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Abstract—We provide enhanced results of an inno-
vative nature inspired algorithm to solve the Graph
Coloring Problem (GCP): the Gravitational Swarm
Intelligence (GSI). Swarm Intelligence solves com-
plex problems by extracting information from the
spatial configurations of of agents that decide their
actions/motions based on local available information,
without any central control system. In the GSI appli-
cation to GCP, agents correspond to graph’s nodes,
moving as particles in the gravitatory field defined
by some target objects corresponding to graph node
colors. Knowledge of the graph’s topology is available
to the agents’ local navigation control as friend-or-
foe information. We discuss the convergence of the
algorithm and test it over well-known benchmarking
graphs, achieving good results in a reasonable time.

Keywords-Gravitational Swarm Intelligence; Graph
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I. Introduction
The Graph Coloring Problem (GCP) is a classical

combinatorial optimization problem which is of NP-
complete complexity [9], [15], [16], [18], [19]. The GCP
consist in assigning a color to the nodes of a graph with
the restriction that any pair of nodes that are linked
can’t have the same color. The chromatic number K
is the minimum number of colors needed to color the
graph. Classical algorithms to solve GCP are determinis-
tic search algorithms [2], [7], [6]. Heuristics and random
search allow to obtain approximations to the optimal
solutions in bounded time. Some recent approches have
applied Ant Colony Optimization (ACO) [10], Particle
Swarm Optimization (PSO) [14], and Reynolds Boyd
swarms [4], [11].

We consider a nature inspired strategy to solve this
problem following a Swarm Intelligence (SI) [25] ap-
proach. The bee hives [1], ant colonies [12] and flocking
birds [8], [24], [23] are examples of such swarms. In SI
models, the emergent collective behavior is the outcome
of a process of self-organization, where the agents evolve
autonomously following a set of internal rules for its
motion and interaction with the environment and the
other agents. Intelligent complex behavior appears from
simple individual behaviors. An important feature of SI
is that there is no leader agent or central control. One

of its biggest advantage is that it allows a high level of
scalability, because the problem to be solved is naturally
divided into small problems, one for each agent. In real
life, when some ants of a colony (also valid for bees,
birds or other swarms) fail in its task, it won’t alter too
much the behavior of the overall system, and in some
problems occurs the same, so the algorithm based on SI
can be robust against individual failure.

In this paper we enhance our proposition of a Gravi-
tational SI (GSI) for the approximate solution of GCP
[22]. GSI agents correspondend to graph nodes. We
place the GSI agents in a torus shaped space, moving
towards the color goals. Agents are attracted to specific
space places (color goals) where the corresponding graph
node acquires a color. Such attraction is modeled as a
gravitatory field extended to the entire space. When
the GSI agent reaches a color goal, it remains there
unless pushed out by repulsive forces of antagonistic
agents. The friend/foe relation between SI agents is
determined by the graph to be colored. Nodes connected
by an arc correspond to antagonistic GSI agents exerting
mutually repulsive forces. When an agent is impeded to
reach any color goal because of these repulsive forces,
its “discomfort” grows increasing unidirectionally the
force it can exert on foe agents to push them out of the
color goals. This discomfort reaction allows the system
to escape local minima that are not solutions of the GCP.
The SI dynamics reaches a termination stable state when
all the agents are in a color goal and there is no conflict
among them.

The rest of the paper is organized as follow: sec-
tion II presents our Gravitational Swarm Intelligence
algorithm. In Section III we discuss the convergence
of the algorithm. In Section IV we show experimental
results comparing our algorithm performance with other
methods using well-known graphs. Finally, section V
gives some conclusions and lines for future work.

II. Gravitational Swarm Intelligence
The natural inspiration of our algorithm does not

come from living beings, such as ants, bees or birds,
but from a basic physics law: the gravitational atraction
between objects. We construct a world where agents nav-



igate through the space attracted by the gravitational
pull of specific objects, the color goals, and may suffer
specific repulsion forces, activated by the friend-or-foe
nature of the relation between agents.

