Figure 8.10: Evolution of the histogram of pixel-ids as the parameter α increases
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8.5 Conclusions

We have first proposed a MCNN based on the application of AMMs as synap-
tic operators. The approach has a very fast convergence but introduces little
changes in the image and does not detect homogenous regions for segmentation.
Therefore, we have introduced a MCA based on the morphological dependence
and independence notions. The goal is to obtain homogeneous regions from
morphological dependent pixels, with the boundary of such regions defined by
the morphological independence between neighboring pixels. We have shown
that the approach produces consistent connected regions of homogeneous colors.
Besides introducing equivalences between pixels based on confidence intervals
defined on the variances allows to control the resolution of the segmentation.
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Chapter 9

A Single Individual
Evolutionary Strategy.

9.1 Introduction

This chapter is devoted to the description of Evolutionary Strategies (ES) ap-
plied to the task of Endmember Induction from Hyperspectral images. The
proposal includes a conventional ES and a Single Individual Evolutionary Strat-
egy (SIES). We differenciate them accordingly to the distinction in modelling
paradigms for Evolutionary Algorithms given by both the so-called Pittsburg
and Michigan approaches. The common baseline is that we want to solve some
optimization problem encoded by a set of variables which describe the solutions
to the problem and a fitness function that quantifies the optimality of the solu-
tion provided by some precise values of the variables. Evolutionary algorithms
are population based random search algorithms. Therefore, they have a popu-
lation of individuals as the computational state vector. The search proceeds by
proposing random new populations by the application of randomized operators
on the population individuals. These new populations are evaluated accord-
ing to the fitness function and a selection is performed to proceed to the next
generation. Regardless of the nature of the variables (real or discrete valued),
and any other features of the evolutionary algorithm to be designed to solve
the problem, there is a basic design choice to be done: the meaning of each
individual and that of the whole population. The Pittsburg approach equates
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each individual with a complete representation of the problem, therefore the
fitness function evaluates each individual and the next generation is obtained
as a random selection of the best individuals on the basis of the fitness function
values. The Michigan approach models the problem using a complete popula-
tion, so that each individual incorporates one variable or a subset of variables
of the problem model. The first implication of this approach is that there are
two kinds of fitness function. One is related to the problem of evaluating the
population as a whole, measuring the progress towards the solution. The other
fitness function is applied to evaluate the contribution of each individual towards
the optimization of the global population fitness. This local individual fitness is
used for individual selection in order to build the next generation. Proving the
convergence of the algorithm involves the consideration of both fitness functions,
where? the local individual optimization implies the global fitness optimization,
which is a paradigmatic case of cooperation.

In this chapter we explore the definition of a conventional Evolutionary Strat-
egy (ES) following the Pittsburg approach, and Single Individual Evolutionary
Strategy (SIES) following the Michigan approach [6, 66]. The “single individual”
refers to the fact that the whole population represents a single solution to the
problem. We expect that the SIES approach will give comparable (or better)
results with less computation.

The structure of the chapter is as follows: Section 9.2 describes the fitness func-
tion tailored to the problem of endmember induction for spectral unmixing in
remote sensing multispectral and hyperspectral images. Section 9.3 describes
the evolutionary strategy (ES) following the Pittsburg approach. Section 9.2 de-
scribes the Michigan approach, single endmember evolutionary strategy (SIES).
Section 9.5 presents some experimental results of the proposed algorithm and
the competing conventional evolution strategy. Section 9.6 gives our conclusions
in this chapter.

9.2 The fitness function for endmember induc-
tion

In this section we describe the fitness function to be maximized by both the
standard Evolutionary Strategy (ES) and the Single Individual Evolutionary
Strategy (SIES) tailoring them to the problem of inducing a set of endmembers
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from the image data. As discussed in Chapter 3, the endmembers of a given
hyperspectral image, under the linear mixture assumption, correspond to the
vertices of the minimal simplex that encloses the data points [24, 52, 39]. There-
fore, the result of the endmember induction algorithms must be a set of vertices
that define a convex region. This defines also which is the computational state
of the algorithms, which must be specified by the endmembers induced from
the hyperspectral image. The positive and full addition properties are the basic
restriction to fulfill, therefore they are the basis for the definition of the fitness
function. We introduce the reconstruction error as the regularization term in
the fitness function. We formalize the fitness function as follows.

