Lattice Algebra: Theory and Applications

Prof. Gerhard Ritter
CISE Department, University of Florida
Overview

Part I: Theory
- Pertinent algebraic structures
- Lattice algebra with focus on ℓ-vector Spaces
- Concluding remarks and questions

Part II: Applications
- LNNs
- Matrix based LAMs
- Dendritic LAMs
- Concluding remarks and questions
History

- Lattice theory in image processing and AI
- Image algebra, mathematical morphology, and HPC

A pertinent question:
Why is \((-1) \cdot (-1) = 1\)?
Some basic background

Let G be a set with binary operation \circ. Then

1. (G, \circ) is a groupoid

2. if $x \circ (y \circ z) = (x \circ y) \circ z$, then (G, \circ) is a semigroup

3. if G is a semigroup and G has an identity element, then G is a monoid

4. if G is a monoid and every element of G has an inverse, then G is a group

5. if G is a group and $x \circ y = y \circ x \ \forall \ x, y \in G$, then G is an abelian group.
Algebraic Structures

Why are groups important?

Theorem. If \((X, \cdot)\) is a group and \(a, b \in X\), then the linear equations \(a \cdot x = b\) and \(y \cdot a = b\) have unique solutions in \(X\).

Remark: Note that the solutions \(x = a^{-1} \cdot b\) and \(y = b \cdot a^{-1}\) need not be the same unless \(X\) is abelian.
Algebraic Structures

Sets with Multiple Operations
Suppose that X is a set with two binary operations \star and \circ. The operation \circ is said to be left distributive with respect to \star if

$$x \circ (y \star z) = (x \circ y) \star (x \circ z) \ \forall \ x, y, z \in X \quad (1)$$

and right distributive if

$$(y \star z) \circ x = (y \circ x) \star (z \circ x) \ \forall \ x, y, z \in X. \quad (2)$$

Division on \mathbb{R}^+ is not left distributive over addition;

$$(y + z)/x = (y/x) + (z/x) \text{ but }$$

$$x/(y + z) \neq (x/y) + (x/z).$$

When both equations hold, we simply say that \circ is distributive with respect to \star.
Algebraic Structures

Definition: A *ring* \((R, +, \cdot)\) is a set \(R\) together with two binary operations \(+\) and \(\cdot\) of addition and multiplication, respectively, defined on \(R\) such that the following axioms are satisfied:

1. \((R, +)\) is an abelian group.
2. \((R, \cdot)\) is a semigroup.
3. \(\forall a, b, c \in R, a \cdot (b + c) = (a \cdot b) + (a \cdot c)\) and \((a + b) \cdot c = (a \cdot c) + (b \cdot c)\).

If axiom 1 in this definition is weakened to \((R, +)\) is a commutative semigroup, then \(R\) is called a *semiring*.
Algebraic Structures

If \((R, +, \cdot)\) is a ring, we let 0 denote the additive identity and 1 the multiplicative identity (if it exists). If \(R\) satisfies the property

- For every nonzero \(a \in R\) there is an element in \(R\), denoted by \(a^{-1}\), such that \(a \cdot a^{-1} = a^{-1} \cdot a = 1\) (i.e. \((R \setminus \{0\}, \cdot)\) is a group),

then \(R\) is called division ring. A commutative division ring is called a field.

You should now be able to prove that \((-1) \cdot (-1) = 1\).
Partially Ordered Sets

Definition: A relation \preceq on a set X is called a *partial order* on X if and only if for every $x, y, z \in X$ the following three conditions are satisfied:

1. $x \preceq x$ (reflexive)
2. $x \preceq y$ and $y \preceq x \implies x = y$ (antisymmetric)
3. $x \preceq y$ and $y \preceq z \implies x \preceq z$ (transitive)

The *inverse* relation of \preceq, denoted by \succeq, is also a partial order on X.

Definition: The *dual* of a partially ordered set X is that partially ordered set X^* defined by the inverse partial order relation on the same elements.

Since $(X^*)^* = X$, this terminology is legitimate.
Lattices

Definition: A lattice is a partially ordered set \(L \) such that for any two elements \(x, y \in L \), \(\text{glb}\{x, y\} \) and \(\text{lub}\{x, y\} \) exist. If \(L \) is a lattice, then we define \(x \land y = \text{glb}\{x, y\} \) and \(x \lor y = \text{lub}\{x, y\} \).

• A sublattice of a lattice \(L \) is a subset \(X \) of \(L \) such that for each pair \(x, y \in X \), we have that \(x \land y \in X \) and \(x \lor y \in X \).

• A lattice \(L \) is said to be complete if and only if for each of its subsets \(X \), \(\inf X \) and \(\sup X \) exist. We define the symbols \(\bigwedge X = \inf X \) and \(\bigvee X = \sup X \).
Suppose \((R, \circ)\) is a semigroup or group and \(R\) is a lattice \((R, \lor, \land)\) or semilattice \((R, \lor)\).

Definition: A *group translation* \(\psi\) is a function
\[
\psi : R \rightarrow R
\]
of form
\[
\psi(x) = a \circ x \circ b,
\]
where \(a, b\) are constants.

