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abstract

This PhD Thesis work has been devoted to several aspects of the processing
of medical images based on the Magnetic Resonance Imaging (MRI) tech-
nology. The works have been performed pursuing several lines of research
that are somehow orthogonal. We started working on MRI denoising, remov-
ing intensity inhomogeneity effects. Then we have shifted our attention to
the study of Alzheimer’s disease and its detection on structural MRI (sMRI).
We have explored the application of statistical and Artificial Neural Networks
classifiers to feature vectors extracted in an specific way from the sMRI brain
volumes. Finally, we have explored the application of novel computational
algorithms proposed by our research group to the analysis of functional MRI
(fMRI). These latter techniques fall in the category of Lattice Computing al-
gorithms, and our aim was to show that they can, at least, perform as well as
other statistical techniques for the detection of activation patterns.



.



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Intensity inhomogeneity (IIH) correction . . . . . . . . . 2
1.1.2 Alzheimer’s disease detection . . . . . . . . . . . . . . . 3
1.1.3 fMRI analysis . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Publications produced during the PhD Thesis works. . . . . . . . 5
1.3 Research projects . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Contributions of the PhD Thesis . . . . . . . . . . . . . . . . . . 9
1.5 Structure of the PhD Thesis report . . . . . . . . . . . . . . . . . 10

1.5.1 About the conclusions sections . . . . . . . . . . . . . . . 13

2 MRI intensity inhomogeneity correction 15
2.1 Antecedents of our work . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 IIH correction algorithms . . . . . . . . . . . . . . . . . . 16
2.1.2 SOM for MRI processing . . . . . . . . . . . . . . . . . . 18

2.2 Description of the algorithms . . . . . . . . . . . . . . . . . . . . 19
2.2.1 GradClassLeg . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Discussion of GradClassLeg . . . . . . . . . . . . . . . . 22
2.2.3 Adaptive field rule (AFR) . . . . . . . . . . . . . . . . . 30
2.2.4 Discussion of AFR . . . . . . . . . . . . . . . . . . . . . 31

2.3 Computational experimentation framework . . . . . . . . . . . . 37
2.4 Computational results for GradClassLeg . . . . . . . . . . . . . . 39

2.4.1 Results on simulated brain MRI volumes . . . . . . . . . 40
2.4.2 Sensitivity analysis of GradClassLeg . . . . . . . . . . . 43
2.4.3 Results on real brain data . . . . . . . . . . . . . . . . . 50

2.5 Computational results for AFR . . . . . . . . . . . . . . . . . . . 52
2.5.1 Experiments on real brain data . . . . . . . . . . . . . . 53
2.5.2 Experiments on a simulated brain phantom . . . . . . . . 60

xiii



CONTENTS xiv

2.5.3 Some results on intensity class means estimation . . . . . 61
2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.6.1 GradClassLeg . . . . . . . . . . . . . . . . . . . . . . . . 68
2.6.2 AFR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3 On the detection of Alzheimer’s disease 71
3.1 Motivation of the work . . . . . . . . . . . . . . . . . . . . . . . 71
3.2 Summarized description of the process . . . . . . . . . . . . . . . 72
3.3 Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3.1 Imaging Protocol . . . . . . . . . . . . . . . . . . . . . . 74
3.4 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.5 Overview of the Machine Learning Systems . . . . . . . . . . . . 77

3.5.1 Support Vector Machines . . . . . . . . . . . . . . . . . . 79
3.5.2 Artificial Neural Networks . . . . . . . . . . . . . . . . . 79
3.5.3 Combination of single classifiers . . . . . . . . . . . . . . 81

3.6 Classifier performance indices . . . . . . . . . . . . . . . . . . . 82
3.7 Computational results . . . . . . . . . . . . . . . . . . . . . . . 85

3.7.1 VBM analysis . . . . . . . . . . . . . . . . . . . . . . . 85
3.7.2 Classification results . . . . . . . . . . . . . . . . . . . . 87

3.8 Conclusions and further work . . . . . . . . . . . . . . . . . . . . 94

4 Lattice Computing for fMRI analysis 95
4.1 Background motivation and state of the art . . . . . . . . . . . . . 95
4.2 Description of the approach . . . . . . . . . . . . . . . . . . . . . 97
4.3 Theoretical foundations . . . . . . . . . . . . . . . . . . . . . . . 98

4.3.1 The linear mixing model . . . . . . . . . . . . . . . . . . 98
4.3.2 Lattice Independence and Lattice Autoassociative Memo-

ries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.3.3 Endmember Induction Heuristic Algorithm (EIHA) . . . . 103

4.4 Computational results . . . . . . . . . . . . . . . . . . . . . . . . 105
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A Description of IIH correction algorithms 113
A.1 BMAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
A.2 Wells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
A.3 BFCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117



CONTENTS xv

B Machine Learning Methods 119
B.1 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . 119
B.2 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . 121

B.2.1 Backpropagation . . . . . . . . . . . . . . . . . . . . . . 121
B.2.2 Probabilistic Neural Networks . . . . . . . . . . . . . . . 124
B.2.3 Radial Basis Functions Network . . . . . . . . . . . . . . 126
B.2.4 Learning Vector Quantization Neural Network . . . . . . 127

C Neuroimage experimental data bases 131
C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
C.2 IBSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
C.3 BrainWeb: Simulated Brain Database . . . . . . . . . . . . . . . 136
C.4 OASIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
C.5 MORPHDTI_P0001 . . . . . . . . . . . . . . . . . . . . . . . . 139
C.6 MIRIAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
C.7 ELUDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
C.8 Alzheimer’s CATX . . . . . . . . . . . . . . . . . . . . . . . . . 142
C.9 Realistic MRI data set . . . . . . . . . . . . . . . . . . . . . . . 142
C.10 DTMRI Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
C.11 BIRN (Biomedical Informatics Research Network) . . . . . . . . 143
C.12 ADNI (Alzheimer’s Disease Neuroimaging Initiative) . . . . . . . 144
C.13 Functional Brain Imaging of Young, Nondemented, and Demented

Older Adults . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
C.14 Neuroscience Database Gateway (NDG) . . . . . . . . . . . . . . 146
C.15 LONI Image Data Archive (IDA) . . . . . . . . . . . . . . . . . . 146
C.16 mBIRN Data Repository (mBDR) . . . . . . . . . . . . . . . . . 146
C.17 fMRI Data Center (fMRIDC) . . . . . . . . . . . . . . . . . . . . 146
C.18 DEnLab Data Repository . . . . . . . . . . . . . . . . . . . . . . 147
C.19 ICBM Human Atlases . . . . . . . . . . . . . . . . . . . . . . . . 147

D The General Linear Model and SPM 149
D.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
D.2 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
D.3 The GLM Formulation . . . . . . . . . . . . . . . . . . . . . . . 151
D.4 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . 152
D.5 Statistical Inference . . . . . . . . . . . . . . . . . . . . . . . . . 153
D.6 Thresholding methods . . . . . . . . . . . . . . . . . . . . . . . 155

D.6.1 Bonferroni correction . . . . . . . . . . . . . . . . . . . 156



CONTENTS xvi

D.6.2 Random Field Theory . . . . . . . . . . . . . . . . . . . 156
D.7 SPM for Voxel-Based Morphometry . . . . . . . . . . . . . . . . 157

D.7.1 Preprocessing for VBM . . . . . . . . . . . . . . . . . . 157
D.7.2 Design matrix construction, experimental design . . . . . 157
D.7.3 Specific statistical assumptions/problems . . . . . . . . . 157

D.8 SPM for fMRI analysis . . . . . . . . . . . . . . . . . . . . . . . 158
D.8.1 Preprocessing for fMRI . . . . . . . . . . . . . . . . . . . 158
D.8.2 Design matrix construction, experimental design . . . . . 158
D.8.3 Specific statistical assumptions/problems . . . . . . . . . 159

Bibliography 161



List of Figures

1.1 Structure of the PhD Thesis report . . . . . . . . . . . . . . . . . 11
1.2 Summary of experiments in chapter 2 . . . . . . . . . . . . . . . 11
1.3 Summary of experiments in chapter 3 . . . . . . . . . . . . . . . 12

2.1 The response of the valley and square functions. Energy plots
versus pixel intensity showing the basins of attraction to intensity
class means using the square function of equation (2.11) and the
valley function of equation (2.12) as building blocks. . . . . . . . 24

2.2 Chessboard image. (a) Original. (b) An instance of an IIH cor-
rupted image. (c) The IIH field multiplying (a) to obtain (b). . . . 25

2.3 Sampling of the energy function based on the valley function with
σ = 0.03 of randomly corrupted chessboard images versus their
distortion relative to the original chessboard image. IIH fields
generated with random Legendre polynomials up to order 2. . . . 26

2.4 Sampling of the energy function based on the valley function with
σ = 1 of randomly corrupted chessboard images versus their dis-
tortion relative to the original chessboard image. IIH fields gener-
ated with random Legendre polynomials up to order 2. . . . . . . 27

2.5 Sampling of the energy function based on the square function of
randomly corrupted chessboard images versus their distortion rel-
ative to the original chessboard image. IIH fields generated with
random Legendre polynomials up to order 2. . . . . . . . . . . . . 28

2.6 A simulated brain MRI slice. (a) The clean slice, (b) The same
slice of the volume corrupted with a simulated IIH field from ran-
dom linear combinations of Legendre polynomial products. . . . . 41

xvii



LIST OF FIGURES xviii

2.7 First row shows IIH correction results for the volume represented
by the slice image in figure 2.6. Second row shows the estimated
bias fields. The columns correspond, from left to right, to Grad-
ClassLeg, Wells, BMAP and BFCM. . . . . . . . . . . . . . . . 41

2.8 Correlation of IIH corrected volumes with the clean volume for a
collection of volumes of increasing intensity inhomogeneity. . . . 42

2.9 Average evolution of the Tanimoto coefficients for CSF, GM and
WM obtained over a simulated 20% IIH inhomogeneity brain vol-
ume. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.10 Average Tanimoto coefficients for CSF, GM and WM obtained
over a simulated 20% IIH inhomogeneity brain volume. Gradient
frequency 5:1 (see text). . . . . . . . . . . . . . . . . . . . . . . 45

2.11 Values of Tanimoto coefficients at iteration 100 versus minimum
distance between initial class means. 250 instances of the execu-
tion of the algoritm. Simulated 20% IIH inhomogeneity. . . . . . 46

2.12 Average Tanimoto coefficients for CSF, GM and WM obtained
over a simulated 40% IIH inhomogeneity brain volume. . . . . . . 46

2.13 Average Tanimoto coefficients for CSF, GM and WM obtained
over a simulated 40% IIH inhomogeneity brain volume. Gradient
computation relative frequency 5:1 (see text). . . . . . . . . . . . 47

2.14 (a) Original coronal slice (z=90) of the 3% noise and 20% IIH
volume, (b) class labelling in the simulation model of the same
slice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.15 Visual evaluation of the GradClassLeg: (a) Estimated bias slice
(z=90), (b) Estimated classification of the voxels for the slice of
figure 2.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.16 A slice from a real MRI volume: (a) original image, (b) corre-
sponding manual segmentation. Brightest gray values correspond
to WM voxels, intermediate gray values to GM voxels and darkest
gray (not black) to CSF voxels. . . . . . . . . . . . . . . . . . . . 51

2.17 Slice of the results of GradClasLeg applied on the volume repre-
sented by the slice in figure 2.16. (a) IIH corrected image, (b) clas-
sification image. Brightest gray values correspond to WM voxels,
intermediate gray values to GM voxels. . . . . . . . . . . . . . . 51

2.18 Plot of the Tanimoto coefficients of the CSF classification for all
the real images treated. AFR parameters F = 1, σ0 = 30, σ0 =
15, α = 0.5, 20 iterations. . . . . . . . . . . . . . . . . . . . . . . 54



LIST OF FIGURES xix

2.19 Plot of the Tanimoto coefficients of the GM classification for all
the images treated. AFR parameters F = 1, σ0 = 30, σ0 = 15,
α = 0.5, 20 iterations. . . . . . . . . . . . . . . . . . . . . . . . . 55

2.20 Plot of the Tanimoto coefficients of the WM classification for all
the images treated. AFR parameters F = 1, σ0 = 30, σ0 = 15,
α = 0.5, 20 iterations. . . . . . . . . . . . . . . . . . . . . . . . . 56

2.21 (a) Original T1-weighted coronal slice of a volume from IBSR 20
normal brain data set, and (b) its corresponding manual segmen-
tation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.22 Coronal slices of the (a) estimated IIH volume and (b) IIH cor-
rected volume, corresponding to figure 2.21(a) after AFR correction. 58

2.23 Segmentation corresponding to the coronal slice shown in figure
2.21(a) computed on the IIH corrected slice shown in figure 2.22(b). 58

2.24 Manual segmentation of the coronal slice shown in figure 2.21(a)
into (a) CSF , (c) GM and (e) WM, and corresponding segmenta-
tion after AFR IIH correction into (b) CSF, (d) GM and (f) WM,
extracted from the image in figure 2.23. . . . . . . . . . . . . . . 59

2.25 Classification results for one coronal slice of the simulated brain
phantom volume with 40% Intensity Inhomogeneity from the Brain-
Web site. (a) original skull stripped slice, (b) tissue distribution in
the anatomic model providing the classification ground truth, (c)
classification after IIH estimation and correction with AFR, (d)
classification after IIH and intensity class means estimation with
AFR-U. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.26 Original coronal slices of real MRI brain volumes from IBSR
V2.0 collection. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.27 Manual segmentation into CSF, GM and WM of the slice images
in figure 2.26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.28 Crisp atlas obtained from the manual segmentations of the IBSR
v2.0 collection, by majority voting at each voxel. Coronal slice in
the same position as those in figure 2.26. . . . . . . . . . . . . . . 64

2.29 Probabilistic atlases for (a) CSF, (b) GM and (c) WM computed
from the manual segmentation of the volumes in the IBSR v2.0
collection. Coronal slices corresponding to those in figure 2.26. . . 65

2.30 Classification into CSF, GM and WM by the (a,b) AFR-U, (c,d)
AFR-A, (e,f) AFR-PA and (g,h) AFR-S. Coronal slices corre-
sponding to the ones shown in figure 2.26. . . . . . . . . . . . . . 66



LIST OF FIGURES xx

3.1 Flow chart of the classification process . . . . . . . . . . . . . . . 75
3.2 Classification Systems . . . . . . . . . . . . . . . . . . . . . . . 78
3.3 Orthogonal views of original (at the top) and segmented (at the

bottom) images from a control (left column) and a patient (right
column). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.4 The design matrix with the nWBV covariate . . . . . . . . . . . . 87
3.5 Covariate nWBV ploted over transposed design matrix . . . . . . 88
3.6 SPM results: clusters of significant voxels with increased gray

matter density in the controls relative to the patient subjects, de-
tected by the VBM process. Left: design matrix without covariate,
right: nWBV included as covariate in the design matrix. . . . . . . 88

4.1 Plot of the time series for the voxels of axial slice #30. . . . . . . 106
4.2 Plots of time series of voxels in axial slice #30 after subtracting

their mean values from them. The time series are collapsed in the
neighborhood of zero. . . . . . . . . . . . . . . . . . . . . . . . . 106

4.3 Eleven endmbers detected by EIHA over the lattice normalized
time series of the whole 3D volume. . . . . . . . . . . . . . . . . 107

4.4 Activation maps from SPM results over the experimental data . . . 108
4.5 Abundances for axial slice #30 for all eleven endmembers. White

voxels correspond to abundance values above the 99% percentile
of the distribution of the abundances for each endmember at this
slice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.6 Activations detected by the 99% percentile of the abundance im-
ages of endmember #11 of figure 4.5 in the axial direction. . . . . 110

B.1 Architecture of a typical multilayer perceptron. . . . . . . . . . . 125
B.2 Architecture of a typical PNN . . . . . . . . . . . . . . . . . . . 126

C.1 File structure of the OASIS database . . . . . . . . . . . . . . . . 140
C.2 Types of Images included in the dataset . . . . . . . . . . . . . . 141
C.3 Demographic summary of the OASIS database . . . . . . . . . . 141



List of Tables

2.1 MCR results for the GradClassLeg algorithm compared with re-
sults reported in [107] for the simulated data. . . . . . . . . . . . 50

2.2 The average Tanimoto coefficients for GM and WM classes over
the IBSR collection between manual segmentation and the seg-
mentation results of GradClassLeg, BMAP, BFCM and Modified
FCM for the real data. . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3 Summary Tanimoto coefficient results for the AFR compared with
results, from the IBSR site, of various algorithms. . . . . . . . . . 58

2.4 Sensitivity of Tanimoto coefficient results of AFR. . . . . . . . . 60
2.5 Tanimoto coefficients for CSF, GM and WM tissue classes ob-

tained on the BrainWeb. The simulated phantom has been cor-
rupted with additive noise and IIH. . . . . . . . . . . . . . . . . . 61

2.6 Average Tanimoto coefficients over the IBSR V2.0 collection of
brain volumes of intensity class mean estimation approaches com-
bined with AFR. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.1 Summary of subject demographics and dementia status. Educa-
tion codes correspond to the following levels of education: 1 less
than high school grad., 2: high school grad., 3: some college, 4:
college grad., 5: beyond college. Categories of socioeconomic
status: from 1 (biggest status) to 5 (lowest status). MMSE score
ranges from 0 (worst) to 30 (best). . . . . . . . . . . . . . . . . . 76

3.2 Volume table for ’control > patient’, when 0 covariates are used
in the model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.3 Volume table for ’control > patient’, when nWBV covariate is
used in the model. . . . . . . . . . . . . . . . . . . . . . . . . . . 89

xxi



LIST OF TABLES xxii

3.4 Classification results with a linear kernel (lk) and a nonlinear ker-
nel (nlk). No covariates have been taken into account in the GLM
used for the VBM. The values of γ = (2σ2)

−1 for non linear ker-
nel were 0.5, 0.031, 0.0078 for each feature extraction process,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.5 Classification results with a linear kernel (lk) and a nonlinear ker-
nel (nlk). The normalized whole-brain volume (nWBV) covariate
has been taken into account in the GLM for the VBM. The val-
ues of γ for nlk were 0.5, 2.7, 0.004 for GMR, MSD and VV
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.6 Classification results of 40 AD patients vs. 49 control subjects
with the SVM and a RBF kernel, 9 very mild AD subjects were
taken out from the AD patients subset. . . . . . . . . . . . . . . . 91

3.7 Majority voting classification results with linear kernel (lk) and
nonlinear kernel (nlk) SVM built independently for each VBM
cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.8 Weighted individual SVM per cluster classification results. The
value of the RBF kernels for the nonlinear (nlk) classifiers were
searched for the best fit to the training set. . . . . . . . . . . . . . 92

3.9 Diverse AdaBoostSVM classification results. . . . . . . . . . . . 92
3.10 Classification results with a BP network with resilient backpropa-

gation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.11 Classification results with a RBF network. . . . . . . . . . . . . 93
3.12 Classification results with a PNN network. . . . . . . . . . . . . . 93
3.13 Classification results with a LVQ1 network. Network training pa-

rameters: MSD: 200 epochs, goal: 0.01 and learning rate: 0.01;
VV: 150 epochs, goal: 0.10 and learning rate: 0.010. . . . . . . . 93

3.14 Classification results with a LVQ2 network. Network training pa-
rameters: MSD: 200 epochs, goal: 0.01 and learning rate: 0.01;
VV: 50 epochs, goal: 0.01 and learning rate: 0.005. . . . . . . . . 93

D.1 Some common acronyms . . . . . . . . . . . . . . . . . . . . . . 151



Chapter 1

Introduction

In this chapter we will provide some introductory motivation remarks in section
1.1. In section 1.2 we make a quick summary of the publications produced during
this PhD Thesis works. In section 1.3 we give a short relation of the research
projects in which the candidate has been involved during the PhD Thesis works.
Section 1.4 summarizes the contributions of this PhD Thesis work. In section 1.5
we comment the structure of this PhD Thesis report.

1.1 Motivation
Magnetic Resonance Imaging (MRI) is a medical imaging process, based on the
phenomenon known as Nuclear Magnetic Resonance (NMR), which is gaining
widespread aceptance for a large variety of medical explorations [46]. It is one
of the most commonly used techniques in radiology to visualize the body soft
tissues with great contrast, including the brain. Some reasons for this growing
interest are:

• It is a noninvasive, based on non-ionizing radiation, imaging procedure.

• The fast evolution of MRI imaging techniques that offer a wide repertoire
of pulse sequences that can easily be tuned to offer specific visualizations.
MRI has become a very flexible imaging tool.

• The development of computer-assisted image processing tools including the
quantification of the volumes of anatomical structures.

1
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• MRI has a high spatial resolution and provides much information on the
anatomical structure, allowing quantitative pathological or clinical studies,
the derivation of digitized anatomical atlases and guidance before and dur-
ing therapeutic intervention.

There are several different types of MRI procedures, but this PhD work is focused
on structural MRI (sMRI) and functional MRI (fMRI), two of the most relevant
techniques. The sMRI has a high spatial resolution and provides much informa-
tion on the anatomical structure. On the other hand, fMRI allows to measure
cerebral physiologic responses during neural activation and detect the brain areas
which are involved in a task, a process or an emotion. This PhD Thesis work has
three main avenues, each with its own focus and span. The first (chapter 2) is
devoted to the correction of the intensity inhomogeneity (IIH) artifact in sMRI.
The second (chapter 3) is devoted to the application of Machine Learning tech-
niques to the detection of Alzheimer’s disease (AD) in sMRI. The third (chapter
4) presents a novel approach to fMRI analysis. We review the motivation behind
each chapter in the following subsections.

1.1.1 Intensity inhomogeneity (IIH) correction
The visualized MRI signal results from the aggregated measurements of the tissue
composition at the molecular level. MRI images are expected to be piecewise con-
stant except for partial volume effects in the tissue boundaries and the inevitable
additive noise. However several imaging conditions introduce an additional mul-
tiplicative noise factor, referred to as the intensity inhomogeneity (IIH) field in the
literature. The sources of IIH are generally divided in two groups [167]:

1. Related to properties of the MRI device such as static magnetic field inho-
mogeneity, RF signal energy spatial distribution and others.

2. Related to properties of the imaged object itself such as spatial variations of
the magnetic permeability and dielectric properties of the imaged object.

The correction of the IIH artifact is the process of estimating the IIH field and
removing (dividing or subtracting) this estimation from the given image. It is of
interest in order to improve the performance of MRI segmentation algorithms.
Under ideal conditions (no partial volume effect, no IIH, no variations due to the
imaging device) the segmentation of MRI would be trivial once the signal inten-
sity for each kind of tissue is known. However, the mentioned artifacts impose
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the need for adaptive and robust segmentation algorithms. One of the abilities
required is the estimation of the IIH field, whether it is due to partial volume ef-
fects or to a smooth spatial variation of the signal measurement. Some algorithms
perform both the IIH field estimation and the MRI segmentation into the tissue
regions of interest. This segmentation may be explicit or implicit, giving the esti-
mation of the intensity class means corresponding to the imaged tissues.

A broad taxonomy of MRI IIH correction algorithms divides them between
parametric and non-parametric algorithms. The first ones impose a parametric
model of the inhomogeneity field [26, 111, 157, 65], whose parameter values must
be estimated to fit the model. The non parametric algorithms [18, 81, 107, 111,
127, 149, 148, 168, 178] do not propose any model, so that they perform a non-
parametric estimation of the inhomogeneity field value at each voxel position of
the measured MRI volume. In this PhD Thesis works, we have been working on
two different IIH correction approaches which have complementary advantages:

• A parametric algorithm (GradClassLeg) whose assumed model of the IIH
field is a linear combinations of outer products of Legendre polynomials.
Estimation is performed by error function gradient descent over both the
inhomogeneity field model parameters and the tissue class intensity means.
Therefore this can be an IIH correction and segmentation algorithm.

• A non-parametric approach (AFR), in which the value of the IIH field is
estimated independently at each voxel site, using neighboring information
which is similar to that of the Self Organizing Map (SOM).

1.1.2 Alzheimer’s disease detection
During the last decade, interest in MRI for the study and diagnostic support of
neurodegenerative diseases has been rapidly rising. The increase in studies of neu-
rodegenerative diseases are due to the increase in the incidence and prevalence of
these diseases. Alzheimer’s disease (AD) is a neurodegenerative disorder, which
is one of the most common cause of dementia in old people, with a high socio-
economic impact in occidental countries. The diagnosis of AD is done after the
exclusion of other forms of dementia but definitive diagnosis can only be made
after a post-mortem study of the brain tissue. This is one of the reasons why MRI
based early diagnosis is a current research hot topic in the neurosciences. The
pharmaceutical companies have already recognized that imaging techniques espe-
cially MRI and Positron Emission Tomography (PET) provide "surrogate" infor-
mation concerning the pattern and rate of neurodegeneration, which can be used
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to monitor the effects of treatments which slow the progression of neurodegener-
ation. Therefore, there is high interest in the development of automated detection
procedures based on MRI and other medical imaging techniques.

There are already studies about discrimination of AD patients from controls
based on PET and Single-Photon Emission Tomography (SPECT) functional vol-
umes [128, 140, 64, 19] applying Support Vector Machines (SVM). The works on
MRI data are few, some applying Artificial Neural Networks [47, 86]. A critical
aspect of these studies is the feature vector extraction process. The literature con-
tains approaches ranging from the direct use of image intensities, subsampling
and aggregation, Principal Component Analysis (PCA) transformations and the
application of morphometry techniques [43, 53, 177, 86], such as Voxel Based
Morphometry (VBM), to identify potentially discriminant voxels. Another criti-
cal aspect of the studies is the subject population, which is not well documented
most of the times or correspond to in-house non publicly available collections.

We have performed an study over a carefully selected collection of images, se-
lected from the OASIS database described in Appendix C. We have tested several
Machine Learning classifier construction systems over feature vectors computed
on the clusters of significant vectors detected by a VBM study. This study can
be considered a state of the art contribution to the issue of automated detection of
AD from sMRI.

1.1.3 fMRI analysis
Human brain mapping is a rapidly expanding discipline, and in recent years inter-
est has grown in novel methods for imaging human brain functionality. Noninva-
sive techniques can measure cerebral physiologic responses during neural activa-
tion. One of the relevant techniques is functional Magnetic Resonance Imaging
(fMRI) [122], which uses the blood oxygenation level dependent (BOLD) con-
trast. Since these methods are completely noninvasive, using no contrast agent or
ionizing radiation, repeated single-subject studies are becoming feasible [117].

The fMRI experiment consists of a functional template or protocol (e.g., alter-
nating activation and rest for a certain time) that induces a functional response in
the brain. The aim of an fMRI experiment is to detect responses to this stimulus in
identified voxels. The two main experimental designs used in fMRI are capable of
effectively addressing two different questions of interest. Block designs are espe-
cially useful for detection, that is, locating which voxels are activated in response
to a given task, compared to a control condition. Event-related designs, on the
other hand, provide a means of estimating the hemodynamic response function.
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The functional information of a voxel has to be extracted from its functional time
course. Therefore, for each functional time point one fMRI volume is recorded.
The complete four-dimensional dataset (three dimensions in space, one dimension
in time) consists of subsequently recorded three-dimensional (3-D) volumes and
thus for each voxel of a volume a functional time course exists. The acquisition
of these functional volumes runs over periods lasting up to several minutes.