Let us denote f =
{
f (i, j) ∈ Rd; i = 1, .., n; j = 1, ..,m

}
a d−band hyperspectral

image, which can be considered as a d×(n ·m) matrix, and S is the d×M matrix
whose colums are the set of M endmembers whose fitness is to be quantified.
Matrix S corresponds to an individual of the ES and to the whole population
of the SIES.

Let it be
â=

{
â (i, j) ∈ RM ; i = 1, .., n; j = 1, ..,m

}
, (9.1)

and
ε =

{
ε2 (i, j) ∈ RM ; i = 1, .., n; j = 1, ..,m

}
(9.2)

the endmember fractional abundance estimations and reconstrucion error, re-
spectively, computed applying at each pixel equations (9.3) and (9.4) as defined
in Chapter 3:

â (i, j) =
(
STS

)−1
ST f (i, j) , (9.3)

ε2 (i, j) = ‖f (i, j)− Sâ (i, j)‖2 . (9.4)

The maximization of the fitness function corresponds to the minimization of the
residual error:

n∑

i=1

m∑

j=1

ε2 (i, j) .

The functional includes terms corresponding to the positive and sum to one
constraints. The positivity constraint is modelled by the following term:

n∑

i=1

m∑

j=1

∑

k

|âk (i, j)| ,
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where k = {k |âk (i, j) < 0} . That is, the term corresponds to the addition of
the absolute magnitude of the abundance coefficients that violate the positivity
constraint. The addition to one constraint is modelled by the following term:

n∑

i=1

m∑

j=1

(
1−

M∑

k=1

âk (i, j)

)2

,

that is, we add up the differences to the additivity to one constraint. The
complete functional is formalized as follows:

C (f ,S) =
n∑

i=1

m∑

j=1

ε2 (i, j) +
n∑

i=1

m∑

j=1

(
1−

M∑

k=1

âk (i, j)

)2

(9.5)

+
n∑

i=1

m∑

j=1

∑

k

|âk (i, j)| ,

where k = {k |âk (i, j) < 0} . Note that all the terms have similar magnitude,
because they consist in the summation of small values along the image. The
fitness function maximized by the evolutionary strategies is defined as its inverse:

F (f ,S) =
1

C (f ,S)
. (9.6)

9.3 The Evolutionary Strategy

The ES employed as the baseline algorithm for endmember search is a conven-
tional (µ+ λ)- ES [7, 8, 9, 10, 2, 12, 42, 65]. The general structure of a (µ+ λ)-
ES is as follows:

• The individuals represent complete solutions whose quality can be mea-
sured by the fitness function. Each population at any generation has µ

individuals. Each individual has an associated mutation parameter, which
is the standard deviation of a normal distribution.

• To compute the next generation of the population, we start by selecting λ

parents from the current population on the basis of their fitness function
values. The selection method is the roulette wheel.
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Algorithm 9.1 (µ+ λ)-Evolution Strategy for endmember induction from a
hyperspectral image.
Input: the hyperspectral image f , the number of endmembers M .
Compute the mean and standard deviation per band mf and σf .
Generate the initial population P0 = {(Si,σi) ; i = 1, .., µ}; initially σi = σf .
Each individual is a sample of multivariate normal distribution Si ∼ N (mf ,σf I)
While not Stopping Condition

1. Compute the fitness for each individual {φi = F (f ,Si) ; i = 1, .., µ;Si ∈ Pt}
applying equation (9.6).

2. Select P (p)
t = {(Si,σi) ; i = 1, ..,λ} parents from Pt by a roulette wheel

based on the individual fitness φi.

3. Update the variances in P (p)
t : σ′

i = σi · exp (τ · ξ) , where ξ is a random
sample of the multivariable standard normal distribution ξ ∼ N (0,1) . The
product is a Hadamard product.

4. Generate mutations P (m)
t = {(Si + ζi,σ′

i) ; i = 1, ..,λ} , where each ζi is a
random sample ζi ∼ N (0,σ′

iI)

5. Compute the fitness
{
φ(m)
i = F (f ,Si) ; i = 1, ..,λ

}
for each mutated indi-

vidual Si ∈ P (m)
t

6. Elitist selection: the next generation population Pt+1 is composed by the µ

individuals selected from P (m)
t ∪ Pt according to the best fitness
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• The parents’ mutation parameters are updated. The mutated offspring of
each selected parent is generated as a random perturbation of the parent
adding a sample of a normally distributed (multivariate) random variable
with zero mean and standard deviation given by the mutation parameter.

• The fitness of the mutated offspring is computed.

• The µ best individuals among the parents and mutated offspring are se-
lected for the next generation.