The translation \(\psi\) is said to be *isotone* if and only if
\[
x \preceq y \implies \psi(x) \preceq \psi(y)
\]
Note that a group translation is a unary operation.
\textbf{\textit{s\ell}-Semigroups and \ell-Groups}

Definition: A \textit{\ell-group} (\textit{\ell-semigroup}) is of form
\((R, \lor, \land, +)\), where \((R, +)\) is a group
(semigroup) and \((R, \lor, \land)\) is a lattice, \textit{and} every
group translation is isotone.

If \(R\) is just a semilattice - i.e., \((R, \lor)\) or \((R, \land)\) - in
the definition, then \((R, \lor, +)\) (or \((R, \land, +)\)) an
\textit{s\ell-group} if \((R, +)\) is a group and an
\textit{s\ell-semigroup} if \((R, +)\) is a semigroup.
$s\ell$-Vector Spaces and ℓ-Vector Spaces

Definition: A $s\ell$—vector space \mathbb{V} over the $s\ell$-group (or $s\ell$-monoid) $(\mathbb{R}, \lor, +)$, denoted by $\mathbb{V}(\mathbb{R})$, is a semilattice (\mathbb{V}, \lor) together with an operation called *scalar addition* of each element of \mathbb{V} by an element of \mathbb{R} on the left, such that $\forall \alpha, \beta \in \mathbb{R}$ and $v, w \in \mathbb{V}$, the following conditions are satisfied:

1. $\alpha + v \in \mathbb{V}$
2. $\alpha + (\beta + v) = (\alpha + \beta) + v$
3. $(\alpha \lor \beta) + v = (\alpha + v) \lor (\beta + v)$
4. $\alpha + (v \lor w) = (\alpha + v) \lor (\alpha + w)$
5. $0 + v = v$
$s \ell$-Vector Spaces and ℓ-Vector Spaces

The $s \ell$-vector space is also called a \textit{max} vector space, denoted by \lor-vector space. Using the duals $(R, \land, +)$ and (\lor, \lor), and replacing conditions (3.) and (4.) by

$3'$. $(\alpha \land \beta) + v = (\alpha + v) \land (\beta + v)$

$4'$. $\alpha + (v \land w) = (\alpha + v) \land (\alpha + w)$,

we obtain the \textit{min} vector space denoted by \land-vector space.

Note also that replacing \lor (or \land) by $+$ and $+$ by \cdot, we obtain the usual axioms defining a vector space.
\textbf{Definition:} If we replace the semilattice \mathcal{V} by a lattice $(\mathcal{V}, \vee, \wedge)$, the $s\ell$-group (or $s\ell$-semigroup) R by an ℓ-group (or ℓ-semigroup) $(R, \vee, \wedge, +)$, and conditions 1 through 5 and 3' and 4' are all satisfied, then $\mathcal{V}(R)$ is called an \textit{ℓ-vector space}.

\textbf{Remark.} The lattice vector space definitions given above are drastically different from \textit{vector lattices} as postulated by Birkhoff and others! A vector lattice is simply a partially ordered real vector space satisfying the isotone property.
Lattice Algebra and Linear Algebra

The theory of ℓ-groups, $s\ell$-groups, $s\ell$-semigroups, ℓ-vector spaces, etc. provides an extremely rich setting in which many concepts from linear algebra and abstract algebra can be transferred to the lattice domain via analogies. ℓ-vector spaces are a good example of such an analogy. The next slides will present further examples of such analogies.
Lattice Algebra and Linear Algebra

Ring: \((\mathbb{R}, +, \cdot)\)
- \(a \cdot 0 = 0 \cdot a = 0\)
- \(a + 0 = 0 + a = a\)
- \(a \cdot 1 = 1 \cdot a = a\)
- \(a \cdot (b + c) = (a \cdot b) + (a \cdot c)\)

Semi-Ring or \(s\ell\)-Group: \((\mathbb{R}_{-\infty}, \lor, +)\)
- \(a + (-\infty) = (-\infty) + a = -\infty\)
- \(a \lor (-\infty) = (-\infty) \lor a = a\)
- \(a + 0 = 0 + a = a\)
- \(a + (b \lor c) = (a + b) \lor (a + c)\)
Lattice Algebra and Linear Algebra

• Since \((\mathbb{R}_{-\infty}, \lor, +)^* = (\mathbb{R}_{\infty}, \land, +^*), (\mathbb{R}_{\infty}, \land, +^*)\) is also an \(s\ell\)-semigroup (with \(+^* = +\)) isomorphic to \((\mathbb{R}_{-\infty}, \lor, +)\)

• Defining \(a +^* b = a + b \forall a, b \in \mathbb{R}_{-\infty}\) and

\[
-\infty + \infty = \infty + -\infty = -\infty \\
-\infty +^* \infty = \infty +^* -\infty = \infty,
\]

we can combine \((\mathbb{R}_{-\infty}, \lor, +)\) and \((\mathbb{R}_{\infty}, \land, +)\) into one well defined algebraic structure \((\mathbb{R}_{\pm\infty}, \lor, \land, +, +^*)\).
Lattice Algebra and Linear Algebra

- The structure \((\mathbb{R}, \vee, \wedge, +)\) is an \(\ell\)-group.
- The structures \((\mathbb{R}_{-\infty}, \vee, \wedge, +)\) and \((\mathbb{R}_{\infty}, \vee, \wedge, +)\) are \(\ell\)-semigroups.
- The structure \((\mathbb{R}_{\pm\infty}, \vee, \wedge)\) is a bounded distributive lattice.
- The structure \((\mathbb{R}_{\pm\infty}, \vee, \wedge, +, +^*)\) is called a bounded lattice ordered group or blog, since the underlying structure \((\mathbb{R}, +)\) is a group.
Matrix Addition and Multiplication

Suppose $A = (a_{ij})_{m \times n}$ and $B = (b_{ij})_{m \times n}$ with entries in $\mathbb{R}_{\pm \infty}$. Then

- $C = A \lor B$ is defined by setting $c_{ij} = a_{ij} \lor b_{ij}$, and
- $C = A \land B$ is defined by setting $c_{ij} = a_{ij} \land b_{ij}$.