The most extended analysis approach for fMRI signals is the Statistical Para-
metric Map (SPM) [63]. There have been also approaches to the fMRI analysis
based on the Independent Component Analysis (ICA) [30, 35, 34, 33, 80] assum-
ing that the time series observations are linear mixtures of independent sources
which can not be observed. In this PhD Thesis work we propose an innovative
analysis procedure that combines Lattice Computing [77] techniques for endmem-
ber induction, and the unconstrained least squares estimation of the contribution
of these endmembers to the observed time series at each voxel.

1.2 Publications produced during the PhD Thesis
works.

Related to the intensity inhomogeneity correction (IIH) algorithms:

1. Maite García-Sebastián, Ana Isabel González, Manuel Graña. An Adap-
tive Field Rule for Non-parametric MRI Intensity Inhomogeneity Estima-
tion Algorithm. Neurocomputing, 72, pp: 3556–3569, 2009.

2. Maite García-Sebastián, Carmen Hernández, Alicia d’Anjou. Robustness
of an Adaptive MRI Segmentation Algorithm Parametric Intensity Inhomo-
geneity Modeling. Neurocomputing, 72, pp: 2146-2152, 2009.

3. Maite García-Sebastián, Elsa Fernández, Manuel Graña, Francisco J. Tor-
realdea. A Parametric Gradient Descent MRI Intensity Inhomogeneity Cor-
rection Algorithm. Pattern Recognition Letters, 28(13):1657-1666, 2007.

4. Maite García-Sebastián, Manuel Graña. SOM for Intensity Inhomogene-
ity Correction in MRI. European Symposium on Artificial Neural Networks
(ESANN), M. Verleysen (ed), D-side Publications, pp: 109-114, 2007. ISBN
2-930307-07-2.
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5. Maite García-Sebastián, Ana Isabel González, Manuel Graña. Derivation
of SOM-like Rules for Intensity Inhomogeneity Correction in MRI. Com-
putational and Ambient Intelligence (IWANN), F. Sandoval, A. Prieto, J.
Cabestany, M. Graña (eds). LNCS 4507, Springer Verlag, Heidelberg, pp:
669-676, 2007. ISBN 3-540-73006-0.

6. Maite García-Sebastián, Alexandre M. Savio, Manuel Graña. Comments on
an Evolutionary Intensity Inhomogeneity Correction Algorithm. Proceed-
ings CEC 2008, pp: 4146-4150. ISBN 978-1-4244-1822-0.

7. Ana Isabel González, Alicia D’Anjou, Maite García-Sebastián, Manuel Graña.
SOM and Neural Gas as Graduated Nonconvexity Algorithms. The 2006
International Conference on Computational Science and its Applications
(ICCSA), M. Gavrilova et al.( eds.), LNCS 3982, Springer Verlag, Berlin
Heidelberg, part III, pp: 1143-1152, 2006. ISBN 3-540-34075-0.

8. Carmen Hernández, Josune Gallego, Maite García-Sebastián, Manuel Graña.
On Clustering Performance Indices for Multispectral Image. Knowledge-
Based Intelligent Information and Engineering Systems (KES), B. Gabrys,
R. J. Howlett and L. C. Jain (eds.), LNCS 4253, Springer Verlag, Berlin,
Part III, pp: 277-283, 2006. ISBN 978-3-540-46542-3.

9. Maite García-Sebastián, Elsa Fernández, Manuel Graña, F.J. Torrealdea. A
Gradient Descent MRI Illumination Correction Algorithm. Computational
Intelligence an Bioinspired Systems (IWANN), F. Sandoval, A. Prieto, J.
Cabestany (eds), LNCS 3512, Springer Verlag, Berlin, vol. 3512, pp: 913-
920, 2005. ISBN 3-540-26208-3.

Related to Alzheimer’s disease detection by Machine Learning approaches based
on structural MRI

1. Maite García-Sebastián, Alexandre M. Savio, Manuel Graña, Jorge Vil-
lanúa. On the Use of Morphometry Based Features for Alzheimer’s Dis-
ease Detection on MRI. Bio-Inspired Systems: Computational and Ambient
Intelligence. / IWANN 2009 (Part I). Joan Cabestany, Francisco Sandoval,
Alberto Prieto, Juan M. Corchado (Editors), LNCS 5517, Springer Verlag
2009, pp: 957-964. ISBN 978-3-642-02477-1.

2. Alexandre M. Savio, Maite García-Sebastián, Manuel Graña, Jorge Vil-
lanúa. Results of an Adaboost Approach on Alzheimer’s Disease Detec-
tion on MRI. J. Mira, J. M. Ferrández, J.R. Alvarez, F. dela Paz, F.J. Toledo
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(Eds.) Bioinspired Applications in Artificial and Natural Computation, Proc.
IWINAC 2009, Part II, LNCS 5602, Springer Verlag, pp: 114-123. ISBN
978-3-642-02266-1.

3. Alexandre M. Savio, Maite García-Sebastián, Carmen Hernández, Manuel
Graña, Jorge Villanúa. Classification Results of Artificial Neural Networks
for Alzheimer’s Disease Detection. Proc IDEAL 2009. IISBN pending

Related to the Lattice Computing approach for fMRI analysis

1. Manuel Graña, Alexandre M. Savio, Maite García-Sebastián, Elsa Fernán-
dez. A Lattice Computing approach for On-line fMRI analysis, Image and
Vision Computing (accepted with minor revision)

2. Manuel Graña, Maite García-Sebastián, Carmen Hernández , Lattice Inde-
pendent Component Analysis for fMRI, Journal Information Sciences (sub-
mitted)

3. Manuel Graña, Maite García-Sebastián, Carmen Hernández. Lattice Inde-
pendent Component Analysis for fMRI analysis. M. Polycarpou, C. Panayiotou,
C. Alippi, G. Ellinas (Eds.), Artificial Neural Networks - ICANN 2009,
LNCS , Springer Verlag, in press.

4. Manuel Graña, Maite García-Sebastián, Ivan Villaverde, Elsa Fernández.
An Approach from Lattice Computing to fMRI Analysis. LBM 2008 (CLA
2008), Proceedings of the Lattice-Based Modeling Workshop, Vassilis Kaburla-
sos, Uta Priss, Manuel Graña (eds), pp:33-44. ISBN 978–80–244–2112–4.

1.3 Research projects
During the PhD Thesis works, the candidate has been part of several research
projects, some of them with indirect relation to the main topics of the PhD Thesis,
but always related to image processing.

1. Desarrollo de métodos y técnicas de análisis de imagen de Resonancia
Magnética cerebral en el ámbito del software libre para estudio de enfer-
medades neurodegenerativas (BRAINER), programa SAIOTEK 2008-2009
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Eusko Jaurlaritza/Gobierno Vasco. Investigadora principal: Carmen Hernán-
dez Gómez. Entidades: Ciencias de la Computación e Inteligencia Arti-
ficial (UPV/EHU), Fundación Vasca de Innovación e Investigación Sani-
taria/B+I+O eusko fundazioa, Departamento de Neurociencia (UPV/EHU).
Duración (meses): 24 meses. Referencia: SA-2008/00226.

2. Aportaciones al diagnóstico de Esclerosis Múltiple mediante el análisis de
imagen de Resonancia Magnética, programa "Red guipuzcoana de Cien-
cia, Tecnología e Innovación" Gipuzkoako Foru Aldundia/Diputación Foral
de Guipúzcoa, 2006. Investigadora principal: Elsa Fernández Gómez de
Segura. Entidades: Ciencias de la Computación e Inteligencia Artificial
(UPV/EHU). Duración (meses): 24 meses. Referencia: OF0107/2006.

3. Percepción artificial y control de caos para robótica modular en entornos
dinámicos y no estructurados, Ministerio de Educación y Ciencia, 2006.
Investigador Principal: Manuel Graña Romay. Entidades: Ciencias de la
Computación e Inteligencia Artificial (UPV/EHU), Universidad de A Coruña,
Inteligencia Artificial (UPM). Duración (meses): 36 meses. Referencia:
DPI2006-15346-C03-03.

4. Computación distribuida para servicios Web multimedia: servidor de imá-
genes de múltiples modalidades, programa SAIOTEK 2004-2005 Eusko Jau-
rlaritza/Gobierno Vasco. Investigador principal: Manuel Graña Romay.
Entidades: Ciencias de la Computación e Inteligencia Artificial (UPV/EHU).
Duración (meses): 24 meses. Referencia: OD04UN81.

5. Servidor de imágenes basado en contenidos para el control de calidad de pa-
pel reciclado basado en índices de textura, proyectos Universidad-Empresa
(UPV/EHU), 2004. Entidades: Ciencias de la Computación e Inteligencia
Artificial (UPV/EHU), Recypel S.A.. Investigador principal: Manuel Graña
Romay. Duración (meses): 24 meses. Referencia: UE03A07.

6. Métodos computacionales para la detección de vertidos a partir de informa-
ción de sensores remotos hiperespectrales y otros, Ministerio de Ciencia y
Tecnología, 2003. Entidades: Ciencias de la Computación e Inteligencia
Artificial (UPV/EHU), Universidad de A Coruña, Universidad de Santiago
de Compostela, Universidad de Vigo. Investigador principal: Manuel Graña
Romay. Duración (meses): 36 meses. Referencia: VEM2003-20088-C04-
04.
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7. Control de calidad del papel reciclado mediante visión artificial. Ministerio
de Ciencia y Tecnología, 2003. Entidades: Ciencias de la Computación e
Inteligencia Artificial (UPV/EHU). Investigador principal: Manuel Graña
Romay. Duración (meses): 36 meses. Referencia: DPI2003-06972.

The candidate has been also allowed by the research group support to propose and
manage the following projects during the PhD Thesis works,

1. Desarrollo de técnicas de análisis de imágenes de Resonancia Magnética
con aplicación en el diagnóstico preclínico de la enfermedad de Alzheimer,
programa SAIOTEK 2007-2008 Eusko Jaurlaritza/Gobierno Vasco. Investi-
gadora principal: Maite García-Sebastián. Entidades: Ciencias de la Com-
putación e Inteligencia Artificial (UPV/EHU). Duración (meses): 24 meses.
Referencia: S-PR07UN02.

2. Detección preclínica del Alzheimer mediante Neuroimagen, programa "Red
guipuzcoana de Ciencia, Tecnología e Innovación" Gipuzkoako Foru Al-
dundia/Diputación Foral de Guipúzcoa. Investigadora principal: Maite
García-Sebastián. Entidades: Ciencias de la Computación e Inteligencia
Artificial (UPV/EHU). Duración (meses): 12 meses. Referencia: OF145/2007.

1.4 Contributions of the PhD Thesis
We summarize here the contributions of this PhD Thesis work to the state of the
art. Due to the fast pace of science, some of these contributions will be soon
superseded by our own or another work, nevertheless we hope that some bits will
remain useful for a time.

• We have performed an exhaustive review of the state of the art in several
aspects of the processing of MRI related data. These reviews appear in the
diverse chapters and annexes of this PhD report. The areas covered are:

– Intensity inhomogeneity (IIH) correction and segmentation algorithms.

– Classification approaches for early detection of AD based on MRI and
other medical imaging techniques.

– Applications of Independent Component Analysis (ICA) to fMRI data
analysis.
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– Image resources available for the realization of computational experi-
ments

• We have proposed a parametric IIH correction algorithm proving its conver-
gence properties and testing it on well known benchmark data against state
of the art algorithms. We have also done a thoroughful sensitivity analysis
to asses its robustness against bad initializations.

• We have proposed a non-parametric IIH algorithm, proving its convergence
properties and testing it on well known benchmark data. We have studied its
interaction with several intensity class means estimation approaches, and we
have detected a potential flaw in the segmentation of one of the publicised
IBSR collection of MRI brain volumes.

• We have proposed a feature extraction methodology and tested several clas-
sification approaches to support the clinical diagnosis of Alzheimer’s dis-
ease. The computational validation has been carried out on a subset of the
OASIS database after a careful selection of the individuals involved in the
experiment.

• We have proposed and tested a Lattice Independent Component Analysis
(LICA) procedure for fMRI data analysis that consists of an endmember
extraction algorithm that is based on Lattice Associative Memories and Lat-
tice Independence properties. The approach performs comparable to ICA
on a well known benchmark dataset.

1.5 Structure of the PhD Thesis report
The PhD Thesis report is structured along the three main avenues of work fol-
lowed by the PhD candidate during the past four years. Figure 1.1 shows as a
summary the relationship of the works and chapters. There are three chapters
devoted to the main works and three appendices that provide additional informa-
tion that may be useful to understand some issues or provide material for further
works. The contents of the chapters in this PhD Thesis report are as follows:

• Chapter 2 is devoted to intensity inhomogeneity (IIH) correction, where we
present the two algorithms which have been proposed and tested. We pro-
vide a description of the algorithms, the state of the art and antecedents of
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Figure 1.1: Structure of the PhD Thesis report

Figure 1.2: Summary of experiments in chapter 2
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Figure 1.3: Summary of experiments in chapter 3

our proposals. We also report some computational experiments comparing
our algorithms with other state of the art algorithms and performing exhaus-
tive sensitivity analyses. Figure 1.2 shows a summary of the experiments
presented in this chapter. For each of the proposed algorithms (GradClass-
Leg and AFR), figure 1.2 shows the kind of data used (simulated and real),
the algorithms that were used as benchmark and the performance measure
of the algorithm responses.

• Chapter 3 is devoted to the approaches pursued for detection of Alzheimer’s
disease (AD) based on sMRI. We present a feature extraction process that
uses the well known Voxel Based Morphometry (VBM) in order to select
the most significative voxels. Several feature vector extraction procedures
are defined and tested, as well as several computational intelligence classifi-
cation techniques, based on statistical classification and on Neural Network
approaches. Figure 1.3 shows a summary of the experiments presented in
this chapter for the early detection of AD, giving the combinations of Ma-
chine Learning approaches for the construction of the classification systems
and feature extraction processes.



CHAPTER 1. INTRODUCTION 13

• Chapter 4 is devoted to the application of an endmember extraction algo-
rithm based on Lattice Associative Memories to the task of activation de-
tection in fMRI data. The fundamental results upon which our work relies
are reviewed, the endmember induction algorithm is presented and some
results on a well known case study are given.

• Appendix A gathers the formal definitions of some IIH correction algo-
rithms that we use to compare to our proposals in chapter 2.

• Appendix B gathers the formal definitions of the Machine Learning algo-
rithms used in chapter 3.

• Appendix C contains a review of the diverse database resources that can be
found on Internet, some of which have been extensively used in our works.

• Appendix D contains a review of the General Linear Model and Statistical
Parametric Map that complements the material in chapter 3.

1.5.1 About the conclusions sections
Each of the main chapters in this PhD Thesis report represents a different track
of research, ending with a particular conclusions section. Therefore, there is no
specific chapter devoted to conclusions for the whole report.



.



Chapter 2

MRI intensity inhomogeneity
correction

In this chapter we present two algorithms for intensity inhomogeneity (IIH) cor-
rection in MRI that have been developed in the framework of this PhD Thesis
works. These algorithms follow two divergent approaches and they have com-
plementary advantages and disadvantages, as will be clarified below for each of
them. We did not compare them among themselves, because they correspond to
different paradigms and answer different needs separately, although we compare
them to state of the art approaches found in the literature. The first one is a para-
metric algorithm, that we call GradClassLeg because the IIH field is modelled as a
product of Legendre polynomials. The second one is a non-parametric algorithm
inspired in the Self-Organized Map which we call Adaptive Field Rule (AFR).

The structure of the chapter is as follows: Section 2.1 gives some background
information about our works, both regarding IIH correction algorithms and ap-
plication of Self-Organizing Maps (SOM) to MRI analysis. Section 2.2 gives
the formal definition of our algorithms (the formal definition of other state of the
art algorithms are in Appendix A) including some discussions about convergence
and other formal issues. Section 2.3 describes the computational experimentation
elements which are common to the validation of both GradClassLeg and AFR
algorithms. Section 2.4 reports the computational experiments performed to val-
idate and explore the sensitivity of GradClassLeg. Section 2.5 reports the com-
putational experiments performed to validate the AFR algorithm, and its interac-
tion with different intensity class means estimation processes. Finally, section 2.6
gives separate conclusions for GradClassLeg and AFR.

15
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2.1 Antecedents of our work
There are two kind of antecedents that we found relevant for the PhD Thesis works
reported in this chapter. First is the state of the art of algorithms that perform IIH
correction and segmentation of MRI data. The second is the previous uses of
SOM for MRI data analysis and segmentation, and how our work departs from
other approaches.

2.1.1 IIH correction algorithms
MRI allows to visualize with great contrast the soft tissues in the body and has rev-
olutionized the capacity to diagnose the pathologies that affect them [46]. MRI
has a high spatial resolution and provides much information on the anatomical
structure, allowing quantitative pathological or clinical studies, the derivation of
digitized anatomical atlases and a guidance before and during therapeutic inter-
vention. It is based on the phenomenon known as Nuclear Magnetic Resonance
(NMR). The visualized signal results from the aggregated measurements of the
tissue composition at the molecular level. MRI images are expected to be piece-
wise constant except for partial volume effects in the tissue boundaries and the
inevitable additive noise. Thus, once the expected intensities of each tissue are
known, we could construct a good approximation to the optimal Bayesian classi-
fier of minimum classification error, assuming that the intensity probability dis-
tribution is a mixture of Gaussians whose means are the tissue expected intensi-
ties. Then, we could apply this classifier to perform the image segmentation task.
However several imaging conditions introduce an additional multiplicative noise
factor, referred to as the intensity inhomogeneity (IIH) field in the literature. The
sources of IIH are generally divided in two groups [167]:

1. Related to properties of the MRI device such as static magnetic field inho-
mogeneity, RF signal energy spatial distribution and others.

2. Related to the imaged object itself such as the specific magnetic permeabil-
ity and dielectric properties of the imaged object.

Conventional clustering algorithms [49] can cope with the additive noise, but the
multiplicative inhomogeneity field has catastrophic effects on them. A general
algorithm for IIH correction is the lowpass filtering in the log-domain, which is
equivalent to homomorphic filtering [76] in digital image processing for the cor-
rection of illumination inhomogeneity. However, it is of no use for MRI because
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there is a great overlapping of the Fourier spectra corresponding to the IIH field
and the image. Most IIH correction algorithms in MRI are composed of a method
for IIH field estimation and a classification algorithm applied to the restored im-
age obtained removing the IIH field. In some algorithms, the classification and
bias estimation steps are interleaved in the iterations. In others, like the gradient
descent algorithm GradClassLeg proposed below in section 2.2.1, these steps are
performed simultaneously.

A broad taxonomy of MRI IIH correction algorithms divides them between
parametric and non-parametric algorithms. The first ones impose a parametric
model of the IIH field [26, 111, 157, 65], whose parameter values must be esti-
mated to fit the model. The non parametric algorithms [18, 81, 107, 111, 127, 149,
148, 168, 178] do not propose any model, so that they perform a non-parametric
estimation of the IIH field value at each voxel position of the measured MRI vol-
ume. A similar taxonomy can be found in [85]. We have already made a short
review in [65].

From the point of view of the estimation procedure, the two approaches which
have produced the greater number of works devoted to this issue are Bayesian im-
age processing algorithms and Fuzzy Clustering. Bayesian algorithms [81, 111,
127, 168, 178] perform the Maximum A Posteriori (MAP) estimation of either the
IIH field or the classification image, or both. The approach needs the formulation
of an a priori model of the images and/or the IIH field probability density, and the
conditional probability density of the observed image. The probability density of
the observed image conditioned to the voxel classification and the IIH field is usu-
ally assumed to be Gaussian. The a priori model of the MRI images is sometimes
specified by a Markov Random Field (MRF) that formalizes the smoothness con-
straints on the image classification [111, 127]. In [81, 168] modelling the bias as
a Gaussian distributed random vector leads to the Expectation Maximization es-
timation algorithm of the IIH field. The Hidden Markov Random Field proposed
in [178] is essentially identical to the MRF a priori density model of [127].

Fuzzy Clustering algorithms [18, 107, 148] perform the estimation of the im-
age classification minimizing an objective function given by the voxel quantiza-
tion error weighted by the fuzzy membership coefficients. The algorithms es-
timate the membership coefficients, the intensity class means and the IIH bias
through this minimization process.

In this framework, the two approaches we have been working on in this PhD
Thesis works can be characterized as follows:

• GradClassLeg is a gradient descent algorithm of the classification error
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function of the image corrected with a parametric estimate of a IIH field,
approximated by linear combinations of products of Legendre polynomi-
als. The error function gradient descent is performed over both the IIH field
model parameters and the tissue intensity class means. The relative advan-
tages of GradClassLeg are the following:

– Works with a compact representation of the IIH field.

– The algorithm is fast because of the low dimension representation of
the IIH field and because it is a gradient descent algorithm.

– The approach provides a global model for the IIH field, so that the
estimation is non-local, less sensitive to local noise, and the estimated
field is intrinsically smooth.

– The approach is robust against bad initializations of the intensity class
means and the IIH field parameters.

• The Adaptive Field Rule (AFR) is a non-parametric approach, where the
value of the IIH field is estimated independently at each voxel site. It could
be easily programmed to run in parallel multiprocessor machines. The type
of neighboring information used is similar to that of the Self Organizing
Map (SOM), because the estimation of the IIH field at each voxel site is
changed when its value at the neighboring sites is updated. The relative
advantages of AFR are the following:

– The IIH field is represented at voxel level, thus AFR is able to model
local features, such as partial volume effects.

– High robustness against bad intensity class means estimations.

2.1.2 SOM for MRI processing
In early applications of the SOM to MRI data [25, 160], it was used to estimate
the clustering of intensity into several classes, either in multispectral or single
modality images. In these works, the existence of IIH fields is not taken into ac-
count. The results that these works report show an overestimation of the number
of classes in the image. This is a natural effect when the IIH field is not considered.
More recent works use the SOM as a preprocessing step previous to manual ex-
amination [72, 119, 164] or the supervised construction of classification systems
for image segmentation. In this sense SOM has been used to obtain the reference
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vectors for the construction of a supervised Probabilistic Neural Network (PNN)
[152], a multi-layer feedforward neural network with automated Bayesian regu-
larization [88], Support Vector Machine (SVM) [37]. Recent applications include
the detection of activity patterns in fMRI [100] which are too low resolution to try
to detect IIH effects.

The main difference between the AFR, presented in this chapter in section
2.2.3, and the previous SOM approaches to MRI processing, is that we focus on
the estimation of the IIH field. This assumption is grounded in a widely accepted
imaging model presented in the next section. When we propose adaptive algo-
rithms for the estimation of the intensity class means, it is done in the precise
context of the tissues we are looking for (i.e., Cerebrospinal fluid (CSF), gray
matter (GM), white matter (WM)).

2.2 Description of the algorithms
We will denote y = (yi; i ∈ I) the observed image and x = (xi; i ∈ I, xi ∈ Ω)
the underlying tissue classification image, where i ∈ I ⊂ N 3 is the voxel site in
the discrete lattice of the image support for 3D images, and Ω = {ω1, ..., ωc} is
the set of tissue classes in the image. The assumed image formation model is the
following one:

yi = βi · ri + ηi , (2.1)

where βi is the multiplicative IIH field, ri is the clean signal associated with the
true voxel class xi and ηi is the additive noise. In MRI we have the additional
restriction that the signal intensity values belong to a discrete (small) set, Γ =
{µω1 , ...., µωc} , so that ri = µxi .

Definition The IIH robust segmentation problem is the problem of estimating the
image segmentation x and the inhomogeneity multiplicative field β = (βi; i ∈ I)
from y.

Definition The IIH correction problem is that of estimating the inhomogeneity
multiplicative field β = (βi; i ∈ I) from y and computing the corrected image:

ŷi =
yi
βi

(2.2)
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Both problems are ill posed, and closely related. We have found that [149] is
the only work that performs an IIH correction without resorting to image segmen-
tation. In our works we sometimes assume that the image segmentation is given
through some preset intensity class means. However both approaches (GradClass-
Leg and AFR) are formulated allowing the possibility to perform the estimation
of the image segmentation.

In some algorithms the correction and estimation is performed on the image
logarithm. If we discard the additive noise term, we have that the image formation
model described in equation (2.1) becomes:

Yi = Bi +Ri , (2.3)

where Yi = ln yi, Bi = ln βi and Ri = ln ri. The log-images are denoted as
Y = (Yi; i ∈ I) ,B = (Bi; i ∈ I) and R = (Ri; i ∈ I) . The multiplicative field β
becomes an additive term B and, because of that, it is usually named the bias field.
We maintain the definition of the tissue classes and the corresponding intensity
class means, so that Ri = Mxi , where Mω = lnµω.

The shift between the two image formation models is not as trivial as may
appear at first sight, because the log-model in equation (2.3) implies that the ad-
ditive noise term ηi has been taken care of previously by means of some linear or
nonlinear filtering technique, i.e., anisotropic filtering [69], [147], otherwise the
model does not apply. However, we recall that in [81] a strong case was made
against filtering of the image previously to IIH correction.

2.2.1 GradClassLeg
We call Gradient descent of Classified images corrected by products of Legendre
polynomials (GradClassLeg) to our own proposition of a parametric IIH correc-
tion and voxel classification algorithm. We assume that the IIH field model is a
linear combination of 3D products of Legendre polynomials [26, 157] given by:

βi (p) =
m∑
j=0

m−j∑
k=0

m−k−j∑
l=0

pjklPj (ix)Pk (iy)Pl (iz) ; (2.4)

where i= (ix, iy, iz) and Pk (.) is a discretization of the Legendre polynomial of
order k that is consistent with the image size in each dimension. The maximum
Legendre polynomial order is denoted by m. The expression (2.4) takes into
account the symmetries in the composition of the bias, assuming that the dis-
crete volume is a cube. The number of parameters that compose p = {pjkl} is
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n = (m+ 1) m+2
2

m+3
3
. Given an IIH field estimation β̂i (p), we consider the im-

age correction error relative to the intensity class means as the objective function:

e (p,Γ) =
∑
i∈I

(
yi

β̂i (p)
− µxi

)2

(2.5)

where Γ denotes the set of the tissue intensity class means. That is, we com-
pute the restoration error as the squared difference between the predicted intensity
associated with the tissue class and the observed intensity after bias correction.