Regarding the convergence of the algorithm, the mutation updating algorithm
is critical to obtain a good exploration of the solution space. The algorithm
is intended to be self-adaptive in the sense that not only the best individual
but also the best mutation parameter are selected and evolved. Besides, the
algorithm is elistist, meaning that the best found solution is always preserved.
Elitism guarantees that the algorithm is at least a local optimization algorithm,
and that, if the solution space is appropriately sampled, it can be a global
optimization algorithm.

The pseudocode of the ES algorithm for endmember induction from a hyper-
spectral image, using the above definitions, is given in Algorithm 9.1. We
denote mf and σf the vectors whose components are the mean and stan-
dard deviation of each band computed over the image. Population individu-
als are hypothetical sets of endmembers, and their mutation vector variances
Pt = {(Si,σi) ; i = 1, .., µ} . Vector variances are the mutation variances per
band. The mutation variances are initialized as the global image standard de-
viations. The initial population is generated as a collection of samples of a
random vector following a multivariate normal distribution centered in the im-
age’s spectral mean. The ensuing generations are produced by the conventional
schema of additive random gaussian perturbations and self-adaptation of the
mutation variances of the (µ+ λ)-ES. The fitness function is given by equation
(9.6). The specificity of the algorithm lies in the fact that all the multivariate
normal distributions involved have diagonal covariance matrices, whose diagonal
values are given by the deviation parameters.
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Algorithm 9.2 Single Individual Evolution Strategy for endmember induction.
Input: the hyperspectral image f , the number of endmembers M .
Compute the mean and standard deviation per band mf and σf .
Generate the initial population P0 = (S,σ)= ({s1, .., sM} , {σ1, ..,σM}) , where
S ∼ N (mf ,σf ), and, initially, σk = σf .
While not Stopping Condition

1. Compute the global population fitness φp
t = F (f ,S) .

2. Compute the local individual fitness {φk = F (f , sk) ; k = 1, ..,M}

3. For a maximum of λ attempts

(a) Select (sk,σk) as a parent from Pt by a roulette wheel based on the
partial individual fitness {φk}.

(b) Update the variance vector σ′
k = σk · exp (τ · ξ) , where ξ is a random

sample ξ ∼ N (0,1) .

(c) Generate a mutation (s′i = si + ζi,σ′
i) , where ζi is a random sample

ζi ∼ N (0,σ′
i) .

(d) Let it be S′ the set of endmembers where we replace sk with s′k. Compute
the global global mutated population fitness: (φp

t )
′
= F (f ,S′) .

(e) Elitism: If (φp
t )

′
> φp

t then Pt+1 = (S′,σ′) , where the mutated individ-
ual is included in the new population.
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9.4 The Single Individual Evolutionary Strategy

The pseudocode of our proposed SIES is given in algorithm 9.2. The SIES
follows the Michigan approach, therefore the whole population is a solution to
the problem, each individual is a single hypothetical endmember. The fitness
function follows the same expression (9.5) as the ES, however in the SIES it is
evaluated at the global and local level.

At the global level, the fitness function is computed over all the abundance
images and corresponding reconstruction errors obtained with the set of end-
members represented by the entire population. The local individual fitness are
evaluated using the abundance image associated with the individual endmem-
ber. We denote F (f , sk) the computation of the local fitness function using only
the k-th abundance image. These partial fitness are used to select the individual
which is to be mutated. Another difference with the conventional (µ+ λ)-ES
is that the mutations are proposed sequentially instead of being computed si-
multaneously. Mutations are tested in order, up to a maximum of λ attempts.
The selected individual mutation is introduced in the population. The global
fitness of this mutated population is computed, which involves computing the
abundance images. If the mutated population global fitness is greater than
the present population global fitness, then the mutated population becomes the
new population for the next generation. Elitist selection implies the monotonic
growth of the population global fitness function. The algorithm is a global op-
timal search algorithm if the mutation explores adequately the solution space.
The stopping condition corresponds to a single generation without offspring ac-
cepted. The convergence of the (µ+ λ)-ES usually lead to populations where a
single individual is replicated many times, until colonizing the entire population.
This phenomenon does not happend in the SIES.