If $A = (a_{ij})_{m \times p}$ and $B = (b_{ij})_{p \times n}$, then

- $C = A \bigoplus B$ is defined by setting $c_{ij} = \bigvee_{k=1}^{p}(a_{ik} + b_{kj})$, and
- $C = A \bigotimes B$ is defined by setting $c_{ij} = \bigwedge_{k=1}^{p}(a_{ik} + \ast b_{kj})$.

- \lor and \land are called the max and min products, respectively.
Zero and Identity Matrices

For the semiring \((M_{n \times n}(\mathbb{R}_{-\infty}), \lor, \boxplus)\), the null matrix is

\[
\Phi = \begin{pmatrix}
-\infty & \cdot & \cdot & \cdot & -\infty \\
\cdot & -\infty & \cdot & \cdot & \cdot \\
\cdot & \cdot & -\infty & \cdot & \cdot \\
\cdot & \cdot & \cdot & -\infty & \cdot \\
-\infty & \cdot & \cdot & \cdot & -\infty
\end{pmatrix}
\]
Zero and Identity Matrices

For the semiring \((M_{n \times n}(\mathbb{R}_{-\infty}), \lor, \sqcap)\), the identity matrix is

\[
I = \begin{pmatrix}
0 & -\infty & \cdot & \cdot & -\infty \\
-\infty & 0 & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & -\infty \\
-\infty & \cdot & \cdot & -\infty & 0
\end{pmatrix}
\]
Matrix Properties

We have $\forall A, B, C \in M_{n \times n}(\mathbb{R}_{-\infty})$

$$A \triangledown (B \vee C) = (A \triangledown B) \vee (A \triangledown C)$$

$I \triangledown A = A \triangledown I = A$

$A \vee \Phi = \Phi \vee A = A$

$A \triangledown \Phi = \Phi \triangledown A = \Phi$

Analogous laws hold for the semiring $(M_{n \times n}(\mathbb{R}_\infty), \wedge, \triangledown)$,
Conjugation

If \(r \in \mathbb{R}_{\pm\infty} \), then the additive conjugate of \(r \) is the unique element \(r^* \) defined by

\[
r^* = \begin{cases}
-r & \text{if } r \in \mathbb{R} \\
-\infty & \text{if } r = \infty. \\
\infty & \text{if } r = -\infty
\end{cases}
\]

- \((r^*)^* = r\) and \(r \land s = (r^* \lor s^*)^* \)
- It follows that \(r \land s = -(r^\lor s) \) and
- \(A \land B = (A^* \lor B^*)^* \) and \(A \Box B = (B^* \Box A^*)^* \),

where \(A = (a_{ij}) \) and \(A^* = (a^*_{ji}) \).
\textbf{sl-Sums}

\textbf{Definition:} If \(X = \{x^1, \ldots, x^k\} \subset \mathbb{R}^n_{-\infty} \) (or \(X \subset \mathbb{R}^n \)), then \(x \in \mathbb{R}^n_{-\infty} \) (or \(x \in \mathbb{R}^n \)) is said to be a \textit{linear max (min) combination} of \(X \) if \(x \) can be written as

\[x = \bigvee_{\xi=1}^{k} (\alpha_{\xi} + x^\xi) \quad \text{(or)} \quad x = \bigwedge_{\xi=1}^{k} (\alpha_{\xi} + x^\xi), \]

where \(\alpha \in \mathbb{R}_{-\infty} \) (or \(\alpha \in \mathbb{R}_{\infty} \)) and \(x^\xi \in \mathbb{R}^n_{-\infty} \) (or \(x^\xi \in \mathbb{R}^n \)).

The expressions \(\bigvee_{\xi=1}^{k} (\alpha_{\xi} + x^\xi) \) and \(\bigwedge_{\xi=1}^{k} (\alpha_{\xi} + x^\xi) \) are called a \textit{linear max sum} and a \textit{linear min sum}, respectively.
$s\ell$-Independence

Definition: Given the $s\ell$-vector space $(\mathbb{R}^{n_{-\infty}}, \vee)$ over $(\mathbb{R}_{-\infty}, \vee, +)$, $X = \{x^1, \ldots, x^k\} \subset \mathbb{R}^{n_{-\infty}}$, and $x \in \mathbb{R}^{n_{-\infty}}$, then x is said to be *max dependent* or *$s\ell$-dependent* on X \iff $x = \bigvee_{\xi=1}^{k} (\alpha_\xi + x^\xi)$ for some linear max sum of vectors from X. If x is not max dependent on X, then x is said to be *max independent* of X.