GradClassLeg is a gradient descent algorithm of this error function either on
the parameters of the bias field model:

pt+1= pt+α
p
t∇pe (p,Γ) , (2.6)

or on the intensity class means:

Γt+1=Γt+α
Γ
t∇Γe (p,Γ) . (2.7)

In these expressions, αp
t and αΓ

t denote the learning rates. Equation (2.6) gives the
estimation of the IIH field model parameters starting from a random initial model.
Equation (2.7) gives the estimation of the intensity class means, starting from a
random initial set of values or from a good guess. The bias field model component
of the gradient vector in equation (2.6) is:

∇pe (p,Γ) =

{
∂

∂pjkl
e (p,Γ)

}
, (2.8)

where:

∂

∂pjkl
e (p,Γ) =

∑
i∈I

(
yi

β̂i (p)
− µ̂bxi

)
−yiPj (ix)Pk (iy)Pl (iz)

β̂2
i (p)

. (2.9)

where

x̂i = arg min
ω

{
yi

β̂i (p)
− µω

}
is the estimation of the classification of each voxel based on the current estimation
of the intensity class means. The intensity class means component of the gradient
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vector in equation (2.7) is∇Γe (p,Γ) =
{

∂
∂µω

e (p,Γ)
}

where:

∂

∂µω
e (p,I) =

∑
i∈I|bxi=ω

−1

2

(
yi

β̂i (p)
− µ̂ω

)
. (2.10)

The estimation of the intensity class means and that of the IIH field model
parameters are interdependent processes, they could be performed alternatively,
like the ICM and bias estimation performed in the BMAP algorithm, or simulta-
neously. When we try to estimate both we apply equations (2.6) and (2.7) simulta-
neously with different learning rates αp

t and αΓ
t tuned for the different processes.

2.2.2 Discussion of GradClassLeg
In this discussion we will address the following three questions:

1. Why the use of a parametric intensity inhomogeneity model?

2. Does the shape of our energy function, defined in equation (2.5), improve
somehow the one proposed by [157]?

3. It is adequate the choice of a gradient descent as the energy minimization
algorithm?

Why a parametric IIH algorithm?
Parametric models have the advantages of compactness and abstraction.

• By compactness we mean that the search for the IIH field estimation is
performed on the parameter space which is of much smaller dimensionality
than the IIH field.

• By abstraction we mean that the estimation is not trying to model the small
variations of the image, avoiding the kind of overfitting that can happen in
non-parametric approaches. Abstraction is similar to the regularization of
ill-posed problems.

The choice of inhomogeneity model varies widely. In the literature we have found
spline interpolations, high order polynomials, products of Legendre polynomials
and mixtures of Gaussians. Interpolation approaches such as splines [111, 142]
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have the disadvantage of needing some good selections of points or regions in
the image, that must be performed by expert human operators. Defining the knot
spacing for cubic b-splines needs some degree of user interaction to ensure that
the spacing is small enough to model the bias field and greater than the anatomi-
cal structures, to avoid that the bias model includes them. Besides, optimization
of knot spacing may be required for each medical imaging application. High or-
der polynomial fitting may lead very easily to over-fitting and biased estimations.
The products of Legendre polynomials form an orthogonal function basis defined
by few parameters. IIH field estimation is performed on the space of the linear
combination parameters, which means that the search space is smaller than for
other approaches. Other approximations, like the mixture of Gaussian functions
need careful selection and have more parameters to estimate (i.e., means, covari-
ance matrices) besides the mixture parameters. There are no definitive criteria
and computational results that may allow an objective unbiased selection of the
parametric inhomogeneity model.

About the shape of the energy function
The first big difference between ours and other approaches found in the litera-
ture that may be noticed is that we avoid to use the logarithm transformation of
the image. The main drawback of sticking with the multiplicative model is that
low values of the IIH field could give anomalous correction results. However in
practice these values are easily masked out to avoid their effect on the gradient
estimation. Another effect of the multiplicative inhomogeneity correction is that
the magnitude of the bias effectively computed must be small. This condition
imposes a restriction on the range of the linear combination parameters to avoid
negative or zero IIH field values. In practice we start the random inhomogeneity
linear combination parameters in the range [0.01, 0.001]. The algorithm maintains
these parameter values close to this range.

The second, and more important difference, is that our elementary energy
function is the square distance to the class intensity mean

e (y,Γ) = (y − µxi)
2 . (2.11)

instead of the diverse versions of the valley function proposed in [26, 157]:

valley (d) =
−d2

d2 + 3σ2
. (2.12)
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The valley function was inspired in the works on robust statistics, i.e., [104]
tries to obtain M-estimators which are robust against outliers, overcoming the need
to specify a scale factor via the realization of a deterministic annealing scheme to
follow a Graduated Non-Convexity path in the minimization of a potential func-
tion, which would guarantee reaching the global optimal estimation, despite the
non-convex nature of the potential function. This annealing was intended to be
performed on the potential function. However, in [26, 157] the authors treat the
valley function of equation (2.12) as a robust estimator whose scale is given by
the sigma parameter. Therefore, this parameter is critical to obtain the desired
results and its optimal value will be highly dependent on the range of values of
the processed signal. On the other hand, the square function in (2.11) does not
depend on any scale parameter.
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Figure 2.1: The response of the valley and square functions. Energy plots versus
pixel intensity showing the basins of attraction to intensity class means using the
square function of equation (2.11) and the valley function of equation (2.12) as
building blocks.

One claimed and highly desirable feature of the valley function is that it is able
to provide, for some values of its σ parameter, separate and well defined attraction
basins for the different class means. In figure 2.1 we show both the response of the
valley and square functions when the assumed class mean intensities are µ1 = 33,
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µ1 = 94 and µ1 = 181 for input image intensity in the [0, 255] interval. The valley
function has been scaled multiplying it by 2000 for adequate simultaneous plotting
with the square function in this figure. Following the procedures described in
[26, 157], the valley function of equation (2.12) is computed on the logarithm of
both the intensity and the intensity class means. The existence of the attraction
basins indicates that the energy function gives information about departures from
the desired values. Both functions provide this information. Note that for σ = 1
the valley function does not give any information regarding the nominal intensity
class means because it is null for most of intensity value range. For σ = 0.3
the valley function is quite similar to the square function. The second interesting
feature of the the valley function is that it saturates to 1. This is natural when
we try to filter out outliers. However this non linearity may introduce undesired
effects.

(a) (b) (c)

Figure 2.2: Chessboard image. (a) Original. (b) An instance of an IIH corrupted
image. (c) The IIH field multiplying (a) to obtain (b).

As an illustrative example of the undesirable effects introduced by the nonlin-
earities of the valley function, we performed the following experiment: starting
from a chessboard image like the one in figure 2.2(a), we generated a collection
of 10000 IIH corrupted images (as in 2.2(b)) multiplying randomly generated IIH
fields based on Legendre polynomials (up to order 2, figure 2.2(c) shows one IIH
field) according to equation (2.1). We plot in figure 2.3 the energy function as
defined in equation (2.12) [157] with σ = 0.03 (which, from the examination of
figure 2.1, shows a good separation of the attraction basin for the local minima
corresponding to the intensity class means) computed for each corrupted image
versus its distortion relative to the original chessboard image. Notice that the dis-
persion of the energy function increases with the image distortion. Figure 2.4
corresponds to a value of σ = 1. In this figure there is a much smaller dispersion



CHAPTER 2. MRI INTENSITY INHOMOGENEITY CORRECTION 26

Figure 2.3: Sampling of the energy function based on the valley function with
σ = 0.03 of randomly corrupted chessboard images versus their distortion relative
to the original chessboard image. IIH fields generated with random Legendre
polynomials up to order 2.
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Figure 2.4: Sampling of the energy function based on the valley function with
σ = 1 of randomly corrupted chessboard images versus their distortion relative
to the original chessboard image. IIH fields generated with random Legendre
polynomials up to order 2.
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Figure 2.5: Sampling of the energy function based on the square function of ran-
domly corrupted chessboard images versus their distortion relative to the original
chessboard image. IIH fields generated with random Legendre polynomials up to
order 2.
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than in figure 2.3. Figure 2.5 corresponds to the plot of the energy function in
equation (2.5) versus the corrupted image distortion. We must keep in mind that
we search for the minimum distortion (best corrected) image, therefore it is desir-
able that the energy function used to evaluate the corrupted image is increasingly
monotonic with the distortion. The plot of the square based energy function is
much closer to the plot of a monotonically increasing function than the one based
on the valley function. This is due to the saturation of the valley function. The
dispersion shown in figure 2.3 means that there are images with widely varying
distortion values that have the same energy value, so that minimization algorithms
using this energy as the objective function may be far from searching for the min-
imum distortion. The picture gets worse for higher order polynomials, increased
number of classes, etc. Moreover, the magnitude of this effect varies widely with
the value of the σ parameter, as can be appreciated comparing figure 2.3 and fig-
ure 2.4. The equivalence between the valley and the square functions for specific
values of σ can be appreciated by the similitude between figures 2.5 and 2.4.

About the gradient descent
It seems from the simple example explored in [157] that the minimization problem
is highly non linear and the search surface has many local minima. To analyze the
convexity of the energy function proposed in equation (2.5) we can examine the
expression of the second derivatives:

∂2e (p,Γ)

∂2pjkl
=

∑
i∈I

µ̂bxi yi (Pj (ix)Pk (iy)Pl (iz))
2

β̂3
i (p)

. (2.13)

∂2e (p,Γ)

∂pjkl∂pmno
=

∑
i∈I

µ̂bxiyiPj (ix)Pk (iy)Pl (iz)Pm (ix)Pn (iy)Po (iz)

β̂3
i (p)

.(2.14)

A sufficient condition for the Hessian matrix to be positive semidefinite and,
therefore, for the energy function to be convex, is that all the second derivatives are
positive anywhere. From these equations, we can deduce that sufficient conditions
for convexity of the energy function are:

1. That the IIH field is non negative for every image element, and

2. That the elementary polynomials Pj (.) are also non negative.
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The first condition correspond to a realistic physical restriction if we maintain
the multiplicative inhomogeneity model. To enforce the second condition im-
plies displacing the polynomial value range from [−1, 1] to [0, 1]. This causes
the loss of orthogonality of the modified basis. As this property plays no role in
the proposed algorithm, we can perform this translation without fear of introduc-
ing unsuspected problems. Under these conditions the gradient descent algorithm
proposed is a global minimization algorithm and no further sophisticated random
search algorithms are needed to reach the global minimum.

2.2.3 Adaptive field rule (AFR)
Assuming the image formation model shown in equation (2.1), the image seg-
mentation problem, subjected to the existence of IIH multiplicative noise, can be
formulated as the minimization of the following energy function:

E(y;Γ, β) =
∑
i

(
yi
βi
− µc(i)

)2

, (2.15)

where

c (i) = arg min
k

{∥∥∥∥µk − yi
βi

∥∥∥∥} .
That is, to solve the segmentation problem we need to find

Γ∗, β∗= arg min
Γ,β

E(y;Γ, β).

When the intensity class means Γ = {µω1 , ...., µωc} are known, the problem is
reduced to that of IIH estimation:

β∗= arg min
β
E(y;Γ, β).

That is, we try to minimize the quantization error over the IIH corrected image.
This is an ill-posed problem because the number of parameters to estimate (the
bias values at each voxel) is the same as the number of data samples (the values
of the voxel intensities).

The logarithm is a monotonic transformation, therefore the segmentation prob-
lem can be stated as the following minimization problem:

B∗ = arg min
B

∑
i

(
Yi −Bi −Mc(i)

)2
= arg min

B
E (Y; B,M) (2.16)
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where Yi = log yi, Bi = log βi and Mc(i) = log µc(i). This logarithmic transfor-
mation, which allows us to get rid of the multiplicative effect, is quite common in
the MRI segmentation and IIH correction literature [127, 149, 168]. We consider
a gradient descent rule for the minimization of this error function. We obtain the
following adaptive estimation rule:

4Bi = −2α
(
Yi −Bi −Mc(i)

)
(2.17)

where 0 < α < 1 as usual. To take into account that IIH fields must be smooth, we
propose an energy function formulation that involves the smoothing (averaging)
of the errors in the neighborhood of the voxel:

Eσ (Y; B,M) =
∑
i

∑
j

hσ (i− j)
(
Yj −Bj −Mc(j)

)2 (2.18)

The energy functionEσ is an extended distortion function like the energy func-
tions proposed for the derivation of topological preservation quantization and vi-
sualization approaches [84, 51, 161, 103] inspired by the SOM [96] and the Neural
Gas. The hσ (i− j) is a neighboring function defined in the space of the voxel in-
dex sites. Usually it is a Gaussian shaped windowing function.

The formulation of a gradient descent rule for the minimization of energy
function Eσ gives the following the Adaptive Field Rule (AFR):

4Bi = −2α
∑
j

hσ (i− j)
(
Yj −Bj −Mc(j)

)
. (2.19)

The AFR rule of equation (2.19) can be applied either as stochastic gradient
descent or as batch rule. We have tested both in [66], however here we report
results applying AFR as a batch rule. The main reasons for this choice are, first,
that the batch version has faster convergence both in computer time and in number
of iterations, and, second, that the batch version has lower result variance.

2.2.4 Discussion of AFR

Similarities and differences with SOM
Although the AFR as defined in equation (2.19) was inspired by the SOM’s weight
adaptive rule, there are some strong differences. The first one is paradigmatic: the
SOM is a quantization algorithm that achieves a clustering of high-dimensional
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data and a nonlinear analog to the PCA because of its topology-preserving prop-
erty. Thus, the number of network nodes is at least several orders of magnitude
smaller than the data sample. With AFR we try to perform a non-parametric es-
timation of the IIH field, which can be viewed as an image of the same size as
the given MRI image which constitutes our data sample. The updating process
is a one to one process. Each voxel of the MRI image is visited (in sequence or
randomly) and its corresponding IIH field element is updated.

The role of the neighboring function in AFR as introduced in equation (2.19)
works in the opposite direction to the one in the standard SOM. In the standard
SOM the winning codevector determines the neighboring codevectors being up-
dated. In equation (2.19) the updating of the bias estimated value at a voxel is
influenced by the error at neighboring voxels.

Finally, let us consider the topographic preservation property of SOM ([57,
166]). According to it, neighboring data points in input space are mapped into
network nodes with neighboring indices. The definition of AFR in equation (2.19)
pursues that neighboring voxels have estimated IIH field neighboring values to
ensure the smoothness of the bias field. Voxel site indices are defined in a 2D
or 3D space and bias values are scalar values, much unlike to the SOM, where
dimension reduction is produced because the codevector indices are defined in a
space of lower dimension than that of the input vectors.

Discussion of convergence properties
There are several causes for the fact that the observed intensity is different from
the corresponding intensity class mean Yj 6= Mc(j). Among them, the most impor-
tant is the partial volume phenomena, due to the fact that image voxels correspond
to a volume of matter that contains a mixture of biological tissues. Variations of
this mixture from voxel to voxel produce variations in the signal departing from
the nominal value, although the tissue class (i.e., CSF, GM or WM) may be the
same. These and other uncorrelated signal variations can be accounted for by the
additive term in the model of equation (2.1). There are other variations due to
smooth spatial processes, such as the spatial inhomogeneity of the RF signal that
excites the protons in the selected volume to produce the MRI signal [46]. The
estimated IIH field B̂ must be smooth to be a model that accounts for such phys-
ical phenomena 1. This smoothness constraint can be expressed in several ways

1The assumption of negligible additive noise in log transformation of equation (2.3) forces
some confusion additive and multiplicative effects. In fact, in some works, i.e., [157], it is unclear
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(expressed in terms of the IIH field before/after the log transform):

1. The variation of the bias must be bounded. That can be expressed by either
expression

max
j∈N(i)

‖βi − βj‖ < ε,

or ∑
j∈N(i)

‖βi − βj‖ < ε.

2. Closer voxels in the image domain must have more similar bias values than
those farther appart:

∀i, j, k; |i− j| < |i− k| ⇒ ‖βi − βj‖ < ‖βi − βk‖ . (2.20)

This condition means that there is some kind of topological preservation
between voxel site indices and bias values.

The application of equation (2.19) leads to stationary states described by the fol-
lowing equation:

B̂i =
∑
j

hσ (i− j)
(
Yj −Mc(j)

)
, (2.21)

that is, the estimation corresponds to the weighted average of the neighboring
voxel residuals. This asymptotic result is independent of the shifts in c (j) that
may be due to the variation in values of the bias B̂i during the estimation process.
The simplistic appearance of equation (2.21) hides a recurrent relation between
the bias estimations given by the class assignment

c (i) = arg min
k

{∥∥∥Mk −
(
Yi − B̂i

)∥∥∥} (2.22)

If the neighboring function is an average mask hσ (k) = 1/σd for |k| ≤ σ,
where d is the dimension of the image support (2 or 3), the B̂i would correspond
to the average residual over a box or cube surrounding the voxel. Maintaining this
definition of the neighboring function, the justification of the satisfaction of the
smoothness constraints on the bias estimate after convergence of the updating rule
come from: ∣∣∣B̂i − B̂j

∣∣∣ =
∑

k∈N(i)4N(j)

∣∣Yk −Mc(k)

∣∣ , (2.23)

wether the additive correction/estimation was done on the original image or its log transform.
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where A4B stands for the symmetric difference between sets A and B, N (i)
is the set of voxel neighboring sites. Then, the magnitude of the difference will
always be bounded, but we can not set a bound because this difference will depend
on the input image. The topological preservation condition of equation (2.20) is
also satisfied because

∀i, j, k; |i− j| < |i− k| ⇒ N (i)4N (j) ⊂ N (i)4N (k) .

When the neighboring function is a Gaussian or any other arbitrary normalized
spatial function with restricted domain of radiusNσ

2, the equation (2.23) becomes

|Bi −Bj| =
∑

k∈Nσ(i)4Nσ(j)

∣∣Yk −Mc(k)

∣∣ |hσ (i− k)− hσ (j − k)| .

In this case, the decreasing nature of the neighboring function introduces an at-
tenuation of the bias differences making the transition between bias values even
more smoother.

The conventional application of the SOM and other neighborhood based com-
petitive algorithms usually involves the progressive shrinking of the neighborhood
radius, until it becomes null and the adaptive rule only applies to the actual win-
ning or selected node. The conventional interpretation of this process is that the
SOM and similar algorithms become the Simple Competitive Learning or Vec-
tor Quantization to allow for refinement of the final codevectors. The big initial
neighborhoods ensure global convergence or robustness against initial conditions
[44, 74, 78]. In the AFR algorithm, the final neighborhood determines the close-
ness to the assignment of the bias values as the residual intensities, which is the
trivial minima of the error function in equation (2.15). The initial neighborhood
size sets the background smoothness constraint. The shrinking neighborhoods
allow refining the IHH field estimation adapting to local conditions. The shrink-
ing schedule is of importance, because a long number of iterations with the null
neighborhood will remove the smoothness obtained in the initial steps. This is the
reason of the selection of the value for the shrinking speed parameter F defined
in equation (2.29) of section 2.4.

On the estimation of the intensity class means
Sometimes the assumption of the knowledge of the intensity class means Mk can
not be made. Then some means are needed to estimate them from the data. In

2For Gaussian neighborhoods we apply the rule of thumb Nσ = 9σ to ensure appropriate
sampling of the Gaussian function.
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this section we will discuss some approaches that can be combined with the AFR
IIH estimation algorithm. These approaches are presented here in sequence of
increasing requirements of a priori information about the data. We start with the
basic unsupervised approach, ending with the supervised learning algorithm. One
of the straightforward approaches is the realization of a k-means step after each
step of IIH field estimation. This approach has already been tested in section 2.5.1.

This estimation can also be performed as a gradient descent on the energy
function of equation (2.18) relative to the intensity class means:

∂Eσ
∂Mk

= −2
∑
i

∑
c(j)=k

hσ (i− j) (Yj −Bj −Mk) .

This gradient is well approximated by the following expression, which mini-
mizes the average square error of the image quantization, given a fixed bias field:

∂Eσ
∂Mk

' −2
1

|{j |c (j) = k}|
∑
c(j)=k

(Yj −Bj −Mk) . (2.24)

The process of estimating the intensity class means following the gradient in equa-
tion (2.24) is an unsupervised approach, without a priori information about the
true class of the voxel’s tissue. We will denote AFR-U this approach in the exper-
imental results of sections 2.5.2 and 2.5.3.

Sometimes we may have some information about the spatial distribution of the
tissues, this usually takes the form of an atlas3. A crisp atlas provides us a tissue
class for each voxel. The gradient of equation (2.24) can be rewritten to profit
from this information:

∂Eσ
∂Mk

' −2
1

|{j |A (j) = k}|
∑

{j|A(j)=k }

(Yj −Bj −Mk) , (2.25)

where A (j) denotes the class assigned to voxel site j in the crisp atlas. We denote
AFR-A this approach in the experimental section 2.5.3. The crisp atlas is com-
puted following a majority voting schema over a set of images representative of
some population of interest. A more precise representation is a probabilistic map,
where we have the estimated frequency of each tissue for each voxel computed

3In the literature, some authors define templates as average images and atlases as average
images after warping into a known anatomical atlas, such as the Talairach atlas. Here we use the
term to denote a priori information about the spatial distribution of tissue classes.
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from the image database. The gradient expression for the intensity class means
can then be rewritten as follows:

∂Eσ
∂Mk

' −2
1∑

j AP (j, k)

∑
j

AP (j, k) (Yj −Bj −Mk) , (2.26)

where AP (j, k) denotes the estimated frequency of tissue class k in voxel site j.
We denote AFR-PA this approach in the experimental section 2.5.3. Both atlas
based algorithms are partially supervised because they use some a priori informa-
tion about the expected distribution of the tissue classes in the image, computed
from the (manual) segmentation of the images. The fully supervised approach
would use the manual segmentation of the image being processed as the ground
truth, so the gradient expression can be written as follows:

∂Eσ
∂Mk

' −2
1

|{j |GT (j) = k}|
∑

{j|GT (j)=k }

(Yj −Bj −Mk) , (2.27)

where GT (j) denotes the ground truth class at voxel j given by the manual seg-
mentation of the image being processed. We will denote AFR-S this approach in
the experiments reported in section 2.5.3.

Rationale for AFR
Non parametric IIH correction methods are able to model local features, such as
partial volumes or very local inhomogeneity effects. Parametric models are well
suited to model smooth global IIH fields, but modeling of local effects would
require extremely high order models and very sensitive fitting algorithms. The
AFR is a non parametric algorithm whose degree of locality is controlled by the
neighboring function evolution parameters. It could be possible, therefore, to tune
it to solve a diversity of problems. Results reported in this chapter show that
it can be easily tuned to perform comparable to state of the art algorithms on
conventional benchmark data sets.

From the computational point of view, AFR is fast and easily tuned, relative to
other non parametric algorithms. Approaches based on Bayesian Maximum a Pos-
teriori estimation [127] involve the computation of relaxation processes, which,
even in the fastest ICM case, are time consuming. The early Bayesian approaches
[168] also needed to perform some linear filtering processes. Algorithms based on
fuzzy clustering [18, 148] need to compute membership functions and solve large
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sets of equations to obtain them. Algorithms based on the intensity probability
distribution sharpening [149] need to perform a sequence of distribution decon-
volutions. All of these processes are more computationally demanding than AFR.
We have found that a small number of iterations, 20 to 30, are enough to obtain
good results for most volumes treated.

From the modeling point of view, the Bayesian approaches need to build a
probabilistic model, often a Markov Random Field, whose parameters need to be
estimated somehow. Otherwise AFR provides a dynamic process along the sensi-
tive parameter values so that the response is less dependent on a critical parameter
choice. The process works like an annealing process (it can also be interpreted
as a graduated non convex minimization or a continuation problem). This allows
fitting it to solve global and local problems. To obtain this flexibility, the Bayesian
methods need to work on the a priori model of the data. Fuzzy approaches have
introduced averaging processes to obtain similar results, the width of the averag-
ing window is set heuristically.

The assumption of known intensity class means is common to several ap-
proaches [157, 168]. In the fuzzy c-means and Bayesian approaches, intensity
class means are computed all along, as the corrected image evolves. We show
in this chapter that several approaches can be combined with AFR to estimate
the intensity class means with great efficiency. The simplest ones are the un-
supervised on-line and k-means processes. The construction of an atlas from the
available manual segmentations allows to manage spatial distribution information,
like in the template based Bayesian approaches [111]. However, our experience
described below shows that the use of templates or atlas must be taken with cau-
tion. Supervised training can also be combined with AFR aiming to obtain more
accurate segmentations.

2.3 Computational experimentation framework
The validation of the IIH correction algorithms has been done on volumes ob-
tained from two Internet sites:

• The BrainWeb web site [4] at the McConnell Brain Imaging Center of the
Montreal Neurological Institute, McGill University, that provides simulated
brain volumes [98], The advantage of working with the simulated volume
is that it is possible to compute the classification accuracy relative to the
ground truth classes effectively defined in the generation model. Refer-
ences [40, 41, 97, 98] develop the foundations of the simulation provided
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there. The volumes are generated from a normal anatomic model using a
T1 sequence, corrupted with intensity inhomogeneities of magnitude 20%
and 40% of the original clean image, and several levels of additive noise.
See Appendix C for more details.

• The Internet Brain Segmentation Repository [8]: The 20 normal MR brain
data sets and their manual segmentations were provided by the Center for
Morphometric Analysis at Massachusetts General Hospital. This dataset
has been extensively used for validation of segmentation approaches in the
literature [21, 65, 111, 127, 148, 175]. The images correspond to T1-
weighted MRI brain scans of 20 normal subjects4. The images were ob-
tained with two different imaging systems5: ten FLASH scans of four males
and six females, ten 3D-CAPRY scans on six males and four females. The
differences in the imaging systems drive some authors to consider them
separately or to omit some of the scans when reporting results [21, 127].
The IBSR V2.0 collection of brain volumes, the 1.5mm data distribution, is
more recent than the previous one, and with less reference results. Again,
the MR brain data sets and their manual segmentations were provided by
the Center for Morphometric Analysis at Massachusetts General Hospital.
We have used it for the AFR algorithm validation. See Appendix C for more
details.

To give a quantitative evaluation of GradClassLeg we have computed the Tani-
moto coefficient for the CSF, GM and WM classes as introduced in [111, 148].
Using our notation the Tanimoto coefficient can be expressed as

T (ω) =
|{xi = ω ∧ x̂i = ω; i ∈ I}|
|{xi = ω ∨ x̂i = ω; i ∈ I}|

, (2.28)

4We discarded one of the scans because the manually segmented volume did not seem to match
with the T1 dataset applying the given offset.

5MRI Image Acquisition description: The coronal three-dimensional T1-weighted spoiled gra-
dient echo MRI scans were performed on two different imaging systems. Ten FLASH scans on
four males and six females were performed on a 1.5 tesla Siemens Magnetom MR System (Iselin,
NJ) with the following parameters: TR = 40 msec, TE = 8 msec, flip angle = 50 degrees, field of
view = 30 cm, slice thickness = contiguous 3.1 mm, matrix = 256x256, and averages = 1. Ten 3D-
CAPRY scans on six males and four females were performed on a 1.5 tesla General Electric Signa
MR System (Milwaukee, WI), with the following parameters: TR = 50 msec, TE = 9 msec, flip
angle = 50 degrees, field of view = 24 cm, slice thickness = contiguous 3.0mm, matrix = 256x256,
and averages = 1.
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where xi is the voxel’s ground truth and x̂i is the classification estimation per-
formed by the algorithm. This definition is slightly different from the classical
one found in the literature [49] which is the ratio of cardinalities of the symmet-
rical difference and the union of the sets. In equation (2.28) perfect overlapping
gives a value of 1 while disjoint sets give a value of 0. Perfect overlapping means
the perfect agreement between the manual and automatic segmentation. It is the
same statistic as the Overlap Metric reported in the IBSR site. The Tanimoto
coefficient is a more precise measure of the algorithm accuracy than the ratio of
success or the misclassification ratio (MCR) given by some authors, because it
takes into account the error due to the false positives as well as the false negatives.
In all the experimental works, we computed the classification of the CSF, GM and
WM, and reported the Tanimoto coefficients for these classes. When visualizing
the voxel classification results, the darkest gray correspond to CSF tissues and the
whitest voxels correspond to WM tissues. Intermediate gray values correspond to
the GM tissues.