Regarding computational cost, the SIES is faster than the conventional (µ+ λ)-
ES, because the size of the population is restricted to the number of endmem-
bers. Also the number of abundance image computations is lower for two rea-
sons: one is the smaller size of the population, the other is that the number of
mutations tested is lower because the process of testing mutations usually finds
an improvement before the limit of λ attempts.
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9.5 Experimental results

In this section we present results of the application of the (µ+ λ)-ES and SIES
evolutionary strategies on two real world multispectral images described in Ap-
pendix B. The first image, provided by the Catalonian Remote Sense Institution
(CREAF), is a labelled multispectral CASI image. The second is the Indian
Pines hyperspectral image published by the prof. Landgrebe’s research group.
The settings of the algorithm parameters were the same in both cases. The
ES population size was µ = 10, the number of endmembers per individual was
M = 5 and the number of mutations allowed was λ = 30. The SIES number
of endmembers was M = 5, and the maximum number of tested mutations was
λ = 30. The quantitative comparison involves the best fitness of the (µ+ λ)-ES
population among the µ individual against the whole population fitness of the
SIES.

9.5.1 The CREAF image

The figure 9.1 shows the plot of an evolution instance of the best individual
fitness for the conventional (µ+ λ)-ES and the global fitness of the SIES. The
improvement of the SIES over the ES is remarkable, moreover if we take into
account that SIES is faster than (µ+ λ)-ES and performs much less exploration.
The reason for this improvement may be related to the additional randomization
introduced by the selection of mutation parents based on their isolated abun-
dance images. However, the relation of the partial fitness and the global fitness
does not ensure that choosing the best partial fitness individual will lead to im-
provements in the global fitness. The endmembers obtained by the (µ+ λ)-ES
and the SIES algorithms are shown in figures 9.2 and 9.3, respectively. It can
be appreciated that the obtained set of endmembers does not differ very much
one from the other, however the ones resulting from the conventional ES are
more ragged than the ones resulting from the SIES.

The qualitative results are given by the abundance images computed using the
endmember spectra found by both approaches. They are shown in figures 9.4,
9.5, 9.6 and 9.7. The abundance image intensities have been normalized to
the [0,255] interval for visualization. Black corresponds to negative abundance
values.

A remarkable feature of both sets of results is the outlining of the fine spatial
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Figure 9.1: Plot of the evolution of the fitness function of the best individual
of the (µ+ λ)-ES and the global population fitness of the SIES searching for
endmembers on the CREAF image.
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Figure 9.2: Endmembers obtained by the (µ+ λ)-ES strategy on the CREAF
image
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Figure 9.3: Endmemembers obtained by the SIES on the CREAF image.
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structure, which is not specified in the ground truth image B.4. The ground
truth provides a rough approximation to the image segmentation. Roads which
are not well specified in the ground truth are apparent in the abundance im-
ages. Also buildings and urban structures are well defined. Some rooftops seem
to provide a very strong response differentiated from the other urban struc-
tures. The computed endmember spectra can be interpreted as unsupervisedly
induced detectors of specific materials that may deserve further analysis, and
their abundance images as unsupervised segmentations uncovering the fine spa-
tial structure of the hyperspectral image.

If we concentrate our examination of the images on each ground truth cover
class we find the following facts:

• The urban cover is well detected by both approaches. The SIES abundance
#3 seems to provide a negative image of the urban structure and the
roads. The SIES abundance #4 shows good positive detection of the
urban structures, with some confusion with the meadows. SIES abundance
#2 is also a negative detection of urban areas showing confusion with the
meadows. The (µ+ λ)-ES abundances #3 and #5 provide a good positive
detection of urban structures and roads butconfuse with meadows. The
(µ+ λ)-ES abundance #2 provides the negative detection. The (µ+ λ)-
ES abundance #1 is a good detector of some rooftop structures.

• The vegetal cover is generically detected by some abundances which showed
negative detection of urban areas. They are (µ+ λ)-ES abundance #2,
and SIES abundances #2, #3, and #5.

• The meadows are confused in some cases with urban structures as said
before.

• Evergreen and deciduous trees are well detected as a single cover in SIES
abundance images #2 and #5, and in (µ+ λ)-ES abundance image #2.

9.5.2 The Indian Pines image

The second set of results were obtained on the Indian Pines image (Appendix
B). We show in figure 9.8 an instance of the evolution of the (µ+ λ)-ES best
fitness and of the global population fitness of the SIES when applied to this
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Figure 9.8: Trace of the fitness function value for an instance of the ES and the
SIES strategy on the Indian Pines image.
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Figure 9.9: Endmembers obtained by an instance of the ES on the Indian Pines
image
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Figure 9.10: Endmembers detected by the SIES on the Indian Pines image.
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image. In this image, the computational cost of (µ+ λ)-ES was substantially
greater than that of SIES, for this reason we allowed the SIES experiment to
run longer. Anyway, at the 250 generation the fitness performance of SIES was
better than that of the (µ+ λ)-ES. The endmembers found by of the (µ+ λ)-
ES and SIES are plotted in figures 9.9 and 9.10, respectively. The endmembers
obtained by SIES have a greater variability.