The set X is *$s\ell$-independent* or *max independent* $\iff \forall \xi \in \{1, \ldots, k\}$, x^ξ is $s\ell$-independent of $X \setminus \{x^\xi\}$.
sℓ-Subspaces and Spans

Definition: If $X \subset \mathbb{R}^n_{-\infty}$, then (X, \lor) is an $s\ell$-subspace of $(\mathbb{R}^n_{-\infty}, \lor)$ \iff the following are satisfied:

1. if $x, y \in X$, then $x \lor y \in X$
2. $\alpha + x \in X \forall \alpha \in \mathbb{R}_{-\infty}$ and $x \in X$.

Definition: If $X \subset \mathbb{R}^n_{-\infty}$, then the $s\ell$-span of X is the set

$S(X) = \{x \in \mathbb{R}^n_{-\infty}; x$ is max dependent on $X\}$.
\textbf{Remark:} If $x \in S(X)$, then $\alpha + x \in S(X)$ and $x \lor y \in S(X) \forall x, y \in S(X)$. Thus $S(X)$ is an $s\ell$-vector subspace of $\mathbb{R}^n_{-\infty}$.

If $S(X) = \mathbb{R}^n_{-\infty}$, then we say that X \textit{spans} $\mathbb{R}^n_{-\infty}$ and X is called a set of \textit{generators} for $\mathbb{R}^n_{-\infty}$.

\textbf{Definition:} A basis for an $s\ell$-vector space (\forall, \lor) (or (\forall, \land)) is a set of $s\ell$-independent vectors which spans \forall.
$s\ell$-independence

Example. The set $X = \{(0, -\infty), (-\infty, 0)\}$ spans \mathbb{R}_-^2 and is $s\ell$-independent. Thus X is a basis for \mathbb{R}_-^2.

Question: What is a basis for \mathbb{R}^2?

Question: If $a \in \mathbb{R}$, what is the span of $X = \{(0, a), (-\infty, 0)\}$ in \mathbb{R}_-^2?

Question: What is the span of $X = \{(1, 0), (0, 1)\}$ in \mathbb{R}_-^2?
ℓ-Vector Spaces

Most of what we have said for \(s\ell \)-vector spaces also holds for \(\ell \)-vector spaces with the appropriate changes. Thus, for \((\mathbb{R}^n_{\pm\infty}, \lor, \land) \) we have:

- If \(\{x^1, \ldots, x^k\} \subset \mathbb{R}^n_{\pm\infty} \), then a \textit{linear minimax combination} of vectors from the set \(\{x^1, \ldots, x^k\} \) is any vector \(x \in \mathbb{R}^n_{\pm\infty} \) of form

\[
x = \mathcal{G}(x^1, \ldots, x^k) = \lor_{j \in J} \land_{\xi = 1} (a_{\xi j} + x^\xi), \quad (3)
\]

where \(J \) is a finite set of indices and \(a_{\xi j} \in \mathbb{R}^{}_{\pm\infty} \)

\(\forall j \in J \) and \(\forall \xi = 1, \ldots, k \).
ℓ-Vector Spaces

- The expression
 \[S(x^1, \ldots, x^k) = \bigvee_{j \in J} \bigwedge_{\xi=1}^{k} (a_{\xi j} + x^\xi) \]
 is called a *linear minimax sum* or an *ℓ-sum*.

- Similarly we can combine the structures
 \((M(\mathbb{R}^{n}_{\pm \infty})_{n \times n}, \lor, \land) \) and
 \((M(\mathbb{R}^{n}_{\pm \infty})_{n \times n}, \land, \lor) \)
 to obtain the blog \((M(\mathbb{R}^{n}_{\pm \infty})_{n \times n}, \lor, \land, \land, \lor) \) in order to obtain a coherent minimax theory for matrices.

- Many of the concepts found in the corresponding linear domains can then be realized in these lattice structures via appropriate analogies.
\(\ell\)-Transforms

Definition: A linear max transform or \(s\ell\)-transform of an \(s\ell\)-vector space \(V(R)\) into an \(s\ell\)-vector space \(W(R)\) is a function \(L : V \to W\) which satisfies the condition

\[
L((\alpha + v) \lor (\beta + u)) = (\alpha + L(v)) \lor (\beta + L(u))
\]

for all scalars \(\alpha, \beta \in R\) and all \(v, u \in V\).

A linear min transform obeys

\[
L((\alpha + v) \land (\beta + u)) = (\alpha + L(v)) \land (\beta + L(u))
\]

and a linear minimax transform of an \(\ell\)-vector space \(V(R)\) into an \(\ell\)-vector space \(W(R)\) obeys both of the equations.
\(s\ell\)-transforms and polynomials

- Just as in linear algebra, it is easy to prove that any \(m \times n\) matrix \(M\) with entries from \(\mathbb{R}^m_{-\infty}\) (or \(\mathbb{R}^m_{\infty}\)) corresponds to a linear max (or min) transform from \(\mathbb{R}^m_{-\infty}\) into \(\mathbb{R}^n_{-\infty}\) (or \(\mathbb{R}^m_{\infty}\) into \(\mathbb{R}^n_{\infty}\)). Simply define

\[
L_M(x) = M \bigtriangleup x \quad \forall x \in \mathbb{R}^m_{-\infty}
\]

- The subject of \(\ell\)- and \(s\ell\)-polynomials also bears many resemblances to the theory of polynomials and waits for further exploration.
$sℓ$-Polynomials

Definition: max polynomial of degree n with coefficients in the appropriate semiring R in the indeterminate x is of form

$$p(x) = \bigvee_{i=0}^{\infty} (a_i + ix),$$

where $a_i = -\infty$ for all but a finite number of i.