2.4 Computational results for GradClassLeg
We present in this section comparative computational results of the 3D imple-
mentations of the GradClassLeg algorithm described in section 2.2.1 relative to
state of the art algorithms. In this section we show empirically that the gradient
descent algorithm is able to obtain good estimations of the IIH field, and that it
is comparable to state of the art algorithms. The experimental data is composed
of two sets of images: one set are simulated brain scans from the BrainWeb, and
the second set are real volumes from the IBSR (20 normal MR brain data sets
and their manual segmentations). The treatment of the voxels corresponding to
air in the scanned volumes was different in the two experiments, and depending
on the algorithm. On the BrainWeb images, for the Wells and BMAP algorithms
air was considered as a class of its own. For the GradClassLeg and BFCM air was
detected setting a threshold and voxels below this threshold were ignored in all
subsequent computations. On the IBSR images the air was masked out using the
manual labeling of the voxels and was ignored. We use the simulated volumes to
compare the restoration power of the algorithms, and the IBSR data to compare
their segmentation power.
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2.4.1 Results on simulated brain MRI volumes
We have downloaded a simulated clean normal brain volume, without additive or
intensity inhomogeneity noise, of a healthy head model and we have corrupted it
with randomly generated IIH fields based on Legendre polynomials to obtain the
test images. We have generated a hundred corrupted volumes. Our bias fields are
stronger than the ones introduced in [4] so that the relative differences between
algorithms are enhanced. Working with the simulated volume it is possible to
evaluate the algorithms on the basis of the correlation between the original, clean,
volume and the corrected volume after applying the estimated IIH field.

The algorithm presented in section 2.2.1 and the algorithms described in Ap-
pendix A have been used to estimate the IIH field. The corrupted image is then
corrected with the estimated IIH field. We have assumed as the true values of the
intensity class means the averages of the simulated image regions corresponding
to each kind of tissue according to the crisp head model provided in [4]. We con-
sider WM, GM, and CSF, as the tissues of interest. The accuracy of the algorithms
is measured computing the correlation of the clean volume simulation and the re-
stored volumes. The operational parameter values applied to each algorithm are
the ones recommended or used in the reference papers. They are as follows:

• GradClassLeg: αp = 0.01, 25 iteration steps, maximum Legendre polyno-
mial order m = 5.

• BMAP: 3D voxel neighborhood radius r = 2, MRF potential parameters
α1 = 0.1, α2 = 0.01, 3D isotropic Gaussian smoothing filter standard devi-
ation σ = 20.

• Wells algorithm: 3D isotropic Gaussian smoothing filter standard deviation
σ = 25.

• BFCM: 3D voxel neighborhood radius r = 1.

Figure 2.6 shows one slice of the clean simulated brain volume (fig. 2.6(a)),
together with the same slice extracted from one of the IIH corrupted volumes (fig.
2.6(b)). Figure 2.7 shows the results of the IIH correction with the bias field esti-
mations performed by the algorithms described in the previous section, computed
on the corrupted volume whose slice is shown in figure 2.6(b). Figures 2.7(a-
d) show the corresponding slices of the corrected volumes, after correcting with
the IIH fields estimated by GradClassLeg, Wells, BMAP and BFCM algorithms.
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(a) (b) (c)

Figure 2.6: A simulated brain MRI slice. (a) The clean slice, (b) The same slice of
the volume corrupted with a simulated IIH field from random linear combinations
of Legendre polynomial products.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.7: First row shows IIH correction results for the volume represented
by the slice image in figure 2.6. Second row shows the estimated bias fields.
The columns correspond, from left to right, to GradClassLeg, Wells, BMAP and
BFCM.
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Figure 2.8: Correlation of IIH corrected volumes with the clean volume for a
collection of volumes of increasing intensity inhomogeneity.
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Figures 2.7(e-h) show the corresponding slice of the estimated multiplicative IIH
fields. White values correspond to IIH field values close to 1.

Upon inspection of figures 2.7(a-d) it can be appreciated that the best visual
correction corresponds to the Wells algorithm and GradClassLeg. Visual differ-
ences between both algorithms are small. The restoration results of the BMAP
are very poor. The corrected image looks like a poor quantization of the original
image, with some spurious boundary effects that create a kind of aura around the
head. We believe that the reasons for this bad behavior is that the parameter set-
ting discussed in the original paper is not adequate for our test images. The BFCM
corrected image appears to be an image of differences around the local image in-
tensity mean. This may be due to the fact that the estimated bias is computed like
an image of residuals according to equation (A.17). It seems that the smoothing
implicit in the neighboring term is too weak for our test images.

The plots in figure 2.8 contain the correlation of the IIH corrected images
with the original image, for a collection of IIH corrupted images of increasing
distortion relative to the original image. In the figure, the x-axis corresponds to
the correlation between the original image and the corrupted image. The y-axis
corresponds to the correlation between the original image and the corrected image.
It can be appreciated that GradClassLeg systematically improves over the other
algorithms. These results confirm that the gradient descent approach assumed by
GradClassLeg is robust enough to estimate strong IHH fields.

2.4.2 Sensitivity analysis of GradClassLeg
The aim of the experiments reported in this section is to show the robustness of
the GradClassLeg algorithm against bad initializations of the intensity class means
estimations.

The experimental data is composed of two simulated brain MRI volumes [98]
obtained from the BrainWeb. Using the class information given in the site we
have masked out the pixels not belonging to the three classes of interest: WM,
GM, and CSF. We have also downsampled the volume to obtain a smaller vol-
ume to allow for extensive experiments. The GradClassLeg parameters are set
to αp = 0.01,αΓ = 0.1, and the maximum number of iterations allowed is 100.
Initial IIH field parameters estimation p̂ is set to zero. The initial intensity class
means Γ̂ are generated with uniform probability in the interval [0,100] and or-
dered in ascending order to preserve the meaning of the classes for visualization
and computation of validation indices purposes. The natural ascending order of
intensities is CSF, GM and WM. If this order corresponds to ascending number
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of class, the visualization will not need further labelling neither for the human
inspection nor for the computation of the Tanimoto index.

Figure 2.9: Average evolution of the Tanimoto coefficients for CSF, GM and WM
obtained over a simulated 20% IIH inhomogeneity brain volume.

The results show in the figures 2.9, 2.10, 2.12 and 2.13 are the evolution of
the Tanimoto coefficients values as the algorithm proceeds. The coefficients are
computed at each iteration step. Figures 2.9 and 2.12 present the averages of 50
experiments with different random initial means applying the equations (2.6) and
(2.7) once at each iteration to the volumes with 20% and 40% inhomogeneities,
respectively. It can be appreciated that the algorithm recovers from very bad initial
conditions up to acceptable results if we take into account that using the correct
intensity class means, computed using the class information from the model, the
Tanimoto coefficients obtained are between 0.92 and 0.94. Upon observation,
one working hypothesis is that random initial means that lie very close lead to bad
results. In figure 2.11 we present the plot of the the Tanimoto coefficients obtained
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Figure 2.10: Average Tanimoto coefficients for CSF, GM and WM obtained over
a simulated 20% IIH inhomogeneity brain volume. Gradient frequency 5:1 (see
text).
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Figure 2.11: Values of Tanimoto coefficients at iteration 100 versus minimum dis-
tance between initial class means. 250 instances of the execution of the algoritm.
Simulated 20% IIH inhomogeneity.

Figure 2.12: Average Tanimoto coefficients for CSF, GM and WM obtained over
a simulated 40% IIH inhomogeneity brain volume.
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Figure 2.13: Average Tanimoto coefficients for CSF, GM and WM obtained over
a simulated 40% IIH inhomogeneity brain volume. Gradient computation relative
frequency 5:1 (see text).
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at the end of each of 250 replicas against the minimum distance between the initial
means. It seems to confirm this intuition because low values of the intraclass
distance produce frequent bad results. Finally, in figures 2.10 and 2.13 we try to
test the effect of a more frequent mean estimation. The equation (2.7) was applied
five times for each computation of the IIH rule (2.6). It can be appreciated that the
results improve over the figures 2.9 and 2.12.

For a further quantitative evaluation of the performance of the algorithm, we
compute the misclassification rate (MCR) for the brain volumes corresponding to
3% noise and 0%, 20% and 40% inhomogeneity, performing comparisons with the
results reported in [107] for a variety of algorithms. These quantitative results are
presented in Table 2.1. FCM denotes the conventional fuzzy c-means algorithm.
FM -AFCM and TM-AFCM denote the full multigrid adaptive FCM algorithm
and the truncated multigrid adaptive FCM algorithm, respectively [124]. EM1
and EM2 denote the unsupervised EM algorithm for finite Gaussian mixture mod-
els, where EM1 refers to the standard model and EM2 refers to the model where
variances and mixture coefficients of the Gaussian components are assumed equal
[106]. AMRF denotes the adaptive Markov random field algorithm [174], [73].
MNI-FCM denotes the method where the N3 inhomogeneity correction technique
[149] from MNI is applied first, followed by FCM segmentation. AS-FCM de-
notes the adaptive spatial FCM algorithm [107]. From Table 2.1, we can see that
MCR increases with growing IIH level for all the methods. Our algorithm has
better performance than other pure unsupervised algoritms and it is competitive
with state-of-the-art algorithms despite its bad initialization and its unsupervised
nature. For 0% IIH level, the proposed algorithm has significantly better perfor-
mance than supervised and unsupervised methods. When studying the results in
Table 2.1 it must be taken into account that most works reported there work on
a 2D slice basis while our algorithm is a fully 3D algorithm. Besides, the re-
sults seem to refer to a single execution of the algorithm with well chosen initial
conditions, whereas the result that we report in Table 2.1 comes from a random
initialization.

Finally we provide some visual results that demonstrate our results visually.
Figure 2.14(a) shows an slice (z = 90) of the 3% noise and 20% IIH volume.
Figure 2.14(b) shows the corresponding class labeling in the true model. The
visual evaluation of the algorithm is given by the estimated bias field shown in
figure 2.15(a), and the classification obtained by our algorithm shown in figure
2.15(b). It can be appreciated that the algorithm provides state of the art results.
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(a) (b)

Figure 2.14: (a) Original coronal slice (z=90) of the 3% noise and 20% IIH vol-
ume, (b) class labelling in the simulation model of the same slice.

(a) (b)

Figure 2.15: Visual evaluation of the GradClassLeg: (a) Estimated bias slice
(z=90), (b) Estimated classification of the voxels for the slice of figure 2.14
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Method 0% IIH 20% IIH 40% IIH
FCM 3.988% 5.450% 9.016%
FM-AFCM 4.171% 4.322% 5.065%
TM-AFCM 4.168% 4.322% 4.938%
EM1 6.344% 7.591% 13.768%
EM2 4.242% 5.638% 9.604%
AMRF 3.876% 4.795% 6.874%
MNI-FCM 4.979% 4.970% 5.625%
AS-FCM 3.717% 3.676% 3.832%
GradClassLeg 3.43% 4.89% 6.56%

Table 2.1: MCR results for the GradClassLeg algorithm compared with results
reported in [107] for the simulated data.

2.4.3 Results on real brain data
We have applied the complete GradClassLeg algorithm to the collection of 20
complete head MRI scans from IBSR, which are provided with the expert manual
segmentations. We estimate both the IIH field and the intensity class means. The
Legendre polynomials are of order three. The gradient descent gain for the inten-
sity class means estimation was set to αΓ = 0.1, and that for the IIH field was
set to αp = 0.01. The head scan volumes are of size 256x256x64, however the
registration of the data volume and the manual segmentation implies discarding
some slices. Another minor inconvenient is that some other slices are severely
corrupted and can not be used. Figure 2.16 shows one slice of one original MRI
brain volume (Figure 2.16(a)) and the corresponding slice of the manual segmen-
tation (Figure 2.16(b)). The slice of the restored volume after correction with the
bias field estimation obtained by GradClassLeg is presented in figure 2.17(a) and
the corresponding slice of the classification volume appears in figure 2.17(b). In
figure 2.17(b) we show each voxel with the value estimated by GradClassLeg for
the corresponding intensity class mean. As these values do not coincide in general
with the visualization intensity coding values given to each class in [8], the images
in figures 2.17(b) and 2.16(b) show a minor difference in brightness. We perform
the classification into the GM and WM classes. To compare with results reported
in other sources (i.e., [111, 148, 127, 8]), we compute the Tanimoto coefficient.

Table 2.4.3 presents the average Tanimoto coefficients for GM and WM classes
over the IBSR collection, including the best result reported in the literature. The
GradClassLeg algorithm proposed here performs closely to the best results re-
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(a) (b)

Figure 2.16: A slice from a real MRI volume: (a) original image, (b) correspond-
ing manual segmentation. Brightest gray values correspond to WM voxels, inter-
mediate gray values to GM voxels and darkest gray (not black) to CSF voxels.

(a) (b)

Figure 2.17: Slice of the results of GradClasLeg applied on the volume repre-
sented by the slice in figure 2.16. (a) IIH corrected image, (b) classification image.
Brightest gray values correspond to WM voxels, intermediate gray values to GM
voxels.
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ported in the literature for this collection of MRI volumes. We have applied our
algorithm to estimate the CSF along with the GM and WM intensity mean classes,
performing the image classification into three classes. The accuracy decreases for
the latter classes (the Tanimoto coefficients are 0.4, 0.67 and 0.66 for CSF, GM
and WM classes, respectively), however these results can not be compared with
the results in the literature, because all the references found reported only classi-
fication accuracies on GM and WM classes.

Algorithm GM WM
Wells 0.564 0.567
BMAP 0.558 0.562
BFCM 0.630 0.709
Modified FCM [148] 0.750 0.724
GradClassLeg 0.745 0.732

Table 2.2: The average Tanimoto coefficients for GM and WM classes over the
IBSR collection between manual segmentation and the segmentation results of
GradClassLeg, BMAP, BFCM and Modified FCM for the real data.

2.5 Computational results for AFR
The scheduling of the neighboring function width follows the expression:

σ (t) = σ0

(
σf
σ0

)t/F
(2.29)

where σ0 is the initial width of the neighboring function, σf is its final value, t is
the iteration number and F is the speed of convergence to the final value of the
neighboring function width: after F iterations the width is set to its final value
∀t > F : σ (t) = σf . We have used this scheduling for the SOM parameters in
previous works [74, 78, 75] following some works on the optimization of k-means
algorithm [39].

Sometimes we give the classification results performing the classification based
on the means of the intensity classes without bias correction. We denote them
BGAUSS in the tables and figures. This approach corresponds to the basic su-
pervised classification results, which we expect to be improved upon by the bias
correction and adaptive intensity class means estimation.
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2.5.1 Experiments on real brain data
To start with, we apply the bare AFR to the collection of real brain datasets ob-
tained from the IBSR.

The mean intensities were computed according to the manual segmentation.
The factor F was set to F = 1. This value of the convergence factor implies
that there will be few iterations with the final neighborhood width and that its
variation will be close to linear and far from an exponential decay. The initial
value of the neighboring function parameter was always set to σ0 = 30. The
number of iterations was always 20. The slices of the volumes were processed
independently, and the result given is the average over all the volume.

The figures 2.18, 2.19 and 2.20 show the plot of the Tanimoto coefficients for
the CSF, GM and WM for each one of the brain datasets tested. The abscissa axis
labels correspond to the identification of the image in the IBSR site. The results
for the AFR were obtained with a σf = 15. The remaining algorithm results were
extracted from the IBSR site. For the CSF, the results are very good and above
the results reported in the IBSR site. However, the CSF is a very scarce class
that many works omit in their reports. Examination of the figures 2.19 and 2.20
show that our approach gives results comparable to the state of the art algorithms.
One remarkable feature of our approach is that it gives more steady results across
datasets: it maintains an average performance for GM and WM detection for some
datasets for which the remaining algorithms have a big drop of performance.

The figure 2.21 shows an slice from one of the brain datasets and its manual
segmentation as provided by the IBSR site. The figure 2.22 shows the estimated
IIH field for this slice and the corrected image, obtained dividing the original
T1-weighted image by the estimated IIH field. Figure 2.23 shows the automated
segmentation of the corrected dataset. For a more precise evaluation of the sources
of error, we show in figure 2.24 the voxels corresponding to each class in the
original and the AFR segmented dataset. We have cropped the air around brain
volumes to reduce the computational cost. It can be appreciated that a great source
of error for the CSF and GM classes are the GM voxels at the contour of the brain.
There the existence of voxels corresponding to air in the neighborhood introduces
some boundary effects. It can also be appreciated that tissue boundaries of WM
are confused with GM. Another source of error for the CSF and GM classes are
the ventricles: figure 2.24(d) shows that many ventricle voxels are classified as
GM, while it can be appreciated in figure 2.21(a) that their intensity is close to
that of the GM voxels. This confusion suggest that a priori spatial information
could be of great use for this process.
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Figure 2.18: Plot of the Tanimoto coefficients of the CSF classification for all the
real images treated. AFR parameters F = 1, σ0 = 30, σ0 = 15, α = 0.5, 20
iterations.
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Figure 2.19: Plot of the Tanimoto coefficients of the GM classification for all the
images treated. AFR parameters F = 1, σ0 = 30, σ0 = 15, α = 0.5, 20 iterations.
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Figure 2.20: Plot of the Tanimoto coefficients of the WM classification for all the
images treated. AFR parameters F = 1, σ0 = 30, σ0 = 15, α = 0.5, 20 iterations.



CHAPTER 2. MRI INTENSITY INHOMOGENEITY CORRECTION 57

Table 2.3 gives the summary Tanimoto coefficient results comparing the AFR
with the state of the art results reported in the IBSR site. We have computed the
means withdrawing the dataset that we were unable to match with its manual seg-
mentation. In this table the results of the AFR were obtained with σf = 0.01.
The results are comparable to that of the state of the art algorithms, with some
improvement on the WM. Table 2.4 shows the effect of changing some of the al-
gorithm parameters. In this table, GTM denotes that the intensity class means
were computed using the manual segmentation, PM denotes that the intensity
class mean values were random perturbations around the nominal ones, and ME
denotes that the intensity class mean values were estimated applying one k-means
step after each iteration of the bias estimation process. The reference result is the
one presented in table 2.3, with σf = 0.01. Changing the final neighboring func-
tion standard deviation to σf = 15 gives some improvement on the CSF and the
WM classes. This result is quite interesting, because it is against the conventional
application of the neighboring shrinking scheduling. It seems that for this prob-
lem, a final neighborhood size (much) greater than the null neighborhood is more
convenient to ensure smoothness and to avoid the trivial setting of the bias to the
voxel residual relative to the closest class intensity mean. When we perturb the
intensity class means there is a general decrease of the results. Finally, performing
the estimation of the intensity class means after each iteration of the bias estima-
tion does produce improvements on the CSF and WM classes but a decrease in
the GM class.

(a) (b)

Figure 2.21: (a) Original T1-weighted coronal slice of a volume from IBSR 20
normal brain data set, and (b) its corresponding manual segmentation.
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(a) (b)

Figure 2.22: Coronal slices of the (a) estimated IIH volume and (b) IIH corrected
volume, corresponding to figure 2.21(a) after AFR correction.

Figure 2.23: Segmentation corresponding to the coronal slice shown in figure
2.21(a) computed on the IIH corrected slice shown in figure 2.22(b).

Methods CSF GM WM
Adaptive MAP[127] 0,0697 0,5588 0,5611
Biased MAP[127] 0.0714 0.5527 0.5559

Fuzzy c-means [18] 0.0484 0.4698 0.5608
Maximum A Posteriori Probability (MAP) 0.0714 0.5452 0.5473

Maximum-Likelihood (MLC) 0.0631 0.5317 0.5444
Tree-structure k-means 0.0499 0.4742 0.5653

Adaptive Field Rule (AFR) 0.0918 0.5570 0.5867

Table 2.3: Summary Tanimoto coefficient results for the AFR compared with re-
sults, from the IBSR site, of various algorithms.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.24: Manual segmentation of the coronal slice shown in figure 2.21(a)
into (a) CSF , (c) GM and (e) WM, and corresponding segmentation after AFR
IIH correction into (b) CSF, (d) GM and (f) WM, extracted from the image in
figure 2.23.
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AFR settings CSF GM WM
σf = 0.01, GTM 0.0918 0.5570 0.5867
σf = 15, GTM 0.1653 0.5427 0.6474
σf = 0.01, PM 0.1838 0.5286 0.6072
σf = 15, PM 0.1561 0.5436 0.6503
σf = 0.01, ME 0.2121 0.4981 0.6153
σf = 15, ME 0.2229 0.5273 0.6319

Table 2.4: Sensitivity of Tanimoto coefficient results of AFR.

2.5.2 Experiments on a simulated brain phantom
We have applied the bare AFR and the unsupervised mean estimation algorithm
AFR-U to the segmentation of two simulated brain MRI volumes obtained from
the BrainWeb. For the bare AFR, the intensity class means are computed as the
intensity class means according to the manual segmentation. When we perform
the intensity class means unsupervised estimation, applying AFR-U as defined by
equation (2.24) the initial values are computed with the k-means algorithm. The
factor F was set to F = 1. The initial value of the neighboring function parameter
was set to σ0 = 30 for the images with 40% IIH and to σ0 = 15 for the images
with 20%IIH. The number of iterations was 30.

The table 2.5 presents the results of the basic supervised Gaussian classifier
(BGAUSS), the AFR and the unsupervised AFR-U. Each table entry contains the
triplet of Tanimoto coefficients for the CSF, GM and WM tissue classes. It can
be appreciated that the proposed approach improves over the BGAUSS classi-
fier, and that this improvement is more clear for the strongest IIH field, that is,
improvements are greater for the 40% IIH volumes than for the 20% IIH volumes.

Besides, the unsupervised intensity mean estimation computed with AFR-U
introduces further improvements. The Tanimoto coefficient for the CSF follows
a curious pattern, it is lower in the results obtained by the AFR and AFR-U al-
gorithms than in the BGAUSS supervised approach for low additive noise levels.
However, as the additive noise increases, the results are better for AFR and AFR-
U than for BGAUSS.

Figure 2.25 shows the classification results for a coronal slice of the 40% IIH
brain volume. The figure 2.25(a) shows the original slice image extracted from
the volume. The figure 2.25(b) shows the distribution of CSF, GM and WM in the
anatomic model used for the generation of the simulated data which is the gold
standard for the image segmentation. This information has been used as a mask to
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perform the brain extraction to obtain the brain shown in figure 2.25(a). The result
of classification after IIH correction with the bias estimated by the AFR algorithm
is shown in figure 2.25(c). The result of slice classification into CSF, GM and WM
after intensity class means estimation and IIH correction by the AFR-U algorithm
is shown in figure 2.25(d). There are very small differences between both AFR
and AFR-U results and, between them and the gold standard.

%IIH, %noise BGAUSS AFR AFR-U
20, 0 (0.95, 0.88, 0.92) (0.94, 0.89, 0.92) (0.94, 0.90, 0.94)
20, 3 (0.94, 0.85, 0.90) (0.93, 0.84, 0.92) (0.93, 0.89, 0.93)
20, 5 (0.86, 0.80, 0.86) (0.87, 0.82, 0.88) (0, 88, 0.86, 0.90)
20, 7 (0.81, 0.73, 0.81) (0.82, 0.79, 0.85) (0.83, 0.80, 0.86)
20, 9 (0.76, 0.66, 0.77) (0.78, 0.70, 0.79) (0.80, 0.76, 0.80)
40, 0 (0.91, 0.79, 0.85) (0.89, 0.83, 0.90) (0.89, 0.85, 0.92)
40, 3 (0.90, 0.78, 084) (0.89, 0.81, 0.89) (0.88, 0.83, 0.91)
40, 5 (0.84, 0.74, 0.82) (0.88, 0.77, 0.86) (0.86, 0.77, 0.87)
40, 7 (0.78, 0.65, 0.79) (0.82, 0.67, 0.81) (0.82, 0.67, 0.81)
40, 9 (0.73, 0.55, 0.75) (0.75, 0.59, 0.75) (0.76, 0.59, 0.75)

Table 2.5: Tanimoto coefficients for CSF, GM and WM tissue classes obtained on
the BrainWeb. The simulated phantom has been corrupted with additive noise and
IIH.

2.5.3 Some results on intensity class means estimation
To explore the simultaneous estimation of the IIH field and the intensity class
means we have used the IBSR V2.0 collection of brain volumes, the 1.5mm data
distribution, which is more recent than the collection used for the experiments
in section 2.5.1. The data description mentions that an intensity inhomogeneity
correction process has been realized on the data, therefore the expected results of
AFR are the local features like partial volumes.

In figure 2.26 we have coronal slices of two brain MRI volumes from the IBSR
V2.0 collection. It must be noted that they have been normalized in position, but
that their sizes are quite different, they have not been subjected to nonlinear regis-
tration to a common template or atlas references. Their respective ground truth for
classification are given by the manual segmentation into CSF, GM and WM shown
in figure 2.27. A coronal slice in the same position as the ones shown in figure
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(a) (b)

(c) (d)

Figure 2.25: Classification results for one coronal slice of the simulated brain
phantom volume with 40% Intensity Inhomogeneity from the BrainWeb site. (a)
original skull stripped slice, (b) tissue distribution in the anatomic model provid-
ing the classification ground truth, (c) classification after IIH estimation and cor-
rection with AFR, (d) classification after IIH and intensity class means estimation
with AFR-U.
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2.26 of the crisp atlas used by the algorithm AFR-A of equation (2.25), obtained
from the image manual segmentations by majority voting on each voxel, is shown
in figure 2.28. The differences in brain sizes produce an extended GM region in
the crisp atlas, covering the GM regions of both small and bigger brains. The
probabilistic atlases for CSF, GM and WM, estimated from the volume manual
segmentations, used by AFR-PA of equation (2.26) are presented in figure 2.29.
The variability of brain sizes produces a thick strip in the probabilistic GM atlas,
and a star like shape in the probabilistic WM atlas. Finally, figure 2.30 shows the
segmentation results obtained with AFR-U, AFR-A, AFR-PA and AFR-S from
the k-means initialization.

(a) (b)

Figure 2.26: Original coronal slices of real MRI brain volumes from IBSR V2.0
collection.