The abundance images are presented in figures 9.11 and 9.12 for of the (µ+ λ)-
ES and SIES, respectively. We can compare the abundance images with the
ground truth reproduced in figure B.1:

• The steel towers that appear near the upper left corner of the ground
truth image. Both approaches produce good detectors of this feature.
Abundace images #3 and #4 of the (µ+ λ)-ES, and #2 and #3 of the
SIES (counting row-wise), show high detection of this feature. At the
same time these abundances show high responses in pixels corresponding
to cultivated lands. This can be understood if we consider that the crops
were at very early stages of growth, therefore most of the land surface
could be bare soil.

• The vegetation cover is better represented by the woods. Besides the re-
gions identified in the ground truth, it seems that much of the background
was also woods. The abundance images #3 and #4 of the SIES show good
detection of these woods. They are well detected also by abundances #1,
#2 and #5 of the (µ+ λ)-ES. The detection of the woods area in the lower
right corner and its extension to other areas of the image is in good agree-
ment with the results of some studies [100, 99, 101] on the application of
supervised classification to this image. Our approach has the advantage
of producing these results without previous labelling of the data.

• The crop fields are well detected by abundance #3 of the (µ+ λ)-ES,
though confused somehow with the steel towers and without discrimina-
tion among them. A special case is the wheat field which is not well
detected by any endmember. This may be due to a different stage of
growth. By coincidence, abundance #3 of SIES shows the best detection
of the crop fields.

• Another interesting feature that appears in both sets is the agreement in
the detection of the roads and railway tracks that cross the image.
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9.6 Conclusions

In this chapter we describe the application of a conventional (µ+ λ)-ES evo-
lutionary strategy to endmember induction from hyperespectral images. We
introduce the straightforward encoding of the problem and a fitness function
that embodies the constraints of linear spectral mixing and the minimization
of the reconstruction error. We also propose a Single Individual Evolutionary
Strategy (SIES) following the Michigan approach. The SIES is computationally
lighter than the conventional (µ+ λ)-ES. We have show in two real life images
that the SIES performs better than the (µ+ λ)-ES in terms of fitness function
optimization. The SIES shows the improvement introduced by the mutation of
single endmember spectra inside the set of endmembers represented by the cur-
rent population. Selection is elitist, so the algorithm retains good convergence
properties despite the approximate nature of the representation and manipula-
tion of the solutions. When studying the abundance images obtained by both
methods, we found that the identification of ground truth cover classes is similar
in both approaches.
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#1 #2

#3 #4

#5

Figure 9.11: Abundance images corresponding to the endmembers discovered
by the (µ+ λ)-ES on the Indian Pines image
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#1 #2

#3 #4

#5

Figure 9.12: Abundance images corresponding to the endmembers discovered
by the SIES strategy in the Indian Pines image
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Appendix A

Synthetic hyperspectral
images

The hyperspectral images used for the experimental results are generated as
linear mixtures of a set of spectra (the ground truth endmembers) with syn-
thesized abundance images. The ground truth endmembers were selected from
the USGS spectral libraries corresponding to the AVIRIS flights. Figures A.2,
A.1 and A.3 show the spectra used as endmembers in the 2, 3 and 5 endmem-
ber images. The first 2 spectra are well detached, and our algorithm must find
them easily. The spectra in the case of 3 and 5 endmembers are less clearly
separated, they are morphologically independent in at least one sense (erosive
or dilative) but most of the times is due to the vector lexicographic order being
a partial ordering. Nevertheless, the notion of morphological independence does
not require a total order to serve our purposes.

The synthetic ground truth abundance images were generated in a two step
procedure,

1. First, we simulate each as an gaussian random field with Matern correla-
tion function of parameters (θ1, θ2) varying between 2 and 20. We applied
the procedures proposed by [55] for the efficient generation of big domain
gaussian random fields.