- If for some $i > 0$ $a_i \neq -\infty$, then the largest such i is called the *degree* of $p(x)$. If no such $i > 0$ exists, then the degree of $p(x)$ is zero.
- For min polynomials simply replace \bigvee by \bigwedge. Combining the two notions will result in minimax polynomials.
Discussion and Questions

1. Many items have not been discussed; e.g., eigenvalues and eigenvectors.

2. Applications have not been discussed. We will discuss some in the second talk.

3. Questions?

Thank you!
Associative Memories (AMs)

Suppose $X = \{x^1, \ldots, x^k\} \subset \mathbb{R}^n$ and $Y = \{y^1, \ldots, y^k\} \subset \mathbb{R}^m$.

- A function $M : \mathbb{R}^n \rightarrow \mathbb{R}^m$ with the property that $M(x^\xi) = y^\xi \ \forall \xi = 1, \ldots, k$ is called an associative memory that identifies X with Y.

- If $X = Y$, then M is called an auto-associative memory and if $X \neq Y$, then M is called a hetero-associative memory.

- M is said to be robust in the presence of noise if $M(\tilde{x}^\xi) = y^\xi$, for every corrupted version \tilde{x}^ξ of the prototype input patterns x^ξ.
Robustness in the Presence of Noise

- We say that M is \textit{robust in the presence of noise} bounded by $n = (n_1, n_2, \ldots, n_n)'$ if and only if whenever x represents a distorted version of x^ξ with the property that $|x - x^\xi| \leq n$, then $M(x) = y^\xi$.

\textbf{Remark:} In this theory, it may be possible to have $n_i = \infty$ for some i if that is desirable.

- The concept of the noise bound can be generalized to be bounded by the set $\{n^1, n^2, \ldots, n^k\}$, with n being replaced by n^ξ in the above inequality so that $|x - x^\xi| \leq n^\xi$.
Matrix Bases AMs

- The classical Hopfield net is an example of an auto-associative memory.
- The Kohonen correlation matrix memory is an example of a hetero-associative memory.
- The lattice based correlation matrix memories W_{XY} and M_{XY}.
Lattice-based Associative Memories

- For a pair \((X, Y)\) of pattern associations, the two canonical lattice memories \(W_{XY}\) and \(M_{XY}\) are defined by:

\[
\omega_{ij} = \bigwedge_{\xi=1}^{k} (y_i^\xi - x_j^\xi) \quad \text{and} \quad m_{ij} = \bigvee_{\xi=1}^{k} (y_i^\xi - x_j^\xi).
\]

- **Fact.** If \(X = Y\), then

\[
W_{XX} \boxdot x^\xi = x^\xi = M_{XX} \boxdot x^\xi \quad \forall \xi = 1, \ldots, k.
\]
Lattice-based Associative Memories

We have

1. $W_{XY} = Y \boxdot X^*$ and $M_{XY} = Y \boxdot X^*$.

2. $W_{XY} = (X \boxdot Y^*)^* = M^*_{YX}$ and
 $M_{YX} = (X \boxdot Y^*)^* = W^*_{YX}$.

3. $x^\xi \rightarrow \{W_{XY} \mid M_{XY}\} \rightarrow y^\xi \rightarrow$
 $\{M_{YX} \mid W_{YX}\} \rightarrow x^\xi$.

4. This provides for a biassociative memory (LBAM).
Behavior of W_{XX} in Presence of Random Noise

Top row to bottom row patterns: Original; Noisy; Recalled. The output of W_{XX} appears shifted towards white pixel values.
Behavior of M_{XX} in Presence of Random Noise

Top row to bottom row patterns: Original; Noisy; Recalled. The output of M_{XX} appears shifted towards black pixel values.
Behavior of W_{XX} and M_{XX} in \mathbb{R}^2

The orbits of W_{XX} and M_{XX} for $X = \{x^1, x^2\} \subset \mathbb{R}^2$:

$F(X) =$ set of fixed points of W_{XX}.
The data polyhedron $\mathcal{B}(v, u) \cap F(X)$

- Let $v^{\ell} = W^{\ell}_{XX}$ and $u^{\ell} = M^{\ell}_{XX}$.
- Set $u = \bigvee_{\xi=1}^{k} x^{\xi}$ and $v = \bigwedge_{\xi=1}^{k} x^{\xi}$.
- Set $w^{j} = u^{j} + v^{j}$ and $m^{j} = v^{j} + u^{j}$.
- Define $W = \{w^{1}, \ldots, w^{n}\}$ and $M = \{m^{1}, \ldots, m^{n}\}$
- W is affinely independent whenever $w^{\ell} \neq w^{j}$ $\forall \ell \neq j$. Similarly for M.
The data polyhedron $\mathcal{B}(v, u) \cap F(X)$

- Let $\mathcal{B}(v, u)$ denote the hyperbox determined by $\{v, u\}$.
- We obtain $X \subset C(X) \subset \mathcal{B}(v, u) \cap F(X)$.
- The vertices of the polyhedron

$$\mathcal{B}(v, u) \cap F(X)$$

are the elements of $W \cup M \cup \{v, u\}$
The data polyhedron $\mathcal{B}(v, u) \cap F(X)$

The fixed point set $F(X)$ is the infinite strip bounded by the two lines of slope 1.
Rationale for Dendritic Computing

- The number of synapses on a single neuron in the cerebral cortex ranges between 500 and 200,000.
- A neuron in the cortex typically sends messages to approximately 10^4 other neurons.
- Dendrites make up the *largest component* in both surface area and volume of the brain.
- Dendrites of cortical neurons make up $>50\%$ of the neuron’s membrane.
Rationale for Dendritic Computing

- Recent research results demonstrate that the dynamic interaction of inputs in dendrites containing voltage-sensitive ion channels make them capable of realizing nonlinear interactions, logical operations, and possibly other local domain computation (Poggio, Koch, Shepherd, Rall, Segev, Perkel, et.al.)