Table 2.6 shows the average Tanimoto coefficients for the CSF, GM and WM
over the collection of brain volumes. We call BGAUSS the results obtained with
the Basic Gaussian classifier using the manual segmentation of each volume as the
ground truth to compute the tissue means. The GT denote that the AFR variants
are initialized with those means while KM denotes that the algorithms start from
the means estimated by the k-means algorithm. The main conclusion that can
be obtained from the table is that results are very poor in general. The standard
application of AFR, assuming the manual segmentation intensity class means,
barely improves the Gaussian supervised classifier. That can be due to the data
being already intensity normalized. The AFR assuming the k-means initialization
is very poor for the CSF and GM classes. The unsupervised estimation of the
means performed by AFR-U does not improve the results any further. The crisp
atlas used by the AFR-A seems to be of some help but the results do not improve
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(a) (b)

Figure 2.27: Manual segmentation into CSF, GM and WM of the slice images in
figure 2.26.

Figure 2.28: Crisp atlas obtained from the manual segmentations of the IBSR v2.0
collection, by majority voting at each voxel. Coronal slice in the same position as
those in figure 2.26.
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(a)

(b)

(c)

Figure 2.29: Probabilistic atlases for (a) CSF, (b) GM and (c) WM computed from
the manual segmentation of the volumes in the IBSR v2.0 collection. Coronal
slices corresponding to those in figure 2.26.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.30: Classification into CSF, GM and WM by the (a,b) AFR-U, (c,d)
AFR-A, (e,f) AFR-PA and (g,h) AFR-S. Coronal slices corresponding to the ones
shown in figure 2.26.
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much on the bare AFR with ground truth initialization. It can be interpreted as
the AFR-A being able to use collective a priori spatial distribution information
to obtain results comparable to the knowledge of the manual segmentation for
the computation of the intensity class means. The AFR-PA that uses the spatial
information from the probabilistic atlas, on the other hand, does not give good
results (and was tricky to tune to convergence). Finally, the supervised approach
does not give the expected improvement.

The use of spatial distribution atlases holds many promises, but also hides
many traps. The unsupervised segmentation of the images has severe limits,
as many voxels from one tissue will have intensity values close to that of other
classes. Having some spatial information about the distribution of tissues seems
the sure way to solve the problem. But to compute this spatial distribution and
to obtain the desired atlas we need either to have a way to spatially normalize
the volumes without introducing much distortion, or to select very precisely the
population of images from which the atlas will be computed. In the case at hand,
the variation in brain size introduces some undesirable structures in the crisp and
probabilistic atlases, because we have built them without taking into account that
the size conditions the spatial distribution. Templates reported in the literature are
built on the intensity domain, not upon the manual segmentations. Warping classi-
fication images is a technique unheard of. Performing linear scale transformation
may pose problems, because we are dealing with discrete class information. Ap-
proaches reported in the literature that use some kind of template or atlas, need to
be taken with a precise definition of the population the atlas was derived from.

The examination of the manual segmentation gives an explanation for these
results. Comparison of the segmentations shown in figure 2.27 with the BrainWeb
model shown in figure 2.25(b) allows to appreciate that some inner brain regions
that are classified as WM in the BrainWeb model are systematically classified as
GM in the IBSR manual segmentations. The intensity values in these regions
seem to correspond to WM voxels. We think that there is a systematic error in the
manual segmentation that is reflected in the very low values of BGAUSS and the
supervised AFR-S entries in table 2.6.

2.6 Conclusions
Because the PhD Thesis works reported in this chapter deal with two quite differ-
ent and complementary approaches and results are rather disjoint, we will separate
the conclussions into two subsections devoted to each approach. Although it has
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CSF GM WM
BGAUSS 0.09 0.62 0.70
AFR GT 0.12 0.62 0.71
AFR KM 0.06 0.52 0.71

AFR-U GT 0.10 0.58 0.68
AFR-U KM 0.06 0.52 0.71
AFR-A KM 0.11 0.62 0.71
AFR-PA KM 0.07 0.52 0.72
AFR-S GT 0.16 0.63 0.67
AFR-S KM 0.12 0.64 0.71

Table 2.6: Average Tanimoto coefficients over the IBSR V2.0 collection of brain
volumes of intensity class mean estimation approaches combined with AFR.

been commented several times along the chapter, we feel necessary to emphasize
here the complementary nature of both approaches. In summary, GradClassLeg
parametric modeling approach makes it better suited for problems with global
smooth variations of the IIH, while the non-parametric nature of AFR makes it
better suited for the detection of local IIH features in MRI data, such as partial
volume effects.

2.6.1 GradClassLeg
We have presented a parametric gradient descent IIH correction algorithm called
GradClassLeg, which assumes that the IIH field model is a linear combination
of outer products of 1D Legendre polynomials. Our approach estimates both the
IIH model parameters and the intensity class means. We have discussed the ad-
vantages of the proposed algorithm and the conditions for its convergence to the
global minima. The GradClassLeg has been tested and compared with three other
state of the art algorithms found in the literature: BMAP, Wells’ EM algorithm
and the BFCM algorithm. The intensity restoration results of GradClassLeg over
a set of MRI images corrupted with simulated IIH fields, synthesized as random
products of Legendre polynomials, confirm that the approach is robust enough
to estimate strong IIH fields. Further work can be addressed to computational
experiments with other synthetic IIH field models to assess these results, includ-
ing more realistic IIH models. In this chapter we have show that GradClassLeg
can be very robust against bad initial estimations of the intensity class means.
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These experiments will be extended using other real life images available, with
the inconvenience of the uncertainty added by the manual segmentations. The
robustness of the algorithm makes it a good candidate to explore situations with
less a priori information, when there are anomalies (i.e., tumorous tissues) where
unsupervised segmentation can be useful to detect the unknown image structures.

On the computation time side, GradClassLeg can be faster than the other algo-
rithms because the gradient computation is faster than the convolutions required
by the other algorithms, if the basis of products of Legendre polynomials are pre-
computed. The GradClassLeg also performed better than the other algorithms
over a set of real brain scans obtained from the IBSR, giving state of the art re-
sults.

GradClassLeg demonstrates the power of parametric approaches to IIH cor-
rection in MRI images. However, the classification component of this algorithm
is rather naive. It can be expected that the results could improve if the proposed
parametric IIH field estimation is combined with more sophisticated classification
schemes, allowing even for the detection of the number of tissue classes in the im-
age, a feature desirable for the detection of anomalous or pathologic conditions.
This direction seems a natural and promising path to continue the PhD Thesis
works reported in this chapter.

2.6.2 AFR
We have proposed an Adaptive Field Rule (AFR), which is the gradient descent
of an energy function, for IIH field estimation in MRI. Our approach is based on
a topological preservation formulation of the smoothness constraint on the IIH
field. The proposed estimation rule is very similar to the SOM rule. The steady
states of the adaptive rule satisfy some smoothness characterizations that allow
assuming them as appropriate representations of the IIH fields in the image, min-
imizing the effect of partial volume and other sources of noise in the estimation
of the IIH field. We have tested the approach on a benchmark set of real life
brain images. The results show that AFR gives state of the art results, under the
assumption of the knowledge of the intensity class means. We have proposed
and discussed several ways to perform the estimation of the intensity class means
along with the AFR IIH field estimation. On a simulated brain phantom we obtain
better results with stronger intensity inhomogeneities. Combining AFR with the
unsupervised learning of the intensity class means we consistently improve the
AFR results on this brain phantom. When testing the use of spatial distribution
atlases on the newest IBSR collection of brain datasets, computed from the man-
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ual segmentations, and the supervised learning the results are quite inconsistent,
and disappointing. The positive result is that we find that the use of the crisp atlas
by AFR-A can give results comparable to the Gaussian supervised classifier. On
a closer inspection of both results and manual segmentation images, we find that
the manual segmentation published in the ISBR site can be a source of error, both
for the construction of supervised classifiers and for the evaluation of supervised
and unsupervised approaches. Some of the regions that are consistently classified
as Gray Matter in the IBSR manual segmentations correspond to White Matter in
comparable segmentations of the BrainWeb phantom. This may, at least partially,
account for the poor results found by our attempts to apply AFR and the intensity
class means estimation algorithms to this data.



Chapter 3

On the detection of Alzheimer’s
disease

In this chapter we will report on the works we have done to evaluate the feasibility
of the early detection of Alzheimer’s disease (AD) on the basis of the analysis of
structural MRI brain data using Machine Learning tools. In summary, we use
morphometric tools to select the brain regions that may serve us to extract the
features upon which the classifiers could be built.

We will introduce the motivation of the work in section 3.1, including a review
of the approaches that we have found in the literature dealing with this problem.
In section 3.2 we give a summarized description of the process followed. Section
3.3 gives a description of the subjects under study. Feature extraction details are
explained in section 3.4. Section 3.5 contains a brief overview of the classifica-
tion systems used in this study, while a more formal definition has been collected
in Appendix B for the sake of completeness. We discuss classifier performance
indices for validation in section 3.6. Computational results are given in section
3.7.

3.1 Motivation of the work
Alzheimer’s disease (AD) is a neurodegenerative disorder, which is one of the
most common cause of dementia in old people. Currently, due to the socio-
economic importance of the disease in western countries it is one of the most
studied. The diagnosis of AD is done after the exclusion of other forms of de-
mentia but definitive diagnosis can only be made after a post-mortem study of the

71
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brain tissue. This is one of the reasons why MRI based early diagnosis is a current
research goal in the neurosciences.

There are studies applying Support Vector Machine (SVM) either with linear
[128, 177, 93, 165] or nonlinear [53, 101] kernels, to discriminate AD patients
from controls based on Positron Emission Tomography (PET), Single-Photon
Emission Tomography (SPECT) functional volumes [128, 140, 64, 19] or stud-
ies that combine structural and functional information such as [52], where sMRI
and PET volumes are used.

The use of Artificial Neural Networks (ANNs) and Voxel-Based Morphometry
(VBM) for AD detection have been reported in [86], where a single three-layer,
feed-forward ANN trained with a backpropagation algorithm was used as a clas-
sifier over a small set of unpublished proprietary sMRI data. They perform data
dimensionality reduction applying a PCA to improve the efficiency of the clas-
sifier. Also in [47] ANNs (multilayer perceptrons, polinomial nets and Kohonen
LVQ classifiers) are used, but in this case they have analyzed three Diffussion
weighted MR (DWI) images for the evaluation of CSF volume and its correlation
with the advance of AD.

There are different ways to extract features from MRI for SVM classification:
based on morphometric methods [43, 53, 177, 86], based on ROIs/VOIs (regions-
of-interest/volumes-of-interest) [109, 101, 64] or GM voxels in automated seg-
mentation images [93]. There are also studies to understand the improvement in
the SVM classifier by adding covariates such as demographic or genotype infor-
mation [165]. Work has also been reported on the selection of a small set of the
most informative features for classification, such as the SVM-Recursive Feature
Elimination [53], the selection based on statistical tests [109, 128], the wavelet
decomposition of the RAVENS maps [101], among others. The approach applied
in this study is to use the VBM detected clusters of significant voxels as a mask on
the MRI and GM segmentation images to select the potentially most discriminat-
ing voxels. Feature vectors for classification are either the voxel values or some
summary statistics computed over the voxels of each cluster. We both consider
the feature vector computed from all the VBM clusters and the combination of
the individual classifiers built from the clusters independently.

3.2 Summarized description of the process
Morphometry analysis has become a common tool for computational brain anatomy
studies. It allows a comprehensive measurement of structural differences within
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or across groups, not only in specific structures but throughout the entire brain.
Voxel-based morphometry (VBM) is a computational approach to neuroanatomy
that measures differences in local concentrations of brain tissue, through a voxel-
wise comparison of multiple brain images [20]. The procedure involves the spa-
tial normalization of subject images into a standard space, segmentation of tissue
classes using a priori probability maps, smoothing to correct noise and small vari-
ations, and voxel-wise statistical tests. Statistical analysis is based on the General
Linear Model (GLM) to describe the data in terms of experimental and confound-
ing effects, and residual variability. Classical statistical inference is used to test
hypotheses that are expressed in terms of GLM estimated regression parameters.
The computation of a given contrast provides a Statistical Parametric Map, which
is thresholded according to the Random Field Theory. The result of the SPM
analysis for VBM is the identification of clusters of voxels that show significant
effects.

Machine Learning methods have become very popular to classify functional
or structural brain images to discriminate them into two classes: normal subjects
or subjects with a specific neurodegenerative disorder. To solve this task we have
applied:

• Support Vector Machine (SVM) classifiers with a linear and a nonlinear
(RBF) kernel

• Artificial Neural Networks (ANN) classifiers

– The Backpropagation of errors algorithm (BP) training the Feedfor-
ward Networks (sometimes called Multilayer Perceptron),

– Radial Basis Networks (RBF),

– Learning Vector Quantization (LVQ) and

– Probabilistic Neural Networks (PNN).

• Combinations of classifiers

– Simple majority voting,

– Weighted individual SVM

– Adaptive Boosting (AdaBoost).
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A flow chart of the whole detection process is shown in figure 3.1. The VBM
process is illustrated in the box embedded in the figure. The sMRI volumes are
spatially normalized, then the GM is segmented, the resulting segmentation image
is modulated to account for effects of the spatial normalization and smoothed, then
the General Linear Model (GLM) is solved with a design matrix that may include
some covariates besides the indicative variables, and, finally, statistical inference
is applied to obtain the Statistical Parametric Map and the clusters of significant
voxels. More detail on VBM is given in Appendix D. The VBM is applied to the
set of sMRI volumes used for the experiment. The locus of clusters of significant
voxels are used to extract classification feature vectors which are used to train
and validate the classification systems build with the above mentioned Machine
Learning techniques.

3.3 Subjects
Many of the classification studies on the detection of AD were done over popu-
lations mixing men and women. However, this mixture of populations does not
seem wise as it has been demonstrated that brains of women are different from
men’s to the extent that it is possible to discriminate the gender via MRI analysis
[101]. Moreover, it has been shown that VBM is sensitive to the gender differ-
ences. For these reasons, we have been very cautious in the selection of these
subjects for this study. We have selected a set of 98 MRI women’s brain volumes.
It must be noted that this is a large number of subjects compared with many of the
studies referred in the state of the art published works.

Ninety eight right-handed women (aged 65-96 yr) were selected from the
Open Access Series of Imaging Studies (OASIS) database [12, 110]. OASIS data
set has a cross-sectional collection of 416 subjects covering the adult life span
aged 18 to 96 including individuals with early-stage AD. We have ruled out a set
of 200 subjects whose demographic, clinical or derived anatomic volumes infor-
mation was incomplete. For the present study there are 49 subjects who have been
diagnosed with very mild to mild AD and 49 nondemented. A summary of subject
demographics and dementia status is shown in table 3.1.

3.3.1 Imaging Protocol
The OASIS database has been built following a strict imaging protocol, to avoid
variations due to imaging protocol which would pose big image normalization
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Figure 3.1: Flow chart of the classification process
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Very mild to mild AD Normal
No. of subjects 49 49

Age 78.08 (66-96) 77.77 (65-94)
Education 2.63 (1-5) 2.87 (1-5)

Socioeconomic status 2.94 (1-5) 2.88 (1-5)
CDR (0.5 / 1 / 2) 31 / 17 / 1 0

MMSE 24 (15-30) 28.96 (26-30)

Table 3.1: Summary of subject demographics and dementia status. Education
codes correspond to the following levels of education: 1 less than high school
grad., 2: high school grad., 3: some college, 4: college grad., 5: beyond college.
Categories of socioeconomic status: from 1 (biggest status) to 5 (lowest status).
MMSE score ranges from 0 (worst) to 30 (best).

problems. Multiple (three or four) high-resolution structural T1-weighted magnetization-
prepared rapid gradient echo (MP-RAGE) images were acquired [58] on a 1.5-T
Vision scanner (Siemens, Erlangen, Germany) in a single imaging session for each
subject. Image parameters: TR= 9.7 msec., TE= 4.0 msec., Flip angle= 10, TI=
20 msec., TD= 200 msec., 128 sagittal 1.25 mm slices without gaps and pixels
resolution of 256×256 (1×1mm).

3.4 Feature extraction
We have tested three different feature extraction processes, based on the voxel
location clusters obtained from the VBM analysis:

1. The first feature extraction process computes the ratio of GM voxels to the
total number of voxels of each voxel location cluster.

2. The second feature extraction process computes the mean and standard de-
viation of the GM voxel intensity values of each voxel location cluster.

3. The third feature extraction process computes a very high dimensional vec-
tor with all the GM segmentation values for the voxel locations included in
each VBM detected cluster. The GM segmentation voxel values were or-
dered in this feature vector according to the coordinate lexicographic order.

We denote these features as GMR, MSD and VV, respectively in the result tables
below.
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To perform the VBM analysis we have used the average MRI volume for each
subject, provided in the OASIS data set. These images are already registered and
re-sampled into a 1-mm isotropic image in atlas space and the bias field has been
already corrected [110]. The Statistical Parametric Mapping (SPM5) [13] was
used to compute the VBM which gives us the spatial mask to obtain the clas-
sification features. Images were reoriented into a right-handed coordinate sys-
tem to work with SPM5. The tissue segmentation step does not need to perform
bias correction. We performed the modulation normalization for GM, because we
are interested in this tissue for this study. We performed a spatial smoothing be-
fore performing the voxel-wise statistics, setting the Full-Width at Half-Maximum
(FWHM) of the Gaussian kernel to 10mm isotropic. A GM mask was created from
the average of the GM segmentation volumes of the subjects under study. Thresh-
olding the average GM segmentation, we obtain a binary mask that includes all
voxels with probability greater than 0.1 in the average GM segmentation volume.
This interpretation is not completely true, since the data is modulated, but it is
close enough for the mask to be reasonable. We designed the statistical analysis
as a Two-sample t-test in which the first group corresponds with AD subjects. In
SPM software terms: the contrast has been set to [-1 1], a right-tailed (groupN >
groupAD), correction FWE, p-value=0.05. The VBM detected clusters are used
for the feature extraction for the classification procedures.

3.5 Overview of the Machine Learning Systems
In this section we comment on the Machine Learning techniques used to build
the classification systems that we have evaluated for their suitability for AD de-
tection based on the feature vectors extracted from the sMRI data. Further detail
is given in Appendix B. Figure 3.2 shows a graphic overview of these classifica-
tion systems. The single classifiers are the statistical SVM and the various ANN
architectures. Some of these single classifiers haven used as building blocks for
meta-systems that follow different strategies to combine weak single classifiers
into an improved combined meta-classifier. Namely we used the nonlinear kernel
SVM for this combination strategies. The two basic strategies for the combination
of classifiers, one based on local classifiers for each VBM detected cluster and the
other based on the construction of various global weak classifiers, have applied to
the single classifiers as specified in the figure.
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Figure 3.2: Classification Systems



CHAPTER 3. ON THE DETECTION OF ALZHEIMER’S DISEASE 79

3.5.1 Support Vector Machines
The Support Vector Machines (SVMs) have attracted attention from the pattern
recognition community [64, 159, 129] owing to a number of theoretical and com-
putational merits derived from [163]. SVM separates a given set of binary labelled
training data with a hyperplane that is maximally distant from the two classes
(known as the maximal margin hyperplane). The objective is to build a discrimi-
nating function using training data that will correctly classify new examples (x, y).
When no linear separation of the training data is possible, SVMs can work effec-
tively in combination with kernel techniques using the kernel trick, so that the
hyperplane defining the SVMs corresponds to a nonlinear decision boundary in
the input space that is mapped to a linearised higher- dimensional space [163]. In
this way the decision function can be expressed in terms of the support vectors
only:

f (x) = sign
(∑

αiyiK (si,x) + w0

)
where K(., .) is a kernel function, αi is a weight constant derived from the

SVM process and the si are the support vectors [163].

3.5.2 Artificial Neural Networks
The Artificial Neural Networks (ANNs) applied in this study were the Feedfor-
ward Networks (sometimes called Multilayer Perceptron) trained with the Back-
propagation of errors algorithm (BP), Radial Basis Networks (RBF), Learning
Vector Quantization (LVQ) and Probabilistic Neural Networks (PNN).

Backpropagation

Backward propagation of errors or Backpropagation (BP) [138, 83, 82] is a su-
pervised learning method. It is a nonlinear generalization of the squared error
gradient descent learning rule for updating the weights of the artificial neurons in
a single-layer perceptron, generalized to feed-forward networks. BP requires that
the activation function used by the artificial neurons (or "nodes") is differentiable
with its derivative being a simple function of itself. The BP allows to compute the
gradient of the error function relative to the hidden units, and, thus, to perform the
hidden unit weight estimation by gradient descent in the same manner as it is per-
formed for the output units. Backpropagated errors are analytically derived using
the classical calculus chain rule. In on-line learning the weights of the network
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are updated at each input data item presentation. We have used the resilient back-
propagation version, which uses only the derivative sign to perform the weight
updating.

Radial Basis Function Networks

Radial Basis Function (RBF) networks [38] are ANNs that use RBFs as activation
functions. RBF consist of a two layer neural network, where each hidden unit
implements a radial activated function. The output units compute a weighted
sum of hidden unit outputs. Training consists of the unsupervised training of
the hidden units followed by the supervised training of the output units’ weights.
Unsupervised training of the hidden units can be performed by any clustering
method, including k-means, so that many alternatives have beed proposed in the
literature. The training of the output units weights is a simple linear gradient
descent on the error function.

Probabilistic Neural Networks

A Probabilistic Neural Network (PNN) [153] is a special type of neural network
that uses a kernel-based approximation to form an estimate of the probability den-
sity function of categories in a classification problem. To compute the response of
the network to a given input, we compute distance from the input point to each of
the known input points in the training sample data, and the kernel function is ap-
plied to the distance to compute the influence of each sample point in the response
to the unknown input. The most usual kernel functions are RBFs.

Different types of RBFs could be used, but the most common is the Gaussian
function. The sigma parameter of the function determines the spread of the RBF;
that is, how quickly the function declines as the distance increases from the point.
With larger sigma values the function has more spread, so that distant points have
a greater influence. PNN are a kind of Nearest Neighbor classifier that uses all the
data samples as reference values, the only functional transformation is the com-
putation of the posterior probability of the classes as a combination (sum/average)
of the evidence given by each data sample through its RBF window.

The tuning of a PNN network depends on selecting the optimal sigma value of
the spread of the RBFs. In this paper an exhaustive search for the optimal spread
value in the range (0, 1) for each training set has been done. The results shown in
Table 3.12 correspond to the best spread value found.
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Learning Vector Quantization

Learning vector quantization (LVQ) [94, 151] provides a method for training com-
petitive layers in a supervised manner. The system is composed of an unsupervis-
edly trained competitive layer which performs a partitioning of the input space.
The supervisedly trained output layer provides the labeling of the input data ac-
cording to its belonging to an input region (crisp clustering) or to its degree of
membership (soft clustering). In the original proposition of the LVQ, the com-
petitive units were cluster centers with the Euclidean distance as the similitude
measure. Training of the competitive units can be performed by Kohonen’s Self
Organizing Map. Supervised training was simply the assignment of a label to a
competitive unit according to a majority voting on the data samples falling in the
partition corresponding to the unit.

LVQ provides fine tuning of the competitive units using class information.
The basic versions proposed by Kohonen are known as the LVQ1 and LVQ2.
Both start with the unsupervised learning of the competitive units, and its initial
majority voting labeling.

In the LVQ1 a supervised training is performed as follows: for each data sam-
ple we compare its label with the one of its corresponding competitive unit, if
the labels match (the data item is correctly classified) then the competitive unit is
moved towards the input data sample, otherwise it is moved in the opposite direc-
tion. This rule may cause an unstable and oscillatory behavior if the discriminant
boundary among classes is very complex.

The LVQ2 rule is proposed to improve the learning, sometimes it is recom-
mended to apply it after the LVQ1. In LVQ2, for each input data sample we
find the two closest competitive units. If one correctly classifies the input and the
other belongs to a wrong class, and the input data lies in a window around the mid-
plane between them, then the correct class unit is moved towards the input and the
incorrect unit is moved away from the input. We have used the simplest imple-
mentations. Other variations using different similitude measures and algorithms
to assign the labels to the output units, can be found in the literature.

3.5.3 Combination of single classifiers
Diverse Adaptive Boosting

Adaptive Boosting (AdaBoost) [146, 62] is a meta-algorithm for machine learning
that can be used in conjunction with many other learning algorithms to improve
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their performance. AdaBoost is adaptive in the sense that subsequent classifiers
built are tweaked in favor of those instances misclassified by previous classifiers.
AdaBoost is sensitive to noisy data and outliers. Otherwise, it is less susceptible
to the over-fitting problem than most learning algorithms.

AdaBoost calls a weak classifier repeatedly in a series of rounds t = 1, ..., T .
For each call a distribution of weights Wt = {wti} is updated and indicates the
importance of examples in the data set for the classification. On each round,
the weights of each incorrectly classified example are increased (or alternatively,
the weights of each correctly classified example are decreased), so that the new
classifier focuses more on the wrongly classified examples.

Following these ideas, we have tested a combination of SVM classifiers along
the ideas from the Diverse AdaBoost SVM [105], presented as Algorithm 3.1.
In this approach we built a sequence of SVM classifiers of increasing variance
parameter. The results of the classifiers are weighted according to their statistical
error to obtain the response to the test inputs in the 10-fold validation process.

We have applied this approach only to the SVM as the single classifier building
blocks.

Combination of independent classifiers built for each cluster

We have considered two ways to combine the independent classifiers constructed
for each VBM detected cluster of significant voxels:

1. by a simple majority voting, and to use the cluster with greatest statistical
significance to resolve ties. This can be viewed as a simplified combination
of classifiers.

2. Furthermore, we have defined a combination of classifiers weighted by the
individual training errors, where the classifier weights are computed as in
the AdaBoostSVM algorithm [105] (we describe this combination formally
in Algorithm 3.2), assuming an uniform weighting of the data samples.

We have applied this approach using the SVM as the single classifier building
blocks.

3.6 Classifier performance indices
We evaluated the performance of the classifier using the 10-fold cross-validation
test. To quantify the results we measured the accuracy, the ratio of the number of
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Algorithm 3.1 Diverse AdaBoostSVM

1. Input: a set of training samples with labels {(x1, y1), . . . , (xN , yN)}; the
initial σ, σini; the minimal σ, σmin; the step of σ, σstep; the threshold on
diversity DIV.

2. Initialize: the weights of training samples: wti = 1/N , for all i = 1, ..., N

3. Do while (σ > σini)

(a) Calculate gamma: γ =
(
2σ2
)−1.

(b) Use σ to train a component classifier ht on the weighted training set.

(c) Calculate the training error of ht: εt =
∑N

i=1 w
t
i , yi 6= ht(xi).

(d) Calculate the diversity of ht: Dt =
∑N

i=1 dt(xi), where dt(xi) ={
0 if ht(xi) = yi

1 if ht(xi) 6= yi

(e) Calculate the diversity of weighted component classifiers and the cur-
rent classifier: D =

∑T
t=1

∑N
i=1 dt(xi).

(f) If εt > 0.5 or D < DIV : decrease σ by σstep and go to (a).

(g) Set weight of the component classifier ht: αt = 1
2

ln( εt
1−εt ).

(h) Update the weights of training samples: wt+1
i = wtiexp(−αyiht(xi).