2. Second, to ensure that there are regions of almost pure endmembers, we
selected for each pixel the abundance coefficient with the greater value
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Figure A.1: Ground truth endmembers extracted from the USGS library used
for the 2 endmember images

Figure A.2: Ground truth endmember spectra, case of 3 endmembers
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Figure A.3: Ground truth endmembers extracted from the USGS library used
for the 5 endmember images

and we normalize the remaining to ensure that the abundance coefficients
in this pixel sum up to one.

It can be appreciated on the abundance images that each endmember has several
regions of almost pure pixels, viewed as brighter regions in the images. Image
size is 64 × 64 pixels of 224 spectral bands each. We have 8 images with 2
endmember/abundances and 5 images with 5 endmember/abundances. High
correlation produces smooth distributions of the abundances.

Figures A.4, A.5 and A.6 present intances of the generated abundance images
for the case of 2, 3 and 5 endmembers, respectively. Note the noisy aspect of the
image, instead of making up simple geometrical distributions and corrupting it
with noise, the gaussian field covariance function control parameters allow to
obtain images with diverse degrees of noise appearance. For some applications,
like target detection, it may be more appropriate to layout some specific regions
in the image and to perform a conditional simulation to obtain noisy and realistic
versions of the scene.

The gaussian distribution of the abundance images is an inconvenient when
applying ICA, so it may be interesting to build new non gaussian abundance
images. It must be noted that corrupting synthetic images obtained by other
means is usually done adding gaussian noise. This procedure will pose the
same inconvenient as ours regarding ICA. On the positive side, the synthesis
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of abundance images as random fields allows to control the intrinsic noisiness
of the simulated scenes. Noise can be added as usual, to simulate capture and
transmission conditions.

Figure A.4: Ground truth synthetic abundance images of the 2 endmember
hyperspectral image.

Figure A.5: Ground truth synthetic abundance images of the 3 endmember
hyperespectral image.
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Figure A.6: Ground truth synthetic abundance images of the 5 endmembers
hyperspectral image.
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Appendix B

Hyperspectral and
multiespectral data from
remote sensing

This appendix contain the description of real world remote sensing images used
in the experiments reported in this PhD.

Figure B.1: Ground truth of the Indian Pines image.
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B.1 Indian Pines

The Indian Pines 1992 image was obtained by the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) developed by NASA JPL which has 224 con-
tiguous spectral channels covering a spectral region from 0.4 to 2.5 mm in 10
nm steps. It is a 145 by 145 pixel image with 220 spectral bands that con-
tains a distribution of two-thirds of agricultural land and one-third of forest
and other elements (two highways, a railroad track, some houses and smaller
roads). The full data set is called Indian Pines 1 920612B, and it is available at
http://makalu.jpl.nasa.gov/locator/index.html. The image ground truth desig-
nates 16 mutually exclusive classes of land cover. Figure B.1 shows the ground
truth as given in [99, 100, 101], where some supervised classification approaches
are experimented over this image. Besides it has been widely used in many
hyperspectral image processing studies [102].

B.2 Salinas

Hyperspectral data collected by the AVIRIS imaging spectrometer in 1998 over
Salinas Valley, California. The full scene (Salinas C) consists of 512 lines by
217 samples with 224 spectral bands from 0.4 µm - 2.5 µm with a pixel resolu-
tion of 3.7mx3.7m. These data was available only as sensor radiance data and
includes vegetables, bare soils and vineyard fields. The subscene of the dataset
(Salinas A) comprises 83x86 pixels and is used sometimes because it has much
less background pixels. The ground truth of this image is shown in figure B.2.
The ground truth for the whole scene is shown in figure B.3.

B.3 The CREAF image

The first data set used for the experimental work corresponds to a multispectral
image of size of 710x4558 pixels which covers a large area including vegetation,
cultivated land areas and urban areas. This image has been acquired through a
CASI (Compact Airbone Spectrographic Imager) sensor using a general configu-
ration of 14 bands, that is, each pixel is represented by a vector of 14 components
each a 8-bpp gray scale value. From all the 14 bands of the original image, a
smaller region of 448x2048 pixels has been selected (croped). For the operation
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Figure B.2: Salinas A ground truth

of both the ES and the SIE a 8:1 subsampled version of this region has been
used to compute the fitness function value. However, final abundance results
were computed over the 448x2048 pixels region.

The ground truth of the image is composed of the following categories of land
cover: A evergreen trees. B deciduous trees. C brushwoods. D meadows and
crops. E urban areas. The ground truth is visualized in figure B.4 assigning an
increasing intensity to the land cover categories: black corresponds to evergreen
trees and white to urban areas.
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Figure B.3: Salinas C ground truth
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