Hybrid multivariate morphology using lattice auto-associative memories for resting-state fMRI network discovery

Manuel Graña, Darya Chyzhyk

Computational Intelligence Group
Dept. CCIA, UPV/EHU, Apdo. 649, 20080 San Sebastian, Spain
www.ehu.es/ccwintco

December 5, 2012
Abstract

Analysis of resting-state fMRI data,

- hybrid Multivariant Mathematical Morphology
 - induced by a supervised \(h \)-ordering
 - defined by the response of Lattice Auto-associative Memories built from specific fMRI voxels.

- a morphological top-hat allows to identify brain networks.

- Results show differences in networks found in schizophrenia patients and healthy controls.
1 Introduction
 - Resting state fMRI
 - Lattice Auto-Associative Memories (LAAMs)

2 Multivariate Mathematical Morphology
 - Multivariate ordering

3 LAAMs-based Supervised Ordering
 - LAAMs-based h-function
 - One-sided LAAM supervised ordering
 - Background/Foreground LAAM-supervised ordering

4 Experimental results
 - Materials
 - Results

5 Conclusions

Manuel Graña, Darya Chyzhyk

Hybrid multivariate morphology using lattice auto-associative memories for resting-state fMRI network discovery
Introduction

- Definition of morphological operators on multi-variate images needs the definition of appropriate ordering in the vector space.
 - *LAAM-supervised h*-ordering based on Lattice Auto-Associative Memories (LAAMs),
- Brain networks in resting state fMRI data.
 - Morphological filters correspond to the correlation based approaches.
LAAMs are auto-associative neural networks

- functional neurons perform morphological (lattice) operations.

LAAMs present interesting properties such as perfect recall, unlimited storage and one-step convergence.

LAAM-supervised ordering keeps multivariate morphology under the general framework of Lattice algebra (\vee, \wedge, $+$)

- LAAM-supervised ordering is faster and imposes less computational burden than the supervised orderings previously proposed.
Resting state fMRI

- Resting state fMRI data has been used to study brain functional connectivity
 - correlation of low frequency oscillations in diverse areas of the brain reveal their functional relations.
 - connections discovered are a brain fingerprint, the so-called default-mode network.
- do not impose constraints on the cognitive abilities of the subjects.
 - in the study of brain maturation there is no single cognitive task which is appropriate across the aging population.
Resting state fMRI

- machine learning and data mining approaches:
 - hierarchical clustering,
 - independent component analysis (ICA),
 - fractional amplitude of low frequency analysis,
 - multivariate pattern analysis (MVPA).

- Graph analysis to study the connectivity structure of the brain.
Schizophrenia is a severe psychiatric disease that is characterized by delusions and hallucinations, loss of emotion and disrupted thinking.

Functional disconnection between brain regions is suspected to cause these symptoms, because of known aberrant effects on gray and white matter in brain regions that overlap with the default mode network.

Resting state fMRI studies have indicated aberrant default mode functional connectivity in schizophrenic patients.

Goal of our work is to find differences in connectivity between patients with and without auditory hallucinations.
LAAM definitions

- input/output pairs of patterns
 \[(X, Y) = \left\{ \left(x^{\xi}, y^{\xi} \right) ; \xi = 1, ..., k \right\} \]

- a linear heteroassociative neural network
 \[W = \sum_{\xi} y^{\xi} \cdot (x^{\xi})' . \]

- erosive and dilative LAMs, respectively
 \[W_{XY} = \bigwedge_{\xi=1}^{k} \left[y^{\xi} \times \left(-x^{\xi} \right)' \right] \quad \text{and} \quad M_{XY} = \bigvee_{\xi=1}^{k} \left[y^{\xi} \times \left(-x^{\xi} \right)' \right] , \]

where \(\times \) is any of the \(\bigvee \) or \(\bigwedge \) operators,
LAAM definitions

- operator \bigvee denotes the max matrix product

$$C = A \bigvee B = [c_{ij}] \iff c_{ij} = \bigvee_{k=1..n} \{a_{ik} + b_{kj}\},$$

- operator \bigwedge denotes the min matrix product

$$C = A \bigwedge B = [c_{ij}] \iff c_{ij} = \bigwedge_{k=1..n} \{a_{ik} + b_{kj}\}.$$
LAAM definitions and properties

Definition

When $X = Y$ then W_{XX} and M_{XX} are called Lattice Auto-Associative Memories (LAAMs).