(i) Normalize the weights of training samples: wt+1
i =

wt+1
i (

∑N
i=1w

t+1
i )−1.

4. Output: f(x) = sign(
∑C

k=1 αkhk(x)).
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Algorithm 3.2 Combining the independent classifiers trained per cluster

1. Input: as many sets of training samples with labels as clusters in the statis-
tical parametric map T k = {(x1, y1), . . . , (xN , yN)}, k = 1..C, where N is
the number of samples of each cluster.

2. Initialize: the weights of training samples: wki = 1/N , for all i = 1, ..., N

3. For each k cluster do

(a) Search the best γ for the RBF kernel for the training set Tk, we denote
it as γk.

(b) Train the classifier with Tk and γk, we denote the classifier as hk.

(c) Classify the same training Tk set with hk.

(d) Calculate the training error of hk: εk =
∑N

i=1w
k
i , yi 6= hk(xi).

(e) Compute the weight of the cluster classifier hk: αk = 1
2

ln( εk
1−εk

).

4. Output: for each test data x its classification is f(x) =

sign(
∑C

k=1 αkhk(x)).
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test volumes correctly classified to the total of tested volumes. We also quantified
the specificity and sensitivity of each test defined as

Specificity =
TP

TP + FP

and
Sensitivity =

TN

TN + FN
,

where TP is the number of true positives: number of AD patient volumes cor-
rectly classified; TN is the number of true negatives: number of control volumes
correctly classified; FP is the number of false positives: number of AD patient
volumes classified as control; FN is the number of false negatives: number of
control volumes classified as patient.

3.7 Computational results
In this section we present the results obtained from VBM analysis and from the
final validation of the classification process. A graphic overview of the classi-
fication systems is in figure 3.2, so we can follow this schema to give the final
results.

3.7.1 VBM analysis
The VBM procedure involves some pre-processing steps before the statistical
analysis, as it is shown in figure 3.1. Figure 3.3 shows the orthogonal views
from a control and a patient before and after segmentation. The control subject is
a 89 year old female with a very high education level (beyond college) and with a
high-standing socioeconomic status. The patient subject is a 80 year old female,
who did not finish the college and with a medium socioeconomic status.

We have performed the VBM twice, first without any covariate included in the
design matrix of the GLM and second taking into account the normalized brain
volume (nWBV). In the design matrix, regressors (or covariates) are additional
columns. This is graphically viewed in figure 3.4, which corresponds to the de-
sign matrix when we add the nWBV covariate. Figure 3.5 shows the plot of the
covariate values over transposed design matrix.

The clusters of significant voxels detected by the VBM analyses are displayed
in figure 3.6. Each VBM process produces different sets of voxel location clusters,
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Figure 3.3: Orthogonal views of original (at the top) and segmented (at the bot-
tom) images from a control (left column) and a patient (right column).
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and, therefore, different sets of feature vectors. This information is presented in
table 3.2 for the first case and 3.3 for the second one. The covariate helps to focus
the VBM, giving less and smaller clusters than the VBM without covariates. Of
course this implies that the feature vectors will be of lower dimensionality.

Figure 3.4: The design matrix with the nWBV covariate

3.7.2 Classification results
We present for each classification experiment the following data: the number of
features, accuracy, specificity, which is related to AD patients and sensitivity,
which is related to control subjects. The SVMs have been applied as single clas-
sifiers on the feature vectors obtained applying VBM with and without covariate
in the design matrix. For the rest of the classifiers we have used as feature vectors
those extracted from the VBM without any covariate.

Single SVM classifiers

Table 3.4 presents the results for the SVM classifiers applied to the feature vectors
obtained from VBM without covariate in the design matrix. Table 3.5 presents
the results for the SVM classifiers applied to the feature vectors obtained from
VBM with the normalized whole-brain volume (nWBV) as the covariate in the
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Figure 3.5: Covariate nWBV ploted over transposed design matrix

Figure 3.6: SPM results: clusters of significant voxels with increased gray matter
density in the controls relative to the patient subjects, detected by the VBM pro-
cess. Left: design matrix without covariate, right: nWBV included as covariate in
the design matrix.
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Table 3.2: Volume table for ’control > patient’, when 0 covariates are used in the
model.

Table 3.3: Volume table for ’control > patient’, when nWBV covariate is used in
the model.
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Feature extracted Features Accuracy (lk/nlk) Sensitivity (lk/nlk) Specificity (lk/nlk)
GMR 12 69.39% / 68.36% 0.63 / 0.61 0.88 / 0.90
MSD 24 78.57% / 80.61% 0.72 / 0.75 0.88 / 0.89
VV 3611 73.47% / 76.53% 0.72 / 0.77 0.75 / 0.76

Table 3.4: Classification results with a linear kernel (lk) and a nonlinear kernel
(nlk). No covariates have been taken into account in the GLM used for the VBM.
The values of γ = (2σ2)

−1 for non linear kernel were 0.5, 0.031, 0.0078 for
each feature extraction process, respectively.

Feature extracted Features Accuracy (lk/nlk) Sensitivity (lk/nlk) Specificity (lk/nlk)
GMR 2 51% / 51% 0.50 / 0.50 1 / 1
MSD 4 69.38% / 72.45% 0.65 / 0.68 0.79 / 0.79
VV 265 66.32% / 75.51% 0.65 / 0.72 0.67 / 0.80

Table 3.5: Classification results with a linear kernel (lk) and a nonlinear kernel
(nlk). The normalized whole-brain volume (nWBV) covariate has been taken into
account in the GLM for the VBM. The values of γ for nlk were 0.5, 2.7, 0.004
for GMR, MSD and VV respectively.

design matrix. Each table entry contains the SVM results using the linear and RBF
kernels upon the corresponding feature vector set. In both tables rows correspond
to feature extraction processes as described in section 3.4.

The best accuracy result (Table 3.4) is 80.6% with the RBF kernel, but this
result is not far away from the results of the linear SVM. This best accuracy result
is obtained with a rather straightforward feature extraction method: the mean and
standard deviation of the MRI voxel intensities. This means that MRI intensities
may have discriminant value. The classification results of table 3.5, using the
covariate nWBV in the design matrix of the GLM, confirm that the nonlinear
SVM is more accurate. However, results in table 3.5 are systematically lower
than in table 3.4.

Overall the sensitivity results in tables 3.4 and 3.5 are much lower than the
specificity. We hypothesize that the source of error is the confusion of mild de-
mented AD patients with control subjects. Mild demented AD patients are sub-
jects with CDR=0.5 (Clinical Dementia Ratio) and a high value for the MMSE
(Minimental-State Examination), i.e., MMSE=30. Therefore we repeat the fea-
ture extraction and classification experiment taking out of the population 9 mild
demented AD patients. The results for the RBF kernel SVM are given in table
3.6. The classification accuracy increases from 80.6% (in the best result of table
3.4) up to 87.5%. Also sensitivity and specificity improve if we compare table 3.4
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Feature extracted Features γ Accuracy Sensitivity Specificity
GMR 12 0.9 72.5% 0.84 0.66
MSD 24 0.6 87.5% 0.89 0.86
VV 3611 1.5 86.25% 0.85 0.87

Table 3.6: Classification results of 40 AD patients vs. 49 control subjects with
the SVM and a RBF kernel, 9 very mild AD subjects were taken out from the AD
patients subset.

Feature extracted Features Accuracy (lk/nlk) Sensitivity (lk/nlk) Specificity (lk/nlk)
MSD 24 74% / 75% 0.51 / 0.56 0.97 / 0.95
VV 3611 77% / 78% 0.74 / 0.76 0.80 / 0.82

Table 3.7: Majority voting classification results with linear kernel (lk) and nonlin-
ear kernel (nlk) SVM built independently for each VBM cluster.

and table 3.5 against table 3.6.

Results on the combination of SVM

We will give results on the simple voting of independent classifiers based on sta-
tistical significance of VBM, the weighted combination of individual cluster SVM
based on training errors and an adaptive boosting strategy for combining classi-
fiers. For all these experiments a 10-fold crossvalidation process was used.

Table 3.7 presents the results of the combination of SVM classifiers built up
over each cluster independently, searching for the best kernel parameter σ in each
classifier independently. The results do not improve over the ones obtained with
the whole image feature vector in table 3.4. We note that, contrary to the global
feature vector, the results improve when considering the whole collection of MRI
voxel intensities.

Table 3.8 presents the results of the combination of individual weighted SVM
classifiers. Each SVM classifier was trained with one VBM cluster feature set and
the weights were computed according to its training error. We obtain a significant
improvement of the accuracy when considering the voxel intensities as features
for the nonlinear RBF SVM.

Table 3.9 shows the results of the Diverse AdaBoost. The σmin is set as 0.1,
the σini is set as 100 and σstep is set as 0.1. The DIV value is set as as 0.6. The
best accuracy result is obtained for the MSD feature vector.
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Feature extracted Features Accuracy (lk/nlk) Sensitivity (lk/nlk) Specificity (lk/nlk)
MSD 24 71% / 79% 0.54 / 0.78 0.88 / 0.80
VV 3611 73% / 86% 0.76 / 0.80 0.70 / 0.92

Table 3.8: Weighted individual SVM per cluster classification results. The value
of the RBF kernels for the nonlinear (nlk) classifiers were searched for the best fit
to the training set.

Feature extracted Features Accuracy Sensitivity Specificity
MSD 24 85% 0.78 0.92
VV 3611 78% 0.71 0.85

Table 3.9: Diverse AdaBoostSVM classification results.

ANN classifiers

The results shown are the values of the classification results from a 10-fold cross-
validation process. We give results of the following classifiers: Backpropagation
(Table 3.10), RBF (Table 3.11), PNN (Table 3.12), LVQ1 (Table 3.13) and LVQ2
(3.14).

The best accuracy result for the ANN classifiers is 83% with the LVQ2 in table
3.14, but this result is not far from the results of LVQ1 and PNN. Which is a very
encouraging result, given that we have not removed “difficult” subjects from the
data collection. However, this result falls behind the Diverse Adaboost reported
in table 3.9.

Regarding the usefulness of the features extracted, it is difficult to make an
assessment, because some algorithms work better with VV than with MSD, and
other have the inverse performance. Training and validation on MSD features is
obviously more time efficient and also the best result corresponds to this feature
extraction process.

Feature extracted Features Hidden units Accuracy Sensitivity Specificity
MSD 24 10 78 0.69 0.88
VV 3611 10 78 0.72 0.84

Table 3.10: Classification results with a BP network with resilient backpropaga-
tion.
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Feature extracted Features Spread Accuracy Sensitivity Specificity
MSD 24 0.02 66% 0.65 0.68
VV 3611 0.852 72.5% 0.65 0.80

Table 3.11: Classification results with a RBF network.

Feature extracted Features Spread Accuracy Sensitivity Specificity
MSD 24 0.02 77.8% 0.62 0.94
VV 3611 0.852 74.2% 0.68 0.81

Table 3.12: Classification results with a PNN network.

Feature extracted Features Hidden units Accuracy Sensitivity Specificity
MSD 24 10 81% 0.72 0.90
VV 3611 10 79.3% 0.76 0.82

Table 3.13: Classification results with a LVQ1 network. Network training param-
eters: MSD: 200 epochs, goal: 0.01 and learning rate: 0.01; VV: 150 epochs,
goal: 0.10 and learning rate: 0.010.

Feature extracted Features Hidden units Accuracy Sensitivity Specificity
MSD 24 10 83% 0.74 0.92
VV 3611 10 77% 0.76 0.78

Table 3.14: Classification results with a LVQ2 network. Network training param-
eters: MSD: 200 epochs, goal: 0.01 and learning rate: 0.01; VV: 50 epochs, goal:
0.01 and learning rate: 0.005.
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3.8 Conclusions and further work
In this section we have studied feature extraction processes based on VBM anal-
ysis, to classify MRI volumes of AD patients and normal subjects. We have ana-
lyzed different designs for the SPM of the VBM and we have found that the basic
GLM design without covariates can detect subtle changes between AD patients
and controls that lead to the construction of simple (SVMs and ANNs) and meta-
classifiers (cluster AdaBoost and diverse AdaBoost).

Using simple classifiers we have obtained a discriminative accuracy of 83%
(table 3.14), in the best case, with a LVQ2 network. Removing difficult subjects
with very mild AD from the AD patients subset, this accuracy improves up to
87.5% (table 3.6) with a nonlinear SVM.

In the case of meta-classifiers the accuracy is 86% (table 3.8) if we consider
a combination of individual weighted SVM classifiers, with nonlinear kernels.
The weighted cluster SVM and the Diverse AdaBoostSVM methods improved
remarkably the results, mainly the sensitivity of the classification models.

These accuracy results are really encouraging considering the number of sub-
jects in the database. We have also found that the subjects wrongly classified
maybe the most critical ones: old control subjects classified as AD (FP) and sub-
jects with a very early or mild dementia classified as normal (FN), exactly the ones
which are the target in these studies that try to perform early detection of AD.

In [43] they compare their results on a smaller population of controls and
AD patients to the ones obtained with a standard VBM analysis, using a cluster
and found a classification accuracy of 63.3% via cross-validation. Therefore, the
results shown in this chapter, along with the careful experimental methodology
employed, can be of interest for the Neuroscience community researching on the
AD diagnosis based on MRI.

Further work may address the extraction of features based on other morpho-
logical measurement techniques, such as the Deformation-Based Morphometry
(DBM) and Tensor-Based Morphometry (TBM).



Chapter 4

Lattice Computing for fMRI
analysis

In this chapter we introduce a Lattice Computing based approach to the analysis
of fMRI. It corresponds to our more recent works. Contrary to previous chapters,
the PhD Thesis work described is this chapter is open, showing a broad avenue for
future research, and, thus, the results must be taken as a proof of concept rather
than an exhaustive exploration.

Section 4.1 gives some background motivation and state of the art. Section
4.2 gives the summary description of the approach tested. Section 4.3 reviews the
theoretical foundations and the original endmember induction algorithm. Section
4.4 reports a computational experiment on a case study that illustrate our proposal.

4.1 Background motivation and state of the art
Human brain mapping is a rapidly expanding discipline, and in recent years in-
terest has grown in novel methods for imaging human brain functionality. Non-
invasive techniques can measure cerebral physiologic responses during neural ac-
tivation. One of the relevant techniques is functional Magnetic Resonance Imag-
ing (fMRI) [122], which uses the blood oxygenation level dependent (BOLD)
contrast. Slight physiological alterations, such as neuronal activation resulting in
changes of blood flow and blood oxygenation, are detected. These signal changes
are related to changes in the concentration of deoxyhemoglobin, which acts as
an intravascular contrast agent for fMRI. Most of the fMRI examinations are per-
formed with BOLD-based methods using techniques sensitive to local distortions

95
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in the magnetic field (susceptibility sensitive techniques). These are T2 weighted
spin echo pulse sequences or T2* weighted gradient echo pulse sequences. The
various fMRI-methods have a good spatial and temporal resolution, limited only
by the precision with which the autoregulatory mechanisms of the brain adjust
blood flow in space to the metabolic demands of neuronal activity. Since these
methods are completely noninvasive, using no contrast agent or ionizing radia-
tion, repeated single-subject studies are becoming feasible [117].

To evaluate the resulting fMRI image series, sophisticated algorithms and
great computational power are needed to separate the physiologically induced sig-
nals from noise or from artifacts resulting from patient movement or MRI detec-
tion techniques [45, 118, 108, 143, 150]. Appropriate postprocessing procedures
for fMRI are currently being developed at a very rapid pace. Since many research
groups are working in this area, no consensus has been reached about the analysis
methods of the functional data up to now. A further reason for the large variety of
different postprocessing procedures is the lack of a complete underlying theory of
the BOLD effect.

The fMRI experiment consists of a functional template or protocol (e.g., alter-
nating activation and rest for a certain time) that induces a functional response in
the brain. The aim of an fMRI experiment is to detect this stimulus response, re-
sulting from the BOLD effect, in a defined volume element (voxel). The two main
experimental designs used in fMRI are capable of effectively addressing two dif-
ferent questions of interest. Block designs are especially useful for detection, that
is, locating which voxels are activated in response to a given task, compared to a
control condition. Event-related designs, by contrast, provide a means of estimat-
ing the hemodynamic response function. This, in turn, can also lead to detection,
as in (for just one example) [71]. The functional information of a voxel has to
be extracted from its functional time course. Therefore, for each functional time
point one fMRI volume is recorded. The complete four-dimensional dataset (three
dimensions in space, one dimension in time) consists of subsequently recorded
three-dimensional (3-D) volumes and thus for each voxel of a volume a func-
tional time course exists. The acquisition of these functional volumes runs over
periods lasting up to several minutes.

There are a number of sources of noise in the fMRI signal [156] that must
be dealt with in appropriate preprocessing steps. The pulse sequence and the
magnetic field strength used can have an effect on the image quality. The long
time duration of the experiments allow for head motions, even with strong head
restraints put into place. Experiment designs also affect the relative dynamics. We
will assume that these noise sources have been dealt with appropriately.
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The most extended analysis approach for fMRI signals is the Statistical Para-
metric Map (SPM) [63] which has been implemented in several free open source
software packages. This method consists in the separate voxel based test of the
general linear model (GLM) corresponding to the experimental design, followed
by a segmentation of the spatial distribution of the individual voxel t-test values
as a parametric map. There have been also approaches to the fMRI analysis based
on the Independent Component Analysis (ICA) [22, 87, 89][30, 35, 34, 33, 80]
assuming that the time series observations are linear mixtures of independent
sources which can not be observed. ICA assumes that the source signals are non-
Gaussian and that the linear mixing process is unknown. The approaches to solve
the ICA process obtain both the independent sources and the linear unmixing ma-
trix.

The proposal contained in this chapter is a two step process that consists first
in the induction of the endmembers from the fMRI data followed by the linear un-
mixing of the fMRI data based on the induced endmembers. For the endmembers
induction we apply the Endmember Induction Heuristic Algorithm (EIHA) [79].
The basic assumption in this approach is that the data is generated as a convex
combination of a set of endmembers which are the vertices of a convex polytope
covering the data observations. This assumption is similar to the linear mixture
assumed by the ICA or the GLM approaches. The EIHA is based on the relation
between the Lattice Independence and Affine Independence [134], and the abil-
ity of Lattice Associative Memories to serve as detectors of Lattice Independent
sets of vectors. The original works were devoted to unsupervised hyperspectral
image segmentation, therefore the use of the name endmember for the convex set
vertices. The results obtained on a well known benchmark fMRI data set show
the feasibility and promise of this approach. This approach falls in the field of
Lattice Computing algorithms, which have been introduced in [77] as the class of
algorithms that either apply lattice operators inf and sup or use lattice theory to
produce generalizations or fusions of previous approaches.

4.2 Description of the approach
The proposed approach is composed of two steps, as illustrated in algorithm 4.1.
For ease of notation we assume that the fMRI data is organized as a matrix whose
rows are voxel’s time series, after spatial registration and convenient preprocess-
ing. The algorithm EIHA is applied to induce the endmembers from the data.
Those endmembers define a convex polytope covering much of the data sam-
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ple. After that, the unmixing process obtains the abundance coefficients of each
endmember at each voxel by Unconstrained Least Squares Estimation (ULSE).
Finally, to give the detection of significant voxels we set a significance threshold
for each endmember as the 99% percentil value of the empirical distribition of the
abundance coefficients for this endmember.

Algorithm 4.1 Lattice Independent Component Analysis
Given a fMRI data organized as a set of time series X ∈ RN×T , where N is the
number of voxels and T the time duration

1. Apply EIHA to obtain endmembers E = Rc×T

2. For each voxel compute the endmember abundance coefficients by ULSE,
obtaining A = RN×c.

3. For each abundance volume A (., k) = RN detect the statistical significant
voxels as follows:

(a) Compute the empirical distribution of the abundance values

(b) Set the significance threshold to the 99% percentil value.

4.3 Theoretical foundations

4.3.1 The linear mixing model
The linear mixing model (LMM) [91, 92] can be expressed as follows:

x =
M∑
i=1

aisi + w = Sa + w, (4.1)

where x is the d-dimension pattern vector, S is the d×M matrix whose columns
are the d-dimension vertices of the convex region covering the data corresponding
to the so called endmembers si, i = 1, ..,M, a is the M -dimension abundance
vector, and w is the d-dimension additive observation noise vector.

The LMM is applied when some item is assumed to be the combination of sev-
eral pure items, called endmembers. In [91, 92] the items are light spectra in the
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context of hyperspectral image processing, here the items are the fMRI voxel time
series vectors. Abundance coefficients correspond to the fraction of the contribu-
tion of each endmember to the observed item. From this physical interpretation,
follows that the linear mixing model is subjected to two constraints on the abun-
dance coefficients. First, to be physically meaningful, all abundance coefficients
must be non-negative ai ≥ 0, i = 1, ..,M , because the negative contribution is
not possible in the physical sense. Second, to account for the entire composition,
they must be fully additive

∑M
i=1 ai = 1. As a side effect, there is a saturation

condition ai ≤ 1, i = 1, ..,M , because no isolate item can account for more than
the existent material. From a geometrical point of view, these restrictions mean
that we expect the endmembers in S to be affinely independent and that the con-
vex region defined by them covers all the data points. This is a very important
observation, because it has deep implications in the following reasoning about the
inversion processes. The mixing inversion process (often called unmixing) con-
sists in the estimation of the abundance coefficients, given the endmembers S and
the observation data x. The simplest approach is the unconstrained least squared
error (ULSE) estimation given by:

â =
(
STS

)−1
STx. (4.2)

The coefficients that result from equation (4.2) do not necessarily fulfill the
non-negativity and full additivity conditions. The full additivity restriction can
be incorporated in the abundance coefficients estimation using Lagrange multi-
pliers [91, 92] introducing a correction term that moves the ULSE estimation to
the hyperplane that satisfies the full additivity constraint. From the physical inter-
pretation point of view, the non-negativity restriction is more fundamental. The
Non-Negative Least Square estimation (NNLS) [102] can be used to enforce this
condition. The estimation problem is treated as a quadratic programming prob-
lem with linear inequalities as constraints, solved iteratively. In each iteration the
endmembers whose abundances are positive are used to refine the estimation. It
was shown in [91, 92] that non-negative estimations do not fulfill the full additiv-
ity condition. Besides, the NNLS computation time may be high, specially as the
data dimension grows.

Some approaches to endmember determination (i.e., [134]) ensure that the
computed endmembers define a convex polytope that covers all the data points,
so that a proper convex inversion can be attempted. They find that NNLS provide
meaningful abundances. However, they also found that the full additivity was not
fulfilled. The heuristic algorithm EIHA described in section 4.3.3 [79] always
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produces convex regions that lie inside the data cloud, so that enforcing the non-
negative and full additivity restrictions would be impossible for some data points.
Enforcing them for some points may introduce undesired distortions of their abun-
dance values. Nevertheless we have made some attempts to apply NNLS to our
data which have resulted in prohibitive computational times.

For the above reasons, we use systematically the unconstrained estimation
of equation (4.2) to compute the abundance coefficients. For visualization and
interpretation of results, negative abundance values are considered as zero values.
We assume that the additivity to one condition is not important as long as we are
trying to define statistical tests on the significance of the coefficients based on
their distribution as a kind of statistical map. Therefore, abundance coefficients
are interpreted as fMRI voxel activation. That is, high positive values above a set
threshold are interpreted as high voxel activation of the corresponding endmember
time response pattern.

4.3.2 Lattice Independence and Lattice Autoassociative Mem-
ories

The work on Lattice Associative Memories (LAM) stems from the consideration
of the algebraic lattice structure (R,∨,∧,+) as the alternative to the algebraic
framework given by the mathematical field (R,+, ·) for the definition of Neural
Networks computation. The LAM were first introduced in [132, 130] as Mor-
phological Associative Memories, but we follow the new convention introduced
in [131, 134] because it sets the works in the more general framework of Lat-
tice Computing. The operators ∨ and ∧ denote, respectively, the discrete max
and min operators (resp. sup and inf in a continuous setting). Given a set of
input/output pairs of pattern (X, Y ) =

{(
xξ,yξ

)
; ξ = 1, .., k

}
, a linear heteroas-

sociative neural network based on the pattern’s cross correlation is built up as
W =

∑
ξ y

ξ ·
(
xξ
)′
. Mimicking this constructive procedure [132, 130] propose

the following constructions of Lattice Memories (LM):

WXY =
k∧
ξ=1

[
yξ ×

(
−xξ

)′]
and MXY =

k∨
ξ=1

[
yξ ×

(
−xξ

)′]
, (4.3)

where × is any of the ∨2 or ∧2 operators. Here ∨2 and ∧2 denote the max and
min matrix product [132, 130]. respectively defined as follows:
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C = A ∨2 B = [cij]⇔ cij =
∨

k=1,...,n

{aik + bkj} , (4.4)

C = A ∧2 B = [cij]⇔ cij =
∧

k=1,...,n

{aik + bkj} . (4.5)

If X = Y then the LM memories are Lattice Autoassociative Memories
(LAM). Conditions of perfect recall by the LM and LAM of the stored patterns
proved in [132, 130] encouraged the research on them, because in the continu-
ous case, the LAM is able to store and recall any set of patterns: WXX ∨2 X =
X = MXX ∧2 X, for any X . However, this result holds when we deal with noise-
free patterns. Research on robust recall [125, 130, 133] based on the so-called
kernel patterns lead to the notion of morphological independence, in the erosive
and dilative sense, and finally to the definition of Lattice Independence (LI) and
Strong Lattice Independence (SLI). We gather some results from [134] that set the
theoretical background for the approach to endmember induction applied.

Definition Given a set of vectors
{
x1, ...,xk

}
⊂ Rn a linear minimax combina-

tion of vectors from this set is any vector x ∈Rn
±∞ which is a linear minimax sum

of these vectors:

x = L
(
x1, ...,xk

)
=
∨
j∈J

k∧
ξ=1

(
aξj + xξ

)
,

where J is a finite set of indices and aξj ∈ R±∞ ∀j ∈ J and ∀ξ = 1, ..., k.

Definition The linear minimax span of vectors
{
x1, ...,xk

}
= X ⊂ Rn is the set

of all linear minimax sums of subsets of X, denoted LMS
(
x1, ...,xk

)
.

Definition Given a set of vectors X =
{
x1, ...,xk

}
⊂ Rn, a vector x ∈Rn

±∞ is
lattice dependent if and only if x ∈ LMS

(
x1, ...,xk

)
. The vector x is lattice

independent if and only if it is not lattice dependent on X. The set X is said to
be lattice independent if and only if ∀λ ∈ {1, ..., k} , xλ is lattice independent of
X\
{
xλ
}

=
{
xξ ∈ X : ξ 6= λ

}
.

The definition of lattice independence supersedes and improves the early def-
initions [133] of erosive and dilative morphological independence, which, how-
ever, have more intuitive appealing. Nevertheless, this definition has the addi-
tional advantage of establishing a formal parallelism with the definition of linear
independence.
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Definition A set of vectors X =
{
x1, ...,xk

}
⊂ Rn is said to be max dominant

if and only if for every λ ∈ {1, ..., k} there exists and index jλ ∈ {1, ..., n} such
that

xλjλ − x
λ
i =

k∨
ξ=1

(
xξjλ − x

ξ
i

)
∀i ∈ {1, ..., n} .