Let be G = (N,E) a graph with a set of nodes
N = {1, . . . , n} and edges E ⊆ N × N . We define
B as a group of GSI agents B = {b1, b2, ..., bn} each
corresponding to a graph node. Each agent navigates
inside a square planar toric world. Each GSI agent moves
through this space according to a speed vector −→vi . In
any moment of time we know the position attribute
of each agent pi(t) = (xi, yi) where xi and yi are the
cartesian coordenades in the space. When t = 0 we
have the initial position of the agents pi(0) = (x0i, y0i).
Supposse that we want to color the graph with K
colors, denoting as C = {1, 2, ...,K} the set of colors.
If K is the minimum number of colors that allow to
color the graph, then K is the chromatic number of
the graph. We assign to these colors, K fixed points
in space, the color goals CG = {g1, . . . , gK}, endowed
with a gravitational attraction resulting in a velocity
component −→vgc afecting the agents. The attraction force
decreases with the distance, but affects all the agents in
the space.

When the euclidean distance between an agent and
the color goal is below a threshold nearenough, the
agent stops moving and the corresponding node is as-
signed to this color. We denote the set of agents whose
position is in the region of the space near enough
to a color neighbourhood of the color as N(gk) =
{bi s.t. ‖pi − gk‖ < nearenough}. We denote the fact
that the node has been assigned to the corresponding
color assigning value to a the agent color attribute
bi ∈ N (gk) ⇒ ci = k. Initial value of the agent
color attribute is zero or null. Inside the neighbourhood
of a color there is no further gravitational atraction.
However, there may be a repulsion force between agents
that are conected with an edge in the graph G. In the
current implementation of the algorihtm, this repulsion
is only effective for agents in the same color goal neigh-
bourhood. The function enemy has value 1 if a pair of
GSI agents have an edge between them, and 0 otherwise.
The repulsive forces experimented by agent bi from the
agents in the color goal gk are computed as follows:
R (bi, gk) =

∑
N(gk) enemy (bi, bj).

We can model the problem as a tuple F =
(B,CG, {−→vi} ,K, {−→ai,k} , R) where B is the group of GSI
agents, {−→vi} the set of agent velocity vectors at time
instant t, K the hypothesized chromatic number of the
graph and {−→ai,k} are the attraction forces of the color
goals exerted on the agents. R denotes the repulsion
forces in the neighbourhoord of color goals.

The cost function defined on the global system spatial

configuration is:

f (B,CG) = |{bi s.t. ci ∈ C & R (bi, gci) = 0}| . (1)

This cost funciton is the count of number of graph
nodes which have a color assigned and no conflict inside
the color goal. The agents outside the neighbourhood of
any color goal can’t be evaluated, so it can be a part of
the solution of the problem. The dimension of the world
and the definition of the nearenough threshold allows
controlling the speed of convergence of the algorithm. If
the world is big and the near enough variable is small
the algorithm converges slowly but monotonically to
the solution, if the world is small and the nearenough
variable is big the algorithm is faster but convergence
is jumpy because the algorithm falls in local minima
and needs transitory energy increases to escape them.
The reason of this behaviour is that the world is not
normalizad and the magnitude of the velocity vector can
be bigger than the color goal spatial influence and can
cross a goal without falling in it. The dynamics of each
GSI agent in the world is specified by the iteration:

−→vi (t+ 1) =


0

d · −−→ai,k∗

−→vr · (pr − pi)

ci ∈ C& (λi = 1)
ci /∈ C

(ci ∈ C) & (λi = 0)
,

(2)
where d is the vector difference of the agent’s position
pi and the position of the nearest color goal gk∗ , −−→ai,k∗

represents the attraction force to approach the nearest
goal, and −→vr is a random vector to avoid being stuck
in spurious unstable equilibrium, towards a random
position pr. Parameter λi represents the effect of the
degree of Comfort of the GSI agent. When a GSI agent
bi reaches to a goal in an instant t, its velocity becomes
0. Every time step that the GSI agent stays in that
goal without been disturbed, its Comfort increases, until
reaching a maximum value maxconfort. When an GSI
agent bi outside the color goal gk∗ tries to go inside
the neighborhood of that color goal, the repulsion force
R (bi, gk∗) is evaluated. If the repulsion force is greater
than zero then the incoming agent is challenging the
stability of the color neighbourhood and at least one
agent must leave the goal, which can be the incoming
agent itself. The repulsion force is only applied between
conected agents. If the Confort values of the challenged
agents are bigger than 0 then their Comfort decreases.
If the Confort reaches 0, then one conected agent is
expelled from the color goal to a random position in the
space pr with velocity vr. In equation 2 when Comfort is
positive the parameter has value λi = 0. If the Repulsion
force is greater than zero and the Comfort of a GSI agent
bi inside that goal is equal to 0 thenλi = 1 and bi is
expelled from the goal. When all the GSI agents stop,



i.e. ∀i,−→vi = 0; therefore f (B,CG) = n and the GCP of
assigning K colors to graph G is solved.

Each color goal has an attraction well spanning the
entire space, therefore the gravitational analogy. But
in our approach the magnitude of the attraction drops
proportionally with the Euclidean distance d between
the goal and the GSI agent, but it never disappears. If
‖d‖ < nearenough then we make d = 0, and the agent’s
velocity becomes 0 stopping it. The flowchart of figure 1
shows the internal logic works of each GSI agent .

III. Convergence issues
We discuss in this section the convergence of the

algorithm from an intuitive point of view. The GSI
agents start in a position p0i = {x0i, y0i} and with an
initial speed −→v0i. The direction and value of the speed
vector changes with the dynamics of the system. The
gravitational attraction of each color goal is the same
for all, but the attraction force applied to a GSI agent
from the nearest color goal does not add or interfere with
the other color goals. The speed is directly proportional
to the distance between the GSI agent and its target
color goal, when the distance is below a threshold the
GSI agent stop. Initially each GSI agent tries to get to
the nearest goal. The attraction of the goals is strong
when the GSI agent is far away and weak when the GSI
agent is near the goal. The algorithm assigns the GSI
agent a speed equal to zero when the GSI agent is inside
the goal radius. If antagonistic GSI agents are already
inside the goal, it tries to expel them out of the goal. An
expelled GSI agent is attracted by his new nearest goal
and so on, until it can enter in a goal without enemies.

The system reaches an stationary state only if all the
GSI agents’ speed becomes zero. Then, the algorithm
has converged to some fixed state where all of them
are inside a color goal and there is no conflict inside
the color goal neighborhoods. If the chromatic number
is the hypothesized K or lower, then such an state
exists. If there are any conflict, the system is no stable,
because at least one agent will be expelled from the color
goal neighborhood and continue moving searching for an
appropriate color goal. An GSI agent speed only becomes
zero when is inside a goal without enemies.

When a GSI agent tries to enter inside a goal, if there
is one or more enemies in the goal it will try to find
another goal empty of enemies. If there is no one, then it
will proceed to expel the enemies from one of the goals.
The GSI agent selects a random foe and evaluates its
λi parameter. If it is zero, then that enemy is expelled
from the goal to a random point pr with a velocity
magnitude vr. And all its enemies’ Comfort inside that
goal decreases. It doesn’t matter if other enemies λj = 0,
the GSI agent can only expel one GSI agent at one step.
The GSI agent doesn’t stop because it can be still more

enemies in that goal and must wait until the next step to
get inside. With this behavior, when a GSI agent is inside
a goal, it’s sure that there are no enemies in the goal.
So when our algorithm stops because all the agents have
stopped, it has reached a GCP solution, because no two
adjacent graph nodes have the same color assignment
and all the agents are “inside” a color goal. If the agents
never stop, it means that the hypothetical number of
colors is lower than the true chromatic number.