- Based on their experimentations, these researchers make the case that it is the dendrites and not the neural cell bodies are the basic computational units of the brain.
Our LNNs Are Based On Biological Neurons

Figure 1: Simplified sketch of the processes of a biological neuron.
$\omega_{ijk}^\ell = \text{synaptic weight from the } N_i \text{ to the } k\text{th dendrite of } M_j; \ell = 0 \text{ for inhibition and } \ell = 1 \text{ for excitation.}$
SLLP (with Dendritic Structures)

Graphical representation of a single-layer lattice based perceptron with dendritic structure.
Dendritic LNN model

- In the dendritic ANN model, a neuron M_j has K_j dendrites. A given dendrite D_{jk} ($k \in \{1, \ldots, K_j\}$) of M_j receives inputs from axonal fibers of neurons N_1, \ldots, N_n and computes a value τ_{jk}^j.

- The neuron M_j computes a value τ^j which will correspond to the maximum (or minimum) of the values $\tau_{1j}^j, \ldots, \tau_{Kj}^j$ received from its dendrites.
Dendritic Computation: Mathematical Model

The computation performed by the k-th dendrite for input $x = (x_1, \ldots, x_n)' \in \mathbb{R}^n$ is given by

$$
\tau^j_k(x) = p_{jk} \bigwedge_{i \in I(k)} \bigwedge_{\ell \in L(i)} (-1)^{1-\ell} (x_i + w^\ell_{ijk}),
$$

where

- x_i – value of neuron N_i;
- $I(k) \subseteq \{1, \ldots, n\}$ – set of all input neurons with terminal fibers that synapse on dendrite D_{jk};
- $L(i) \subseteq \{0, 1\}$ – set of terminal fibers of N_i that synapse on dendrite D_{jk};
- $p_{jk} \in \{-1, 1\}$ – IPSC/EPSC of D_{jk}.
The value $\tau_{k}^{j}(x)$ is passed to the cell body and the state of M_{j} is a function of the input received from all its dendritic postsynaptic results. The total value received by M_{j} is given by

$$\tau^{j}(x) = p_{j} \bigwedge_{k=1}^{K_{j}} \tau_{k}^{j}(x).$$
The Capabilities of an SLLP

• An SLLP can distinguish between any given number of pattern classes to within any desired degree of $\varepsilon > 0$.

• More precisely, suppose X_1, X_2, \ldots, X_m denotes a collection of disjoint compact subsets of \mathbb{R}^n.

• For each $p \in \{1, \ldots, m\}$, define

$$Y_p = \bigcup_{j=1,j\neq p}^m X_j$$

$$\varepsilon_p = d(X_p, Y_p) > 0$$

$$\varepsilon_0 = \frac{1}{2} \min\{\varepsilon_1, \ldots, \varepsilon_p\}.$$

• As the following theorem shows, a given pattern $x \in \mathbb{R}^n$ will be recognised correctly as belonging to class C_p whenever $x \in X_p$.
The Capabilities of an SLLP

- **Theorem.** If \(\{X_1, X_2, \ldots, X_m\} \) is a collection of disjoint compact subsets of \(\mathbb{R}^n \) and \(\varepsilon \) a positive number with \(\varepsilon < \varepsilon_0 \), then there exists a single layer lattice based perceptron that assigns each point \(x \in \mathbb{R}^n \) to class \(C_j \) whenever \(x \in X_j \) and \(j \in \{1, \ldots, m\} \), and to class \(C_0 = \neg \bigcup_{j=1}^m C_j \) whenever \(d(x, X_i) > \varepsilon, \forall i = 1, \ldots, m \). Furthermore, no point \(x \in \mathbb{R}^n \) is assigned to more than one class.
Any point in the set X_j is identified with class C_j; points within the ϵ-band may or may not be classified as belonging to C_j, points outside the ϵ-bands will not be associated with a class $C_j \forall j$.
Learning in LNNs

- Early training methods were based on the proofs of the preceding Theorems.
- All training algorithms involve the growth of axonal branches, computation of branch weights, creation of dendrites, and synapses.
- The first training algorithm developed was based on elimination of foreign patterns from a given training set (min or intersection).
- The second training algorithm was based on small region merging (max or union).
Example of the two methods in \mathbb{R}^2

The two methods partition the pattern space \mathbb{R}^2 in terms of intersection (a) and union (b), respectively.
(a) SLLP: 3 dendrites, 9 axonal branches. (b) MLP 13 hidden neurons and 2000 epochs.
SLLP Using Merging

During training, the SLLP grows 20 dendrites, 19 excitatory and 1 inhibitory (dashed).
Another Merging Example
Learning in LNNs

- L. Iancu developed a hybrid method using both Merging and Elimination. The method is reminiscent of the Expansion-Contraction method for hyperboxes developed by P.K. Simson for training Mini-Max Neural Networks, but it is distinctly different.