Similarly, X is said to be min dominant if and only if for every λ ∈ {1, ..., k}
there exists and index jλ ∈ {1, ..., n} such that

xλjλ − x
λ
i =

k∧
ξ=1

(
xξjλ − x

ξ
i

)
∀i ∈ {1, ..., n} .

The expressions that compound this definition appeared in the early theorems
about perfect recall of Morphological Associative Memories [132, 130]. Their
value as an identifiable property of the data has been discovered in the context of
the formalization of the relationship between strong lattice independence, defined
below, and the classical affine independence.

Definition A set of lattice independent vectors
{
x1, ...,xk

}
⊂ Rn is said to be

strongly lattice independent (SLI) if and only if X is max dominant or min domi-
nant or both.

As said before, min and max dominance are the conditions for perfect recall.
Per construction, the column vectors of Lattice Autoassociative Memories are min
or max dominant, depending of their erosive or dilative nature, therefore they will
be strongly lattice independent, if they are lattice independent.

Conjecture 4.3.1 [134] IfX =
{
x1, ...,xk

}
⊂ Rn is strongly lattice independent

then X is affinely independent.

This conjecture (stated as theorem in [131]) is the key result whose proof
would relate the linear convex analysis and the nonlinear lattice analysis. If true,
it means that the construction of the LAM provides the starting point for obtain-
ing sets of affine independent vectors that could be used as endmembers for the
unmixing algorithms described in section 4.3.1.

Theorem 4.3.2 [134] Let X =
{
x1, ...,xk

}
⊂ Rn and let W ( M ) be the set of

vectors consisting of the columns of the matrix WXX (MXX .). Let F (X) denote
the set of fixed points of the LAM constructed from set X . There exist V ⊂ W
and N ⊂ M such that V and N are strongly lattice independent and F (X) =
F (V ) = F (N) or, equivalently, WXX = WV V and MXX = MNN .
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The key idea of this theorem is to test the lattice independence of the already
known as min or max dominant sets of vectors. Removing lattice dependent vec-
tors will not affect this min/max dominance property. The smart way to test lattice
dependence lies in the fact that removing a lattice dependent vectors does not alter
the set of fixed points of the remaining ones. This theorem is proved following a
constructive reasoning, giving way to an algorithm for the construction of the set
of affine independent sets of vectors from LAM dicussed in [79, 134].

4.3.3 Endmember Induction Heuristic Algorithm (EIHA)
For the sake of completeness we recall here our Endmember Induction Heuristic
Algorithm (EIHA) maintaining the notation used in the original references. Let us
denote

{
f (i) ∈ Rd : i = 1, .., n

}
the high dimensional data that may be the time

series in a fMRI voxels,−→µ and−→σ are, respectively, the mean vector and the vector
of standard deviations computed componentwise over the voxels of data sample,
α the noise correction factor, and E the set of already discovered endmembers.
The noise amplitude of the additive noise in equation (4.1) is −→σ , the patterns are
corrected by the addition and subtraction of α−→σ , before being presented to the
LAM’s. The gain parameter α controls the amount of flexibility in the discovering
of new endmembers. For e ∈ Rd, let b (e) denote the binary version of e defined
by b (e)i = 1 if ei > 0 and b (e)i = 0 if xi ≤ 0, where b (e)i denotes the ith
coordinate of b (e). Finally, we will denote by X the set of binary signatures used
to build the lattice memories, and I the set of sample indices corresponding to the
endmembers selected by the algorithm.

The detailed description of the steps in the heuristic algorithm is presented as
Algorithm 4.2. The starting endmember set consists of a randomly picked pixel.
However, this selection is not definitive, because the algorithm may later change
this endmember for another, more extreme, one. The noise correction parameter
α has a great impact on the number of endmembers found. Low values imply
large number of endmembers. It determines if a vector is interpreted as a random
perturbation of an already selected endmember.

This algorithm does not need a priori information about the nature of the data
points that we want to detect. It runs once over the image and finds the most salient
data samples on the fly. For this reason we say that it is an on-line algorithm.
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Algorithm 4.2 Endmember Induction Heuristic Algorithm (EIHA)
1. Shift the data sample to zero mean{

f c (i) = f (i)−−→µ ; i = 1, .., n
}

.

2. Initialize the set of endmembers E = {e1 = f c (i∗)} where i∗ is a randomly
picked sample index. Initialize the set of lattice independent binary signa-
tures X = {x1} where x1 = b (e1). The initial set of endmember sample
indices is I = {i∗}.

3. Construct the LAM’s based on the lattice independent binary signatures:
MXX and WXX .

4. For each pixel f c (i)

(a) Compute the noise corrections sign vectorsf+ (i) = b
(
f c (i) + α−→σ

)
and f− (i) = b

(
f c (i)− α−→σ

)
(b) Compute y+ = MXX ∧2 f+ (i)

(c) Compute y− = WXX ∨2 f− (i)

(d) If y+ /∈ X or y− /∈ X then f c (i) is a new endmember to be added to
E, execute once 3 with the new E and resume the exploration of the
data sample. Add i to the set of indices I .

(e) If y+ ∈ X , let k be the index in E of the corresponding endmember.
If f c (i) > ek then execute step 4g.

(f) If y− ∈ X , let k be the index in E of the corresponding endmember.
If f c (i) < ek then execute step 4g.

(g) The new data sample is more extreme than the stored endmember, then
substitute ek in E with f c (i). Index i substitutes the corresponding
index in I .

5. The output set of endmembers is the set of original data vectors
{f (i) : i ∈ I} corresponding to the sign vectors selected as members of E.
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4.4 Computational results
The experimental data corresponds to auditory stimulation test data of single per-
son. It is freely available from ftp://ftp.fil.ion.ucI.ac.uk/spm/data, the file name is
snrfM00223.zip. These data are the result of the preprocessing pipeline that re-
moves many noise sources. These whole brain BOLD/EPI images were acquired
on a modified 2T Siemens MAGNETOM Vision system. Each acquisition con-
sisted of 64 contiguous slices. Each slice being a 2D image of one head volume
cut. There are 64x64x64 voxels of size 3mm x 3mm x 3mm. The data acquisition
took 6.05s, with the scan-to-scan repeat time (RT) set arbitrarily to 7s. 96 acqui-
sitions were made (RT=7s) in blocks of 6, i.e., 16 42s blocks. The condition for
successive blocks alternated between rest and auditory stimulation, starting with
rest. Auditory stimulation was bi-syllabic words presented binaurally at a rate of
60 per minute. The functional data starts at acquisition 4, image snrfMOO223-
004. Due to T1 effects it is advisable to discard the first few scans (there were no
"dummy" lead-in scans). We have discarded the first 10 scans. Figure 4.1 shows
the plots of the time series corresponding to the slice #30 of the collected volume.
It can be appreciated that there are an intensity displacement filling the whole
range of intensities. There are few voxels showing an activation pattern on the top
of the plots, and the vast majority of the voxels time series correspond to random
non activation patterns at diverse mean intensities. The result of our algorithm
applied to these raw data would be trivial and uninteresting.

We perform a data magnitude normalization, consisting in subtracting the
mean value of its time series to each voxel independently, so that the plots are
collapsed as shown in figure 4.2 around the origin. It can be appreciated that most
deactivated voxels are collapsed into a quite similar pattern, and that the diverse
activation patterns stand out. This mean subtraction corresponds to an scale nor-
malization in the lattice computing sense. It removes scale effects that hinder
the detection of meaningful lattice independent vectors. We note that, although
we are shifting the voxel vector to the origin, we are not performing a statistical
normalization

The application of the EIHA algorithm with α = 20 to the lattice normalized
time series of the whole 3D volume produces the collection of eleven endmem-
bers shown in figure 4.3. Attending to the intensity scale it can be assumed that
the first endmember (top left plot) corresponds to the non activation pattern, while
the remaining endmembers correspond to some kind of activation pattern. These
patterns correspond to individual voxels and do not reflect aggregated spatial be-
haviors like in other approaches.



CHAPTER 4. LATTICE COMPUTING FOR FMRI ANALYSIS 106

0 10 20 30 40 50 60 70 80 90
0

2000

4000

6000

8000

10000

12000

14000

16000

Time

In
te

n
s
it
y

Figure 4.1: Plot of the time series for the voxels of axial slice #30.
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Figure 4.2: Plots of time series of voxels in axial slice #30 after subtracting their
mean values from them. The time series are collapsed in the neighborhood of
zero.
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Figure 4.3: Eleven endmbers detected by EIHA over the lattice normalized time
series of the whole 3D volume.

The unmixing process applied to the whole volume voxels with the eleven
endmembers of figure 4.3 produces the abundance images that we interpret as
the activation levels of each pattern. To give an interpretation of these activation
levels, we refer to the standard results obtained with the SPM software, presented
in figure 4.4 as localized in the Talairach space, in sagital, coronal and axial cuts.
There it can be observed that the activation appears around the axial slice #30. For
this reason we present the abundances computed on this slice in figure 4.5. The
figure presents the original slice where the voxels with abundance value above the
99% percentile of the distribution of this endmember abundance over the whole
volume are set to white. It can be appreciated that the abundances for endmembers
#8 and #11 have some activation regions overlapping the standard detections in
figure 4.4, as well as showing some spurious activation regions. For a complete
review of the activation detected by the endmember #11 abundances we show the
99% percentile detection on all the slices in the axial direction in figure 4.6. The
figure shows that there are not many spurious detections in slices corresponding to
brain regions far away from the activations shown in figure 4.4. So that our results
are in agreement with those found with the SPM software. The main difference
is that we have not imposed an activation model, but we discovered on-line the
activation pattern to perform the detection.



CHAPTER 4. LATTICE COMPUTING FOR FMRI ANALYSIS 108

Figure 4.4: Activation maps from SPM results over the experimental data

4.5 Conclusions
In this chapter, we have proposed and applied the endmember induction algorithm
EIHA discussed in [79] to the task of on-line brain region activation in fMRI. The
idea is inspired in the ICA application to fMRI activation detection [33, 143],
in our approach the sources correspond to endmembers detected by the EIHA
algorithm and the activation is computed as the abundance images obtained by
unmixing the voxel time series on the basis of the found endmembers. The first
obstacle that we find in this endeavor is that the distribution of the time series is
not well aspected for the detection of lattice independence as a meaningful charac-
teristic. In fact the voxel’s fMRI time series show a dense distribution of intensity
displacements from the origin, so almost all of them are lattice dependent and our
proposed algorithm only recovers two endmembers. To overcome this problem
we perform a data magnitude normalization which corresponds to a scale normal-
ization in the sense of lattice computing. We subtract the mean of its time series
to each voxel time series. The resulting lattice normalized data set shows a much
more rich structure in terms of lattice independence. Our computational experi-
ment with a well known fMRI data set, provided with the distribution of the SPM
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Figure 4.5: Abundances for axial slice #30 for all eleven endmembers. White vox-
els correspond to abundance values above the 99% percentile of the distribution
of the abundances for each endmember at this slice.



CHAPTER 4. LATTICE COMPUTING FOR FMRI ANALYSIS 110

Figure 4.6: Activations detected by the 99% percentile of the abundance images
of endmember #11 of figure 4.5 in the axial direction.
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software, show some promising results in the sense that our detected activations
are in strong agreement with the standard analysis using the SPM software. There
are however some false detections that show that our approach is not fully con-
sistent with the SPM analysis. One important aspect of SPM is its process of the
individual voxel t-test as a random field, this processing is lacking in our works.
Finding ways to harmonize global random field analysis and our lattice computing
approach may lead to interpretations and results. This PhD Thesis work will be
continued in the framework of the research group. This chapter gives a proof of
concept of an approach that, when fully explored, may be as fruitful as the ICA
applications to fMRI.
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Appendix A

Description of IIH correction
algorithms

In this appendix we provide the formal definitions of the IIH correction algorithms
that have been implemented to compare results with our own propositions. We
maintain the notation of chapter 2, adapting the expressions given in the original
papers to this notation. Section A.1 presents the Biased MAP estimation. Section
A.2 presents the algorithm proposed by Wells et al. Finally section A.3 presents
the Biased FCM.

A.1 BMAP
The Biased MAP (BMAP) [127] algorithm is a bayesian image processing algo-
rithm [67, 68] which consists of two interdependent estimations:

• the Maximum A Posteriori (MAP) estimation of the image classification
given an inhomogeneity field estimation, and

• the Maximum Likelihood (ML) estimation of the inhomogeneity field given
an image classification.

The algorithm iterations interleave both estimations, performing first the MAP
estimation and second the ML estimation at each iteration.

The MAP estimation of the classification image x∗ = arg maxx p (x |y ) can
be stated as a minimization of the following energy function

u (x |y ) ∝ − log (p (x |y )) ,

113



APPENDIX A. DESCRIPTION OF IIH CORRECTION ALGORITHMS 114

that is:
x∗ = arg min

x
u (y |x,β∗, θ∗, α∗ ) , (A.1)

where β∗, θ∗ and α∗ are, respectively, the estimated inhomogeneity field, the col-
lection of parameters of the Gaussian Conditional Probability Density Functions
(GCPDF) and the parameters of the Markov Random Field (MRF). The GCPDF
model the likelihood of the observed image under the assumption of the knowl-
edge of the classification image and the IIH field. The MRF provides the model
of the a priori distribution, embodying some spatial smoothness constraints of the
classification image. As proposed in [127], the energy minimization is performed
by the application of Iterated Conditional Modes (ICM), which is a greedy local
search algorithm. ICM assumes the spatial independence of the voxel intensity
distributions defining the following local energy at each voxel:

u (xi |yi ) = −1

2

(
yi − (1 + βi)µxi

σxi

)2

+ log (σxi) + V1 (xi) + V2 (xi) , (A.2)

where µxi and σxi are the mean and standard deviation of the intensity Gaussian
distribution associated with class i; V1 and V2 are the first and second order po-
tentials of the Markov Random Field that models the a priori image distribution.
ICM performs the independent minimization of the local energy at each voxel,
discarding spatial interaction effects:

min
xi

u (xi |yi ) . (A.3)

The algorithm A.1 provides a pseudo-code specification of ICM.
The complete BMAP algorithm iterates the MAP estimation of the classifi-

cation x(t), done by the ICM, and the maximum likelihood estimation of the IIH
field, the class intensity averages and their variances, given by the following equa-
tions:

β̂i =
yi
µxi
− 1, (A.4)

µ̂ω =

∑
i∈Rω yi (1 + βi)∑
i∈Rω (1 + βi)

2 , (A.5)

σ̂2
ω =

∑
i∈Rω (yi − (1 + βi)µω)2

|Rω|
. (A.6)

Where Rω denotes the image regions whose voxels are classified as of tissue ω.
We omit the iteration index t in these equations for the sake of clarity. Algorithm
A.2 provides a pseudocode specification of the BMAP.
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Algorithm A.1 ICM algorithm for MAP estimation of x(t)

Given x̂(0) ≡ x(t− 1)
k = 0
Repeat

1. k = k + 1

2. For each i perform minimization specified by equation (A.3)

(a) x̂i (k) = arg minxi u (xi |yi )

Until there is no variation in x̂(k)
Return x̂(k) as x(t)

Algorithm A.2 BMAP algorithm

Given initial values x(0), β̂i (0), µ̂ω (0), σ̂2
ω (0)

t = 0
Repeat

1. t = t+ 1

2. Application of ICM to approximate the MAP estimation of x(t)

3. Apply equations (A.4), (A.5) and (A.6) to estimate the bias and Gaussian
densities parameters with maximum likelihood

Until t > T or x(t) = x(t− 1)
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A.2 Wells
The algorithm proposed by Wells et al. [168] performs the MAP estimation of the
bias field (the logarithm of the multiplicative inhomogeneity field):

B̂ = arg max
B

p (B |Y ) . (A.7)

The Wells algorithm assumes a given assignment of voxels to tissue classes.
The distribution of the intensity values is Gaussian, with known mean µω and
variance σ2

ω for each tissue class ω. From classical calculus, a necessary condition
for a maximum of the a posteriori probability of B is that its gradient with respect
to B is zero. After some formal derivations, this condition leads to the following
equality:

B̂ = HR. (A.8)

The weighted residuals R are given by:[
R
]
i
≡
∑
ω

Wiωσ
−1
ω (Yi − µω) , (A.9)

where Wiω is equivalent to the a posteriori probability of class ω in voxel site
i. The factor H is an expression that depends on the covariance matrix of the bias
field, and it is in general intractable. The bias field estimator is assumed to be well
approximated by

B̂i =

[
FR
]
i

[Fσ]′i
, (A.10)

whereF is a low pass filter, σ is the matrix of voxel variances with σi ≡
∑

ωWiωσ
−1
ω .

The Wells algorithm is an EM algorithm consisting of the iteration until conver-
gence of the following steps:

Wiω ←
p (ω)Gσω (Yi − µω −Bi)∑c

j=1 p (ωj)Gσωj

(
Yi − µωj −Bi

) . (A.11)

B̂← HR, (A.12)

where Gσ (µ) denotes the gaussian probability density function as in [168].
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A.3 BFCM
The Bias Fuzzy C-Means (BFCM) method was presented in [18, 124, 123]. It is
representative of the fuzzy clustering MRI segmentation methods. The method
assumes that the image has been logarithmically transformed. The algorithm is
designed as the realization of the following minimization process:

min
U,{µω}ω∈Ω,{Bi}i∈I

Jm subject to U ∈ U , (A.13)

where U is the set of consistent partitions, such that uiω > 0 and
∑

ω uiω = 1, and
the objective function is defined as follows:

Jm =
∑
ω∈Ω

∑
i∈I

upiω ‖Ri − µω‖2 +
α

NR

∑
ω∈Ω

∑
i∈I

upiω

(∑
l∈Ni

‖Rl − µω‖2

)
, (A.14)

which is an adaptation of the conventional Fuzzy C-Means (FCM) objective func-
tion [23, 24, 50]. In this expression, {µω}ω∈Ω are the cluster representatives, and
the matrix [uiω] = U represents the partition matrix, U ∈ U .Ni denotes the voxel
i neighborhood of cardinality NR. Finally, α is a weight given to the regulariza-
tion term. The zero gradient condition of the cost function of equation (A.14) plus
the Lagrange multiplier corresponding to the restrictions on the partition matrix
lead to the following expressions of their estimates:

û∗iω =
1∑

θ∈Ω

(
Diω+ α

NR
γiω

Diθ+ α
NR

γiθ

)1/(p−1)
. (A.15)

µ̂∗ω =

∑
i∈I u

p
iω

(
(Yi −Bi) + α

NR

(∑
l∈Ni (Yl −Bl)

))
(1 + α)

∑
i∈I u

p
iω

. (A.16)

B̂∗i = Yi −
∑

i∈I u
p
iωµω∑

i∈I u
p
iω

. (A.17)

In these expressions Diω = ‖Yi −Bi − µω‖2 and γiω =
∑

l∈Ni ‖Yl −Bl − µω‖2 .
In this formulation, intensity class prototypes are a kind of intensity average of
the IIH corrected voxels, computed over the neighborhood of each voxel. The bias
field is estimated as the residual of the prediction of the observed voxel Yi based on
the intensity class representatives and the membership coefficients. The BFCM al-
gorithm consists in the iteration of the application of the equations (A.15), (A.16)
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and (A.17) until convergence in the estimation of the intensity class representa-
tives. The algorithm A.3 gives a pseudo-code specification of the algoritm.

There were no bias smoothing steps explicit in the description of the algo-
rithm [18], however the later modification proposed in [148] includes an heuristic
smoothing over the bias estimate which ensures that the spatial gradient of the
bias estimate is below a predefined threshold.

Algorithm A.3 BFCM algorithm
Perform the logarithm transformation of the input volume.
Given initial values U (0), B (0)
Repeat

1. t = t+ 1

2. Compute the estimation of the Fuzzy C-Means applying equation (A.16)

3. Compute the updated membership functions U (t) applying equation (A.15)

4. Compute the updated bias field estimation B (t) applying equation (A.17)

Until U (t)= U (t− 1), and B (t) = B (t− 1)



Appendix B

Machine Learning Methods

In this appendix we will gather formal definitions of the Machine Learning meth-
ods employed to build the classification systems tested in chapter 3 on the detec-
tion of Alzheimer Disease (AD) in structural MRI.

B.1 Support Vector Machines
The Support Vector Machine (SVM) [163] algorithm used for this study is in-
cluded in the libSVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm/)
software package. The implementation is described in detail in [36]. Given train-
ing vectors xi ∈ Rn, i = 1, . . . , l of the subject features of the two classes, and a
vector y ∈ Rl such that yi ∈ {−1, 1} labels each subject with its class, in our case,
for example, patients were labeled as -1 and control subject as 1. To construct a
classifier, the SVM algorithm solves the following optimization problem:

min
w,b,ξ

1

2
wTw + C

l∑
i=1

ξi,

subject to

yi(w
Tφ(xi) + b) ≥ (1− ξi), ξi ≥ 0, i = 1, 2, . . . , n.

The dual optimization problem is:

min
α

1

2
αTQα− eTα,

subject to

119
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yTα = 0, 0 ≤ αi ≤ C, i = 1, . . . , l.

Where e is the vector of all ones, C > 0 is the upper bound on the error, Q is
an l by l positive semidefinite matrix:

Qij ≡ yiyjK(xi,xj),

and

K(xi,xj) ≡ φ(xi)
Tφ(xj),

is the kernel function that describes the behavior of the support vectors. Here,
the training vectors xi are mapped into a higher (maybe infinite) dimensional
space by the function φ(xi). The decision function is:

sgn(
l∑

i=1

yiαiK(xi,x) + b).

The regularization parameter C is used to balance the model complexity and
the training error. It was always set to 1.

The chosen kernel function results in different kinds of SVM with different
performance levels, and the choice of the appropriate kernel for a specific appli-
cation is a difficult task. In this study two different kernels were tested: the linear
and the radial basis function (RBF) kernel.

• The linear kernel function is defined as:

K(xi,xj) = 1 + xTi xj,

this kernel shows good performance for linearly separable data.

• The RBF kernel is defined as:

K(xi,xj) = exp

(
−||xi − xj||2

2σ2

)
.

This kernel is basically suited best to deal with data that have a class-conditional
probability distribution function approaching the Gaussian distribution [31]. One
of the advantages of the RBF kernel is that given a kernel, the number of support
vectors and the support vectors are all automatically obtained as part of the train-
ing procedure, i.e., they do not need to be specified by the training mechanism.
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B.2 Artificial Neural Networks

B.2.1 Backpropagation
Many researchers worked in the area of adaptive systems during the 1960’s using
perceptrons and single layer linear neural networks. The single-node perceptron
learning rule has been shown to converge when a linearly separable solution to the
discrimination problem exists (see pp. 82-87 of [120]). However, in 1969, Minsky
and Papert showed that a single node perceptron could not perform the simple
Boolean function exclusive-OR [115] discouraging many researchers from further
work in the area. From that time until the early 1980’s, the shift in AI research
was to Expert Systems and Artificial Neural Network research was restricted to the
realms of cybernetics communities and, while some research in adaptive systems
continued in the areas of control and signal systems. Pointing out that a simple
two-layer network can be easily made to perform the exclusive-OR problem [139]
was one psychological step to thaw the interest into Artificial Neural Networks.
In fact, early works of Rosenblatt developed some algorithms that could train
multilayer networks [136], although lacking a convergence proof. The lack of an
effective training rule for multilayer networks has been cited by many researchers
as the primary reason for the demise of neural network research in the 1970’s.

There are now many training algorithms available for multilayer perceptrons.
The architecture of a typical multilayer perceptron is as shown in B.2.1. Some
algorithms have been developed for multilayer networks where the nodes have
hardlimiter nonlinearitics (e.g., MRII by Widrow [171]). However, the most pop-
ular architecture uses sigmoidal nonlinearities on the nodes. The sigmoid is dif-
ferentiable, which makes possible weight update rules based on the gradient of the
error with respect to the weights in the network. The most popular rule for training
the weights in a multilayer perceptron is the backpropagation (BP) training algo-
rithm. This technique was popularized by [139] although it was first derived by
Werbos in 1974 [169] and rederived by Parker in 1982 [121]. Recently, it has been
suggested by White [170] that the stochastic approximation techniques developed
by Robbins and Monro [135] in 1951 subsume backpropagation.

Backpropagation is a gradient descent method for training the weights in a
multilayer perceptron. A regression or discrimination problems characterized by a
set of training vectorsX such that for every vector x ∈X , there is an associated
desired output vector d ∈ D, where D is the set of desired outputs associated
with the training vectors inX . IfD is a discrete set then we have a classification
problem, if it is a continuous set then we have a regression problem. Let the
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instantaneous error Ep be defined as:

Ep =
1

2
(dp − zp)

T (dp − zp) =
1

2

N∑
k=1

(dk.,p − zk,p)2 , (B.1)

where dk,p is the k-th component of the p-th desired output vector dp, and
zL,k (xp) is the k-th component of the network output vector zL when the p-th
training exemplar xp is input to the multilayer perceptron. L is the number of
layers of the multilayer feedforward network. The output of the j-th node in layer
l is given by:

zl,j (xp) = f

(
Nl−1∑
i=0

wl,j,izl−1,i (xp)

)
, (B.2)

where zl,j is the output of node in layer l, Nl is the number of nodes in layer
l, wl,j,i is the weight which connects the i-th node in layer l− 1 to the jth node in
layer l, and f (·) is the sigmoid nonlinearity, which has a simple derivative:

f ′ (α) =
df (α)

dα
= f (α) (1− f (α)) . (B.3)

The convection is that z0,k (xp) = xp,k. Let the total error ET be defined as
follows:

ET =
P∑
p=1

Ep, (B.4)

where P is the cardinality ofX . Note thatET is a function of both the training
set and the weights in the network. The backpropagation learning rule is defined
as follows:

4w (t) = −η∂Ep
∂w

+ α4w (t− 1) , (B.5)

where 0 < η < 1, which is the learning rate, the momentum factor α is also
a small positive number, and w represents any single weight in the network. In
the above equation,4w (t) is the change in the weight computed at time t. When
the momentum term is used (α 6= 0), the training rule is called the momentum
method; otherwise, it is the backpropagation method. The algorithm (B.5 with
α = 0) is often termed as instantaneous backpropagation because it computes the
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gradient based on a single training vector. Another variation is batch backprop-
agation, which computes the weight update using the gradient based on the total
error ET . When training results are presented, instantaneous backpropagation is
the method used.

To implement this algorithm we must give an expression for the partial deriva-
tive of Ep with respect to each weight in the network. For an arbitrary weight in
layer l this can be written using the Chain Rule:

∂Ep (w)

∂wl,j,i
=
∂Ep (w)

∂zl,j (xp)

∂zl,j (xp)

∂wl,j,i
, (B.6)

where

∂zl,j (xp)

∂wl,j,i
=

∂

∂wl,j,i

[
f

(
Nl−1∑
m=0

wl,j,mzl−1,m (xp)

)]
(B.7)

= f ′

(
Nl−1∑
m=0

wl,j,m zl−1,m (xp)

)
∂

∂wl,j,i

[
Nl−1∑
m=0

wl,j,m zl−1,m (xp)

]

= f ′

(
Nl−1∑
m=0

wl,j,m zl−1,m (xp)

)
zl−1,i (xp) .