IV. Experimental results
We have made experiments with a group of well-

known graphs that appear often in the literature. We
have implemented our Gravitational Swarm Intelligence
(GSI) algorithm and the following four state-of-the-art
algorithms to compare results:

1) A greedy backtracking algorithm: this algorithm
explores all the search space and always return
the optimal solution if exists. As the GCP is
a NP-complete problem we can use backtraking
only in small problems or especial graphs like the
mycielsky graphs.

2) DSATUR (Degree of Saturation): this algorithm
developed by Brèlaz [2] is a greedy backtraking
algorithm but does not explore exhaustively all
the search space. It looks for the biggest clique
in the graph, we have used the Bron-Kerbosch [3]
algorithm in our implementation, setting its size as
the initial number of colors. Then starts the search
to determine the color of the remaining nodes of
the graph.

3) Tabu Seach: it is a random local search with some
memory of the previous steps, so the best solution
is always retained while exploring the environment.

4) Simulated Annealing: this random algorithm has
a big problem in the graph coloring problem,
because there are a lot of neighboring states that
have the same energy value. Despite this handycap
Simulated Annealing algorithm provides state-of-
the-art results for this problem[21].

We have implement all these algorithm because it’s
easier to compare with our GCP, instead of using result
published in the literature. The programing languaje,
the computer used or even the estructures used in
the implementation can made a big diference between
different works. We have implement all the algorithms
using Visual Basic .Net, and all the experiments have
been run in the same computer.

A. GSI implementation
Even though, our algorithm is about GSI agents

moving around the search space, we haven’t use any
parallel implementation. At each time step all the GSI
agents motion is evaluated. After each time step, the



Figure 1. GSI agent behavior flowchart for GCP

Table I
Experimental graph test suite

Graph name #nodes #Edges Density K

anna 138 986 0.10 11
david 87 812 0.21 11

hommer 561 3258 0.25 13
huck 74 662 0.22 11
jean 80 508 0.16 10

myciel3 11 20 0.36 4
myciel4 23 71 0.28 5
myciel5 47 236 0.21 6
myciel6 95 755 0.17 7
myciel7 191 2360 0.13 8

cost function must be evaluated to see if the problem
is solved or not. We have two time reference units, the
standard hours, minutes and seconds to compare with
other algorithms and the iteration steps to compare
experiments over the same graph. The real computing
time can change from one computer to another, but the
steps will be always the same. When we are evaluating
the next position of a GSI agent in the step t, we take
into account the position of the other GSI agents in the

step t− 1.
B. Graph test suite

For validation, it’s a good idea to use well-known
benchmarking graphs, whose chromatic number is
known. The Mycielsky graphs [20] are a family of graphs
whose chromatic number is equal to the degree of the
graph plus one K = m + 1 where m is the Mycielsky
number. There are also collections of benchmark graphs,
such as the DIMACS graphs [16], [17]. For graphs whose
chromatic number is unknown the algorithm validation
comes from the comparison to other graph coloring
algorithms [26], [5].

We include in our test suite the Mycielsky graph fam-
ily up to order 6 [13]. They serve to tune the algorithms’
implementation because of their regular structure and
inmediate knowledge of their chromatic number. We
include in our test suite a special family of graphs,
the Book Graphs, proposed by Knuth. Given a literary
work, a graph is created where each node represents a
character. Two nodes are connected by an edge if the
corresponding characters encounter each other in the
book. Knuth creates the graphs for five classic works:



Table II
Graph coloring results over the test graphs of the Backtracking (BT), DSATUR, Tabu Search (TS), Simulated

Annealing (SA) and Gravitational Swarm Intelligence (GSI) results. Asterisk (*) means no solution was obtained.