- L. Iancu also extended this learning to Ritter’s Fuzzy SLLP
Fuzzy LNNs

The Problem:

- Classify all points in the interval \([a, b] \subset \mathbb{R}\) as belonging to class \(C_1\), and every point outside the interval \([a - \alpha, b + \alpha]\) as having no relation to class \(C_1\), where \(\alpha > 0\) is a specified fuzzy boundary parameter.

- For a point \(x \in [a - \alpha, a]\) or \(x \in [b, b + \alpha]\) we would like \(y(x)\) to be close to 1 when \(x\) is close to \(a\) or \(b\), and \(y(x)\) close to 0 whenever \(x\) is close to \(a - \alpha\) or \(b + \alpha\).
Fuzzy LNNs

Solution:

- Change the weights $w_0^0 = -b$ and $w_1^1 = -a$ found by one of the previous algorithms to $v_1^0 = -\frac{w_1^0}{\alpha} - 1$ and $v_1^1 = -\frac{w_1^1}{\alpha} + 1$, and use the input $\frac{x}{\alpha}$ instead of x.

- Use the activation function $f(z) = \begin{cases} 1 & \text{if } z \geq 1 \\ z & \text{if } 0 \leq z \leq 1 \\ 0 & \text{if } z \leq 0 \end{cases}$.
Fuzzy LNNs

Computing fuzzy output values with an SLLP using the ramp activation function.
Learning in LNNs

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Recognition</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLLP (elimination)</td>
<td>98.0%</td>
</tr>
<tr>
<td>Backpropagation</td>
<td>96%</td>
</tr>
<tr>
<td>Resilient Backpropagation</td>
<td>96.2%</td>
</tr>
<tr>
<td>Bayesian Classifier</td>
<td>96.8%</td>
</tr>
<tr>
<td>Fuzzy LNN</td>
<td>100%</td>
</tr>
</tbody>
</table>

UC Irvine Ionosphere data set (2-class problem in \(\mathbb{R}^{34} \) with training set = 65% of data set)
Learning in LNNs

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Recognition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuzzy SLLP (merge/elimination)</td>
<td>98.7%</td>
</tr>
<tr>
<td>Backpropagation</td>
<td>95.2%</td>
</tr>
<tr>
<td>Fuzzy Min-Max NN</td>
<td>97.3%</td>
</tr>
<tr>
<td>Bayesian Classifier</td>
<td>97.3%</td>
</tr>
<tr>
<td>Fisher Ratios Discrimination</td>
<td>96.0%</td>
</tr>
<tr>
<td>Ho-Kashyap</td>
<td>97.3%</td>
</tr>
</tbody>
</table>

Fisher’s Iris Data Set. A 3-class problem in \(\mathbb{R}^4 \) with training set = 50% of data set.
Learning in LNNs

- A. Barmpoutis extended the elimination method to arbitrary orthonormal basis settings.
- A dynamic Backpropagation Method is currently under development.
In Barmpoutis’s approach, the equation

\[\tau_{k}^{j}(x) = p_{jk} \bigwedge_{i \in I(k)} \bigwedge_{\ell \in L(i)} (-1)^{1-\ell} (x_{i} + w_{ijk}) , \]

is replaced by

\[\tau_{k}^{j}(x) = p_{jk} \bigwedge_{i \in I(k)} \bigwedge_{\ell \in L(i)} (-1)^{1-\ell} (R(x)_{i} + w_{ijk}) , \]

where \(R \) is a rotation matrix obtained in the learning process.
LNNs employing Orthonormal Basis

Left: Maximal hyperbox for elimination in the standard basis for \mathbb{R}^n.
Right: Maximal hyperbox for elimination in another orthonormal basis for \mathbb{R}^n.
Dendritic Model of an Associative Memory

- \(X = \{x^1, \ldots, x^k\} \subset \mathbb{R}^n \).

- \(n \) input neurons \(N_1, \ldots, N_n \) accepting input \(x = (x_1, \ldots, x_n)' \in \mathbb{R}^n \), where \(x_i \to N_i \).

- One hidden layer containing \(k \) neurons \(H_1, \ldots, H_k \).

- Each neuron \(H_j \) has exactly one dendrite which contains the synaptic sites of exactly two terminal axonal fibers of \(N_i \) for \(i = 1, \ldots, n \).