- perfect recall for an unlimited number of stored patterns

 $$W_{XX} \boxtimes X = X = M_{XX} \boxtimes X$$

- convergence in one step for any input pattern

 - if $W_{XX} \boxtimes z = v$ then $W_{XX} \boxtimes v = v$
 - if $M_{XX} \boxtimes z = u$ then $M_{XX} \boxtimes u = u$.

Manuel Graña, Darya Chyzhyk
Multivariate Mathematical Morphology

Morphological operations are mappings between complete lattices, denoted \(\mathbb{L} \) or \(\mathbb{M} \),

- **erosion** is a mapping \(\varepsilon : \mathbb{L} \rightarrow \mathbb{M} \) commuting with the infimum operation, \(\varepsilon (\bigwedge Y) = \bigwedge_{y \in Y} \varepsilon (y); \forall Y \subseteq \mathbb{L} \)
- **dilation** is a mapping \(\delta : \mathbb{L} \rightarrow \mathbb{M} \) commuting with the supremum operation, \(\delta (\bigvee Y) = \bigvee_{y \in Y} \delta (y) \).
- **gradient** \(g(Y) = \delta (Y) - \varepsilon (Y) \),
- **top-hat** \(t(Y) = Y - \delta (\varepsilon (Y)) \).
Multivariate ordering

Definition

A h-ordering is defined by a surjective map of the original partially ordered set onto a complete lattice $h : X \rightarrow \mathbb{L}$,

- the order defined in \mathbb{L} induces a total order in X,

$$r \leq_h r' \iff h(r) \leq h(r')$$

(1)

Definition

A h-supervised ordering is a h-ordering satisfying $h(b) = \bot$, $\forall b \in B$, and $h(f) = \top$, $\forall f \in F$,
- for background and foreground $B, F \subset X$, $B \cap F = \emptyset$,
- \bot and \top are the bottom and top elements of \mathbb{L}
LAAM h-function

Definition

Given $c \in \mathbb{R}^n$ and $X = \{x_i\}_{i=1}^K$, $x_i \in \mathbb{R}^n$; the LAAM based h_X-function is

$$h_X(c) = \zeta \left(x^\# , c \right) ,$$

(2)

- $x^\# \in \mathbb{R}^n$ is a LAAM recall result

$$x^\# = M_{xx} \square c$$

or

$$x^\# = W_{xx} \boxdot c$$

- $\zeta(a, b)$ is the Chebyshev distance $\zeta(a, b) = \bigvee_i |a_i - b_i|$.

Manuel Graña, Darya Chyzhyk

Hybrid multivariate morphology using lattice auto-associative memories for resting-state fMRI network discovery
Definition

one-side LAAM-supervised ordering:

\[\forall x, y \in \mathbb{R}^n, \ x \leq x \ y \iff h_x(x) \leq h_x(y). \quad (3) \]

- \(h_x : \mathbb{R}^n \to L_x \), where \(L_x = (\mathbb{R}_0^+, <) \), \(\perp_x = 0 \)
- the Background set \(B \) s.t. \(h_x(b) = \perp_x = 0 \)
 - is the set of fixed points of the LAAM \(B = \mathcal{F}(X) \)
B/F ordering

Definition

The relative background/foreground supervised h-function:

$$h_r (c) = h_F (c) - h_B (c),$$ (4)