BT DSATUR TS SA GSI
Graph name K #back #back #iter %success #iter %success #iter %success

Myciel3 4 1 1 13 100 21 100 25 100
Myciel4 5 1 1 51 100 716 100 46 100
Myciel5 6 1 1 393 96 407074 28 241 100
Myciel6 7 1 1 970 94 * 0 630 100
Myciel7 8 1 1 1575 92 * 0 1103 98
anna 11 * 1 4921 2 483859 6 718 98
david 11 * 1 * 0 478207 10 1428 92
homer 13 * * * 0 * 0 2583 76
huck 11 1 1 3363 54 180975 64 251 98
jean 10 1 1 2471 68 281418 44 439 98

Tolstoy’s Anna Karenina (anna), Dicken’s David Cop-
perfield (david), Homer’s Iliad (homer), Twain’s Huck-
leberry Finn (huck), and Hugo’s Les Miserables (jean).
Table 1 contains the features of the test suite. The name,
number of nodes, number of edges, the density of the
graph (calculated as the ratio between the number of
edges in the actual graph and the complete graph) and,
most important, the best chromatic number found in the
literature and in our tests.

In table 2 we show the results of applying the deter-
ministic greedy algorithms backtraking and DSATUR,
the Tabu Search and Simulated annealing heuristics,
and our GSI algorithm. Backtracking and DSATUR
are deterministic algorithm so the result is always the
same, we give the number of backtracks needed to solve
the problem. We also stop the greedy algorithms after
10.000.000 backtracks due to their big computational
time. The other three algorithms are random searches
and have been tested 50 times with each graph, we give
the average number of steps and the % of success. In
all the situations we stop the experiments after 5000
iterations (backtrack or steps), except for the SA that,
which we extend up to 10.000.000 steps.

Our Algorithm has the best success ratio of the ap-
proximation heuristic algorithms. It manages to find a
solution at least once for each problem. In the Myciel
family the greedy algorithm are the best due to their
special of the graph structure. In the Book Graphs
the greedy algorithms have failed where our GSI has
succeded.

Although SA has poor results, it has an especial fea-
ture that make it very interesting for unknown graphs.
The initial number of color is not necesary for this
algorithm. We can launch it with a number of colors
equal to the number of nodes and the algorithm itself
reduces the number of colors on the fly. This is useful
to find and upper-bound of the chromatic number of
unknown graphs.

Finally, in table 3 we show the experiment time for

each graph and method. We take the time of the GSI
as a referencial time. The number of steps of the greedy
algorithm and the SA have been evaluated using this
referencia. We can observate that our GSI algorithm is
faster than other random search algorithms and also is
faster than the greedy algorithm in an scenario where the
greedy algorithm have problems finding the solution.

Graph Name BT DSATUR TS SA GSI
Myciel3 1 1 1 1 1
Myciel4 1 1 1 1 1
Myciel5 1 1 11 1067 9
Myciel6 1 1 69 * 55
Myciel7 1 1 307 * 210
anna * 2 959 596 137
david * 1 * 319 177
homer * * * * 2456
huck 1 1 276 134 26
jean 1 1 206 239 48

Table III
Experiment computational time in seconds. (*) means that
no solution was found until reaching the limit number of

iterations.

V. Conclusions

We proposed a new algorithm for the Graph Coloring
Problem using Swarm Intelligence. We have modeled the
problem as a collection of agents trying to reach some
of a set of goals. Goals represent node colorings, agents
represent graph’s nodes. The color goals exert a kind
of gravitational attraction over the entire virtual world
space. With these assumptions, we have solved the GCP
using a parallel evolution of the agents in the space.
We have argued the convergence of the system, and we
have demonstrated empirically that it provides effective
solutions in terms of precision and computational time.
We will continue to test our algorithm on an extensive
collection of graphs, comparing its results with state of
the art heuristic algorithms. We are working on a formal
convergence proof of the algorithm dynamics.
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