- The weights of the two terminal fibers of \(N_i \) making contact with the dendrite of \(H_j \) are denoted by \(w_{ij}^\ell \), with \(\ell = 0, 1 \).
Every input neuron connects to the dendrite of each hidden neuron with two axonal fibers, one excitatory and the other inhibitory.
Computation at the Hidden Layer

- For input $x \in \mathbb{R}^n$, the dendrite of H_j computes

$$\tau^j(x) = \bigwedge_{i=1}^{n} \bigwedge_{\ell=0}^{1} (-1)^{1-\ell} (x_i + w_{ij}^\ell).$$

- The state of neuron H_j is determined by the hard-limiter activation function

$$f(z) = \begin{cases}
0 & \text{if } z \geq 0 \\
-\infty & \text{if } z < 0
\end{cases}.$$

- The output of H_j is $f [\tau^j(x)].$

- The output flows along the axon of H_j and its axonal fibers to m output neurons $M_1, \ldots, M_m.$
Computation at the Output Layer

- Each output neuron M_h, $h = 1, \ldots, m$, has exactly one dendrite.
- Each hidden neuron H_j ($j = 1, \ldots, k$) has exactly one excitatory axonal fiber terminating on the dendrite of M_h.
- The synaptic weight of the excitatory axonal fiber of H_j terminating on the dendrite of M_h is preset as $v_{jh} = y^j_h$ for $j = 1, \ldots, k; h = 1, \ldots, m$.
- The computation performed by M_h is $\tau^h(q) = \bigvee_{j=1}^{k} (q_j + v_{jh})$, where $q_j = f[\tau^j(x)]$ denotes the output of H_j.
- The activation function for each output neuron M_h is the identity function $g(z) = z$.

Dendritic Model of an Associative Memory

Topology of the dendritic associative memory based on the dendritic model. The network is fully connected.
Computation of the Weights w_{ij}^ℓ

- Compute
 \[d(x^\xi, x^\gamma) = \max \{|x_i^\xi - x_i^\gamma| : i = 1, \ldots, n\}. \]

- Choose a noise parameter $\alpha > 0$ such that $\alpha < \frac{1}{2} \min\{ud(x^\xi, x^\gamma) : \xi < \gamma, \xi, \gamma \in \{1, \ldots, k\}\}$.

- Set $w_{ij}^\ell = \begin{cases}
- \left(x_i^j - \alpha \right) & \text{if } \ell = 1 \\
- \left(x_i^j + \alpha \right) & \text{if } \ell = 0
\end{cases}$.

- Under these conditions, given input $x \in \mathbb{R}^n$, the output $y = (y_1, \ldots, y_m)'$ from the output neurons will be $y = (y_1^j, \ldots, y_m^j)' = y^j \iff x \in B^j$, where $B^j = \{ (x_1, \ldots, x_n)' \in \mathbb{R}^n : x_i^j - \alpha \leq x_i \leq x_i^j + \alpha, i = 1, \ldots, n \}$.
Patterns that will be correctly associated

Any pattern residing in the box with center x^ξ will be identified as pattern x^ξ. The pattern \tilde{x} will not be associated with any prototype pattern.
Patterns to Store

Top row represents the patterns x_1^1, x_2^2, and x_3^3, while the bottom row depicts the associated patterns y_1^1, y_2^2, and y_3^3. Here $n = 2500$ and $m = 1500$.
Recall of Corrupted Patterns

Distorting every vector components of x^j with random noise within the range $[-\alpha, \alpha]$, with $\alpha = 75.2$ results in perfect recall association.
Recall Failure when Noise Exceeds α

The memory rejects the patterns if they are corrupted with random noise exceeding $\alpha = 75.2$.
Increasing the Noise Tolerance

• For each $\xi = 1, \ldots, k$ compute an allowable noise parameter α_ξ by setting

$$\alpha_\xi < \frac{1}{2} \min \{d(x^\xi, x^\gamma) : \gamma \in K(\xi)\},$$

where $K(\xi) = \{1, \ldots, k\} \setminus \{\xi\}$.

• Reset the weights by

$$w^\ell_{ij} = \begin{cases} -(x^j_i - \alpha_j) & \text{if } \ell = 1, \\ -(x^j_i + \alpha_j) & \text{if } \ell = 0, \end{cases}$$

• Each output neuron H_j will have a value $q_j = 0$ if and only if x is an element of the hypercube $B^j = \{x \in \mathbb{R}^n : x^j_i - \alpha_j \leq x_i \leq x^j_i + \alpha_j\}$ and $q_j = -\infty$ whenever $x \in \mathbb{R}^n \setminus B^j$.
Successful Recall of the Refined Model

The top row shows the same input patterns as in the last figure. This time recall association is perfect.
Recall of AAM based on the Dendritic Model

- Top row: patterns distorted with random noise within noise parameter α.
- Bottom row: perfect recall of the auto-associative memory based on the dendritic model.
A New LNN Model

• In this model the synapses on spines of dendrites are used. The presynaptic neuron is either excitatory or inhibitory, but not both.

• \(N = \{ N_i : i = 1, \ldots, n \} \) denotes the set of presynaptic (input) neurons.

• \(\sigma(j, k) = j \)th spine on dendrite \(D_k \)

• \(N(j, k) = \) set of presynaptic neurons with synapses on \(\sigma(j, k) \). Thus, \(N(j, k) \subset N \).

• \(j_k = \) number of spines on \(D_k \)
A New LNN Model

- The kth dendrite D_k now computes

\[
\tau_k = p_k \bigwedge_{j=1}^{j_k} \left[w_{kj} + \sum_{i \in N(j,k)} (-1)^{1 - \ell(i)} s_i x_i \right],
\]

where $\ell(i) = 0$ if N_i is inhibitory and $\ell(i) = 1$ if N_i is excitatory.

- $s_i =$ number of spikes in spike train produced by N_i in an interval $[s - t, t]$

- Note that $\bigcup_{j=1}^{k} N(j, k)$ corresponds to the set of input neurons with terminal axonal fibers on D_k.
Questions and Comments

• Thank you for your attention.
• Any questions or comments?