Given training sets B and F

Definition

relative LAAM-supervised ordering denoted \leq_r:

$$\forall x, y \in \mathbb{R}^n, x \leq_r y \iff h_r (x) \leq h_r (y)$$ (5)
B/F ordering

\[h_r (c) : \mathbb{R}^n \rightarrow \mathbb{L}_{B/F} \text{ where } \mathbb{L}_{B/F} = (\mathbb{R}, <), \]

- \(h_r (b) > 0; \ b \in \mathcal{F} (B) \)
- \(h_r (f) < 0; \ f \in \mathcal{F} (F) \)
- no proper bottom and top elements
- \(h_r (c) = 0; \) decision boundary \(c \in C_r \)
aim of the experiments is a proof of concept of the approach

- discrimination of healthy control subjects, schizophrenia patients with and without auditory hallucinations.

results find different brain networks depending on the subject using the same h-function built from selected voxel seeds.
Materials

- resting state fMRI data obtained from 1 HC, 1SCNH, 1SCWH
- F 240 BOLD volumes and one T1-weighted
 - skull extraction
 - manually AC-PC transformed.
 - The functional images coregistered to the T1-weighted anatomical image.
 - slice timing,
 - head motion correction
 - smoothing (FWHM=4mm)
 - spatial normalization to (MNI) template
 - temporal filtering (0.01-0.08 Hz)
 - linear trend removing
 - All the subjects have less than 1mm maximum displacement and less than 1° of angular motion.
Results

aim to obtain network correlated with an the auditory cortex voxel: effect related to the auditory hallucinations.

seed voxel time series X extracted from HC.

same LAAM M_{XX} applied to HC and patients computing both h_X and $h_{B/F}$ maps

network_1: most similar voxels according to the h-function map

network_2: peaks of the top-hat transformation
One-side supervised h-ordering

- results of two seeds gray matter
 - one in the frontal lobe
 - in the auditory cortex.

- independently of the seed voxel used to build \(h_X \), we find a strong discordance between the network_1 of Schizophrenic patients with and without AH.
Figure: Seed from the **frontal lobe**. (a) location of the seed voxel in the HC, network _1_ in HC (b), SCWH (c), and SCNH (d).
Figure: Seed from the auditory cortex. (a) location of the seed voxel in the HC, network_1 in HC (b), SCWH (c), and SCNH (d).
Figure: network_2 computed on front lobe (a) and auditory cortex (b). Red, green, blue voxel colors correspond to HC, SCNH, and SCWH, respectively.
Background/foreground supervised ordering

- background voxels (1) WM in the Temporal Lobe and (2) CSF in the ventricles,
- foreground voxels GM: (1) in the Auditory Cortex and (2) in Frontal Lobe,
- compute the \(h_r \) map for all combinations
- strong difference between the network locations detected in the three subjects from the same map.
B/F seed voxels

Figure: Two voxel seeds: (a) B from WM and F from GM of Frontal Lobe, (b) B from WM and F from GM of Auditory Cortex, (c) B from CSF of the ventricle and F from GM of Frontal Lobe, (d) B from CSF of the ventricle and F from GM of Auditory Cortex. Blue=B, pink=F.
Figure: network _1 from two voxel seed pairs in previous figure. Red, green, blue voxel colors correspond to HC, SCNH, and SCWH, respectively.
Figure: network_2 from two voxel seed pairs in previous figure. Red, green, blue voxel colors correspond to HC, SCNH, and SCWH, respectively.
Conclusions

- New method for fMRI data analysis
 - On multivariate mathematical morphology and
 - Supervised reduced ordering that needs the definition of seed voxels.

- This method does not involve statistical techniques, is model-free in a very extensive point of view.
 - The method relies only in lattice computing operators,

- Experimental results on healthy control and patient data show strongly different network according to subject class,

- Discrimination that could further be exploited by machine learning approaches.

- Work in progress deals with the group level analysis