Substituting from equation (B.3) for the first term, we get:

∂zl,j
∂wl,j,i

= zl,j (1− zl,j) zl−1,j. (B.8)

With this, equation (B.6) becomes:

∂Ep (w)

∂wl,j,i
=
∂Ep (w)

∂zl,j
zl,j (1− zl,j) zl−1,j. (B.9)

The term ∂Ep(w)/∂zl,j(xp) represents the sensitivity of Ep (w) to the output of
node zl,j (xp). The node zl,j propagates its influence on Ep (w) through all of
the nodes in the succeeding layers. Thus, ∂Ep(w)/∂zl,j(xp) can be expressed as a
function of the sensitivities to nodes in the next highest layer as follows:
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∂Ep (w)

∂zl,j (xp)
=

Nl+1∑
m=1

∂Ep (w)

∂zl+1,m (xp)

∂zl+1,m (xp)

∂zl,j (xp)
(B.10)

=

Nl+1∑
m=1

∂Ep (w)

∂zl+1,m (xp)

∂

∂zl,j (xp)

[
f

(
Nl∑
q=0

wl+1,m,q zl,q (xp)

)]

=

Nl+1∑
m=1

∂Ep (w)

∂zl+1,m (xp)
f ′

(
Nl∑
q=0

wl+1,m,q zl,m (xp)

)
∂

∂zl,j (xp)

[
Nl∑
q=0

wl+1,m,q zl,q (xp)

]

=

Nl+1∑
m=1

∂Ep (w)

∂zl+1,m (xp)
zl+1,m (xp) (1− zl+1,m (xp))wl+1,m,j.

This process can be continued for ∂Ep(w)/∂zl+1,m and so on, until we reach
the output layer. At the output layer we reach a boundary condition where the
sensitivities of the nodes in the last layer are derived from the total squared error
for the p-th pattern as:

∂Ep (w)

∂zL,j
= zL,j (xp)− dj (xp) . (B.11)

While the derivation seems to be working its way forward to the output layer,
the sensitivity of a node is actually computed from the output layer backwards.
The expression in equation (B.11) is called the output error, and the corresponding
expression for hidden layer nodes in equation (B.10) is often referred to as the
hidden layer error, although strictly speaking it does not represent an error because
we do not known the desired response for some hidden units and we can not
compute this error directly.

B.2.2 Probabilistic Neural Networks
The PNNwas first proposed in [153]. The architecture of a typical PNN is as
shown in B.2. The input layer unit does not perform any computation and simply
distributes the input to the neurons in the pattern layer. On receiving a pattern
from the input layer, the neuron xij of the pattern layer computes its output:

Φij (x) =
1

(2π)
d/2 σd

exp

[
−(x− xij)T (x− xij)

2σ2

]
, (B.12)
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Figure B.1: Architecture of a typical multilayer perceptron.

where d denotes de dimension of the pattern vector x, σ is the smoothing pa-
rameter and xij is the neuron vector. The output layer neurons compute the like-
lihood of pattern x begin classified into Ci by averaging the output of all neurons
that belong to the same class:

pi (x) =
1

(2π)
d/2 σd

1

Ni

Ni∑
j=1

exp

[
−(x− xij)

T (x− xij)

2σ2

]
, (B.13)

where Ni denotes the total number of samples in class Ci. If the a priori
probabilities for each class are the same, and the losses associated with making
an incorrect decision for each class are the same, the decision layer unit classifies
the pattern x in accordance with the optimal Bayes’s decision rule based on the
output of all the output layer neurons:

Ĉ (x) = arg max {pi (x)} , i = 1, 2, ...,m. (B.14)

where Ĉ (x) denotes the estimated class of the pattern x and m is the total
number of classes in the training samples. One outstanding issue associated with
the PNN is the determination of the network structure. This includes determining
the network size, the pattern layer neurons and an appropriate smoothing param-
eter. Some algorithms for pattern layer neurons selection have been proposed
[32, 126, 154, 155, 162, 176]. The conventional approach is to assume that the
PNN is a kind of k-NN classifier, with a Gaussian filter imposed upon each data
sample pattern. Therefore, all the patterns in the training set are used as pattern
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neurons. The Gaussian variance parameter is usually set heuristically because
there is no closed form expression relating the classification error.

Figure B.2: Architecture of a typical PNN

B.2.3 Radial Basis Functions Network
RBFs have their origin in the solution of the multivariate interpolation problem
[27]. Arbitrary function g (v) : Rd → R can be approximated by mapping, using
a RBF network with a single hidden layer of p units:

ĝ (v,x) =

p∑
j=1

wjrj (v,σj, cj)

=

p∑
j=1

wjφj (σj, ‖v − cj‖) , (B.15)

where v ∈ Rd; x is the vector of variable factors including wj , σj , and cj;
p denotes the number of basis functions; w = (w1, w2, ..., wp)

T contains the
weight coefficients; rj (·) represents de d-dimensional activation function (also
known as the radial basis function) from Rd to R; ‖·‖ is the Euclidean norm;
cj = (cj1, cj2, . . . , cjd)

T , j = 1, 2, . . . , p, are the centres of the basis functions;
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σj = (σj1, σj2, . . . , σjd)
T , j = 1, 2, . . . , p, are the widths, which are called scaling

factors for the radii ‖v − cj‖, j = 1, 2, . . . , p of the basis functions, respectively;
and φ (·) is a nonlinear function that monotically decreases (or increases) as v
moves away from cj . In order to simplify the notation, coordinate axes-aligned
Gaussian RBF functions are used. When a 1−D Gaussian RBF is centred at the
centroids cj , it follows from equation (B.15) that

ĝ (v,x) =

p∑
j=1

wj exp

(
−‖v − cj‖

2

2σ2
j

)
where x can be written as:

xT =
(
wT ,σT1 , c

T
1 , . . . ,σ

T
j , c

T
j , . . . ,σ

T
p , c

T
p

)T
= (w1, . . . , wp, σ1, c1, . . . , σj, cj, . . . , σp, cp)

T . (B.16)

The network can be trained to approximate g (v) by finding the optimal vector
x given a (possibly noisy) training set:

V =
{

(vn, yn) | n = {1, 2, . . . , N} ,vn ∈ Rd, yn ∈ R
}
.

Training is usually decomposed into two phases. First a clustering algorithm
is used to estimate the Gaussian RBF parameters (centres and variances). After-
wards, linear supervised training can be used to estimate the weights from the
hidden RBF to the output.

B.2.4 Learning Vector Quantization Neural Network
Assume that a finite training set {(xi, yi) ,x ∈ Rn, y ∈ {1, . . . , C} i = 1, . . . ,m}
is given. Classes are an enumerated set {1, . . . , C} and Rn denotes the poten-
tially high-dimensional data space. Denote by X = {xi | i = 1, . . . ,m} all input
signals of the training set. Components of a vector x ∈ Rn are referred to by sub-
scripts, i.e., x = (x1, . . . , xn) . Learning vector quantization (LVQ) as introduced
by Kohonen [95] represents every class c by a set W (c) of weight vectors (proto-
types) in Rn. Weight vectors are denoted by wr and their respective class label is
referred to by cr. A new signal x ∈ Rn is classified by the winner-takes-all rule
by an LVQ network, i.e.,

x 7−→ c (x) = cr such that d (x,wr) is minimum, (B.17)
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where d (x,wr) = ‖x−wr‖2 =
∑n

i=1 (xi −wr
i )

2 denotes the squared Eu-
clidean distance of the data point x to the prototype wr. The respective closest
prototype wr is called winner or best matching unit. The subset

Ω =
{
xi ∈ X | d

(
xi,wr

)
is minimum

}
,

is called receptive field of neuron wr.
The training algorithm of LVQ aims at minimizing the classification error

on the given training set. i.e., the difference of the points belonging to the th
class, {xi ∈ X | yi = c}, and the receptive fields of the corresponding prototypes,
∪wr∈W (c)Ωr, is minimized by the adaptation process. Training iteratively presents
randomly chosen data from the training set and adapts the respective closest pro-
totype by Hebbian learning in the following way: if a vector xi is presented, the
update rule for the winner wr has the form:

4wr =

{
ε · (xi − wr) if cr = c (xi)

−ε · (xi − wr) otherwise

ε ∈ (0, 1) is an appropriate learning rate. As explained in [144] this update
can be interpreted as a stochastic gradient descent on the cost function:

CostLVQ =
∑
xi∈X

fLV Q (dr+ , dr−) ,

where dr+ denotes the squared Euclidean distance of xi to the closest proto-
type wr+ labeled with cr+ = yi and dr− denotes the squared Euclidean distance to
the closest prototype wr− labeled with a label cr− different from yi. For standard
LVQ, the function is:

fLVQ (dr+ , dr−) =

{
dr+ if dr+ ≤ dr−

−dr− otherwise

Obviously, this cost function is highly discontinuous and instabilities arise for
overlapping data distributions.

Various alternatives have been proposed which substitute the training rule of
LVQ by another one to achieve a more stable behavior of training also in case of
overlapping classes or noisy data. Kohonen’s LVQ2.1 optimizes the cost function
which is obtained by setting in the above sum fLVQ2.1 (dr+ , dr−) = Iw (dr+ − dr−)
whereby Iw yields the identity within a window in which adaptation of LVQ2.1
takes place, and Iw vanishes outside. Still this choice might produce an instable
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dynamic, and the window within which adaptation takes place must be chosen
carefully.



.



Appendix C

Neuroimage experimental data bases

C.1 Introduction
The goal of this appendix is to give an impression of the current status of the
neuroscience databases of structural and functional techniques available through
Internet, with an emphasis in Magnetic Resonance Imaging (MRI). Modern neu-
roimaging techniques such as structural (Computed Tomography (CT), MRI and
Diffusion Tensor Imaging (DTI)) or functional techniques (Positron Emission
Tomography (PET), Single Photon Emission Computed Tomography (SPECT),
functional Magnetic Resonance Imaging (fMRI) and functional Diffusion Ten-
sor Imaging (fDTI)) play an important role in the diagnosis of neurodegenerative
diseases.

In recent years MRI has become one of the most popular techniques used in
radiology to visualize the structure and function of the body, because it is a non-
ionizing radiation medical imaging technique. It provides detailed images of the
body in any plane and techniques based on the principles of MRI like fMRI, DTI
or fDTI are being increasingly used in the preclinical study of certain neurode-
generative diseases.

The availability of public image databases for experimental purposes allows
the validation of propositions of computational methods under a common exper-
imental framework. They allow also to reproduce the results claimed by the re-
search groups, both relative to diagnostic issues and to computational methods. In
this regard, the simulated MRI images from the BrainWeb site [4], and the clin-
ical images from the Internet Brain Segmentation Repository (IBSR) [8], which
are provided with expert segmentations that can be used as the ground thruth for

131
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validation processes, have been widely used as benchmarks for a number of algo-
rithms devoted to segmentation, filtering and correction of artifacts in MRI, such
as the Intensity Inhomogeneity (IIH). A number of new resources have been added
in recent years, the fruit of public funded ongoing research projects, to those early
public database efforts. During last years new projects have been developed in-
dividually by research groups as the Laboratory of Neuro Image (LONI) [9] or
through collaborations with other groups, which are working in the same research
area related to image analysis and the study of neurodegenerative diseases, build-
ing consortiums such as [2, 7]. Resulting from these projects there are many
public resources (images, clinical data, demographics and results of the studies)
that are available for validation and refutation purposes of both clinical conclu-
sions and computational algorithms, keeping pace with the fast evolution of the
imaging devices and techniques. In fact, the filed is suffering such an explosive
growth of public resources and an effervescence of results, techniques and publi-
cations that the present account may well be outdated in a very short time. The
works of the PhD candidate have profited from some of these databases, namely
the IBSR, BrainWeb and OASIS repositories.

C.2 IBSR
The Internet Brain Segmentation Repository (IBSR) [8] is a repository of mag-
netic resonance (MR) brain images and segmentation results. The IBSR was ini-
tially created in April 1996 and is maintained by Andrew Worth at the CMA.
Currently there are six MR brain data sets, which were provided by the Center
for Morphometric Analysis at Massachusetts General Hospital and are available
at [8]. Most of them have T1-weighted MR images of healthy subjects. Two data
sets have images of two diferent patients with brain tumors.

There are three different directories in which data sets can be found organized
into “img”, “seg” and “otl” directories, which contain the raw, segmented and out-
lined images, respectively. However not all data sets have the “seg” and/or “otl”
directories. Raw images are 256x256 of 16-bit, but some of them have also these
images scaled to 8-bit. Segmented images are “trinary” images (pixels are labeled
as a gray matter (GM) or white matter (WM) tissue or as other), with the same di-
mensionality as the raw images. Outlined images are the result of semi-automated
segmentation techniques performed by an expert and contain lists of points that
define certain structures in each scan image. They are defined in a 512x512 grid,
because they were created using oversampled images to double size. The differ-
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ence with the segmentation directory is that in the trinary files group all struc-
tures are labeled into GM/WM/other, while the otl files list each neuroanatomical
structure separately, so that the information provided by the segmentation trinary
images is only a small subset of the information in outlined images. The data was
intended to test MRI supervised and unsupervised segmentation algorithms.

Normal subject, ’Ideal’ registered multi-echo brain scan
Data set 657 was created in 1996. It contains seven different image types of the
same normal subject (conventional T1, PD and T2 Spin echo sequences; Fast T1,
low signal/noise, SPGR (1 avg); Fast T1, better signal/noise, SPGR (2 avgs); Fast
PD and T2 FSE sequence). Each of the volumes are registered scans of 18 slices
(“.img” format with no header information), 2.3 Mb (15.75 Mb total). Scans were
acquired at the NMR Center of the Massachusetts General Hospital with a 1.5
tesla General Electric Signa. No segmentation information is provided.

Adult Male
Data set 788_6 was created in 1996. It contains T1-weighted MRI data with com-
plete expert segmentations (trinary and outlines) from a 55 year old male subject.
Each volume has been stored in 60 files that represent the slices through the brain,
without header information. Scans were acquired with a 1.5 Tesla General Elec-
tric Signa. Contiguous 3.0 mm three-dimensional coronal T1-weighted spoiled
gradient echo (SPGR) images of the entire brain was obtained with the following
parameters: TR= 40 msec, TE= 5 msec, flip angle =40 degrees, field of view =24
cm, matrix =256x256, and averages =1.

Images were positionally normalized by imposing a standard three-dimensional
brain coordinate system on each 3D MR scan [158, 55]. The repositioned scans
are then resliced into normalized 3.0 mm coronal, 1.0 mm axial, and 1.0 mm
sagittal scans which are used for subsequent analyses.

GM/WM segmentation (other=0; GM=128 and WM=254) was performed with
a semi-automated intensity contour mapping algorithm [90] and also using signal
intensity histograms. Neuroanatomical regions of interest for GM/WM segmen-
tation include cortical GM, subcortical WM, lateral, third and fourth ventricles,
caudate, putamen, globus pallidus, hippocampus-amygdala complex, thalamus
proper (including all thalamic nuclei except the lateral and medial geniculate bod-
ies), ventral diencephalic complex (including hypo-, epi-, and subthalamus, sub-
stantia nigra, red nucleus medial and lateral geniculate bodies), brainstem, cere-
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bellum cortex and cerebellar central mass, according to the anatomic definitions
of [56], with one exception. The central gray nuclei was subdivided at the hy-
pothalamic fissure into thalamus proper and ventral diencephalon.

5 year old child:
Data set 1320_2 was created in 1996. It contains T1-weighted MRI data with com-
plete expert segmentations (trinary and outlines) from a 5 year old subject. Each
volume has been stored in 128 files that represent the slices through the brain,
without header information. The MRI scan was acquired with a 1.5 Tesla Gen-
eral Electric Signa. Contiguous 1.5 mm three-dimensional coronal T1-weighted
spoiled gradient echo (SPGR) images of the entire brain was attained with the
following parameters: TR = 40 msec, TE = 5 msec, flip angle = 40 degrees, field
of view = 24cm, matrix = 256x256, and averages = 1.

Images were positionally normalized by imposing a standard three-dimensional
brain coordinate system on each 3D MR scan [158, 55]. The repositioned scans
are then resliced into normalized 1.5 mm coronal, 0.9375 mm axial, and 0.9375
mm sagittal scans which are used for subsequent analyses.

GM/WM segmentation (other=0; GM=128 and WM=254) was performed fol-
lowing the procedure described in section C.2.

20 Normal Subjects
Data set 20_Normal was created in 1997. It contains T1-weighted MR images,
from 20 normal subjects, of 3.1mm slice thickness (16-bit data; 8-bit scaled 3D
data and 8-bit scaled 3D data (brain regions only) ) and expert segmentations
(other=0; csf=128; GM=192; WM=254). Volumes of 16-bit have been stored in
60 “.img” files that represent the slices through the brain. On the other hand 8-bit
and segmented images have been stored in data files (.buchar) and header files
(.hdr), where header files have four ascii numbers that give the size of the data set.
The segmented and 8-bit images have less slices than the 16-bit image data. The
matching segmentation must be done using the offsets given at [8] for this data
set.

Images are coronal three-dimensional T1-weighted spoiled gradient echo MRI
scans, that were obtained on two different imaging systems. Ten FLASH scans
performed on a 1.5 tesla Siemens Magnetom MR System (Iselin, NJ) with the
following parameters: TR = 40 msec, TE = 8 msec, flip angle = 50 degrees, field
of view = 30 cm, slice thickness = contiguous 3.1 mm, matrix = 256x256, and
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averages = 1. Ten 3D-CAPRY scans performed on a 1.5 tesla General Electric
Signa MR System (Milwaukee, WI), with the following parameters: TR = 50
msec, TE = 9 msec, flip angle = 50 degrees, field of view = 24 cm, slice thickness
= contiguous 3.0mm, matrix = 256x256, and averages = 1.

Images were positionally normalized by imposing a standard three-dimensional
brain coordinate system on each 3D MR scan [158, 55]. The repositioned scans
are then resliced into normalized 3.0 mm coronal, 1.0 mm axial, and 1.0 mm
sagittal scans which are used for subsequent analyses.

Segmentation was performed on the positionally normalized scan by trained
investigators using a semi-automated intensity contour mapping algorithm [90]
and also using signal intensity histograms. Other neuroanatomical structures were
segmented similarly [56].

Segmentation Performance Index

IBSR facilitates segmentation comparisons of six classification methods tested
over this collection of images, provided by Jagath C. Rajapakse and SPM5 GM
segmentation done by On Tsang. Results from Rajapakse are partially based on
the method described in [127], where the comparison metric is the average overlap
also called Tanimoto coefficient [48], eq. C.1:

T =
|A ∩B|
|A ∪B|

, (C.1)

where A and B are sets of voxels corresponding to different segmentations.

Tumor patients: various scans over time
Subject 126

This data set was created in 1999. It contains multiple scans of a 59 year old
female with a tumor, taken at roughly 6 month intervals over three and a half
years. The T1 + Gadolinium MRI scans were acquired with a 1.5 Tesla General
Electric Signa and different parameters.

Subject 536

This data set was created in 1999. It contains multiple scans of a patient with a
tumor (images and outlines), taken at roughly 6 month intervals over three and a
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half years. Each series has been stored in 60 .img files with no header information.
The pixel resolutions on these are 0.9375 x 0.9375 mm in-plane by 3.1 mm slice
thickness. The outline files include 4 outlines: a contralateral reference region (the
cerebral hemisphere of the right (unaffected) hemisphere), and three outlines of
the enhancing tumor based upon intensity countours 1, 2 and 3 standard deviations
above the mean of the contralateral reference region.

Images were registered using the CMA’s standard positional normalization
coordinate system.

IBSR V2.0
This data set was created in 2003 and 2004 and currently contains T1-weighted
MR Image data from eighteen subjects, with expert segmentations of 43 individ-
ual structures (1.5mm slice thickness). Data are in CMA and analyze formats.
For each subject there is T1-weighted volumetric images that have been ’posi-
tionally normalized’ into the Talairach orientation (rotation only) and also have
been processed by the CMA ’autoseg’ biasfield correction routines.

GM/WM segmentation include segmentation of the 3rd ventricle, 4th ventri-
cle, brain stem, and left and right: accumbens area , amygdala, amygdala anterior,
caudate, cerebellum cortex, cerebellum exterior, cerebellum white matter, cere-
bral cortex, cerebral exterior, cerebral white matter, hippocampus, inf. lat. vent.,
lateral ventricle, pallidum, putamen, thalamus proper, ventralDC, and vessel.

C.3 BrainWeb: Simulated Brain Database
This simulated brain database (SBD) [4] was provided by McConnell Brain Imag-
ing Centre at the Montréal Neurological Institute [17], McGill University. It con-
tains a set of realistic MRI data volumes produced by an MRI simulator [97, 98,
40]. Currently contains simulated brain MRI data based on two types anatomical
models [41] (“phantoms”): normal and multiple sclerosis (MS), which can serve
as the ground truth for any analysis procedure. These anatomical models consist
of a set of 3-dimensional “fuzzy” tissue membership volumes, one for each tissue
class. The voxel values in these volumes reflects the proportion of tissue present
in that voxel, in the range [0, 1]. The volumes are defined at a 1mm isotropic
voxel grid in Talairach space, with dimensions 181x217x181 (XxYxZ) and origin
coordinates -90,-126,-72 (x,y,z) in Talairach space.
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In addition to the fuzzy tissue membership volumes, a discrete anatomical
model is provided which consists of a class label (integer) at each voxel, repre-
senting the tissue which contributes the most to that voxel.

Volumes can be downloaded in MINC or raw format.

Normal Brain Volumes
Pre-computed simulated SBD

In the pre-computed SBD data are available for viewing in three orthogonal views
(transversal, sagittal, and coronal) and for downloading with the parameter set-
tings fixed to 3 modalities, 5 slice thicknesses, 6 levels of noise, and 3 levels of
intensity non-uniformity. These simulations are based on an anatomical model
of normal brain, which is available at a resolution of 1mm3 and also for thicker
slices (in Z direction): 3mm, 5mm, 7mm and 9mm. Tissue classes available for
this phantom are: Background, CSF, GM, WM, Fat, Muscle/Skin, Skin, Skull,
Glial Matter and Connective.

Custom MRI simulations interface

Through the BrainWeb custom MRI simulations interface it is possible to choose
arbitrary parameters and obtain different volumes based on the same normal anatom-
ical model as in subsection C.3.

20 sets of simulated data with specific parameters

Currently, it is only possible to download 20 different sets of T1-weighted simu-
lated data, based on 20 anatomical models of 20 normal brains, with these specific
parameters: SFLAH (spoiled FLASH) sequence with TR=22ms, TE=9.2ms, flip
angle=30 deg and 1mm isotropic voxel size. Tissue classes available for these
phantoms are: Background, CSF, GM, WM, Fat, Muscle/Skin, Skull, Blood ves-
sels, Connective (region around fat), Dura Matter and Bone Marrow.

MS Lesion Brain Volumes
Pre-computed simulated SBD

In the pre-computed SBD data are available for viewing in three orthogonal views
(transversal, sagittal, and coronal) and for downloading with the parameter set-
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tings fixed to 3 modalities, 5 slice thicknesses, 6 levels of noise, and 3 levels of
intensity non-uniformity. These simulations are based on an anatomical model
of a human brain with “moderate” MS lesions, which is available at a resolution
of 1mm3. Tissue classes available for this phantom are: Background, CSF, GM,
WM, Fat, Muscle/Skin, Skin, Skull, Glial Matter, Connective and MS lesion.

Custom MRI simulations interface

Through the BrainWeb custom MRI simulations interface it is possible to choose
arbitrary parameters and obtain different volumes based on three different MS
anatomical models with “moderate” (the same anatomical model as subsection
C.3), “mild” and “severe” MS lesions.

C.4 OASIS
The Open Access Series of Imaging Studies (OASIS) [110] provides brain imag-
ing data that are freely available for distribution and data analysis [12]. It is made
available by Dr. Randy Buckner at the Howard Hughes Medical Institute (HHMI)
at Harvard University, the Neuroinformatics Research Group (NRG) at Washing-
ton University School of Medicine, and the Biomedical Informatics Research Net-
work (BIRN). Currently available data set consists of a cross-sectional collection
of 416 subjects covering the adult life span aged 18 to 96 including 100 individ-
uals over the age of 60, who have been diagnosed with early-stage Alzheimer’s
Disease (AD).

For each subject 3-4 T1-weighted magnetization prepared rapid gradient-echo
(MP-RAGE ) MRI scans were acquired on a a 1.5-T Vision scanner (Siemens,
Erlangen, Germany), corresponding to multiple repetitions of the same structural
protocol within a single session; a motion-corrected coregistered average of all
available data; a gain-field corrected atlas-registered image to an standard space
[158, 29]; and a masked version of the atlas-registered image, a GM/WM/CSF
segmented image [178]. Additionally, for 20 of the nondemented subjects, im-
ages from a subsequent scan session are also included as a means of assessing
acquisition reliability. All images are in 16-bit big-endian Analyze 7.5 format.

This data set has been based on the following publications for demographic
[137] (gender, handedness, age, education and socioeconomic status), clinical as-
sessments [116, 137] (Mini-Mental State Examination (MMSE) and Clinical De-
mentia Rating (CDR)), and derived anatomic measures [29, 58] (total intracranial
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volume (eTIV), atlas scaling factor (ASF) and normalized whole brain volume
(nWBV)).

The database has a complex structure, shown in figure C.1. It contains, be-
sides the raw MRI scans, the anatomic information, the registered images, the
segmented and skull stripped images. Therefore, the database can be used to test
several algorithms at different points in the processing pipeline. Figure C.2 con-
tains a table with the name codification and corresponding image types. Finally,
figure C.3 contains a summary of the database demographic information.

C.5 MORPHDTI_P0001
This data set contains high SNR DTI data and the co-registered DTI data for a
healthy male volunteer scanned on three separate scanning sessions over 2 days
[54, 99]. Fifteen DTI scans were performed in each scan session, producing 45
DTI datasets in total. Data was acquired on a 1.5T Philips MR unit at the F.M.
Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute,
Johns Hopkins University.

C.6 MIRIAD
Multisite Imaging Research In the Analysis of Depression (MIRIAD) data set
[3, 6] has dual-echo MRI scans (currently 100 subjects) acquired at Duke Univer-
sity, which have been anonymized and uploaded by the Neuropsychiatric Imaging
Research Laboratory (NIRL) [10] to the Biomedical Informatics Research Net-
work/Storage Resource Broker (BIRN/SRB) [2] where they are accessed at BWH
(Surgical Planning Laboratory, SPL) [14] and UCLA (LONI) [9].

At the Laboratory of Neuro Imaging (LONI) a study-specific atlas is con-
structed from the MRI scans with both PD and T2 contrasts. Subjects’ scans are
linearly aligned to the study space to acquire spatial normalization factors, and a
BWH tissue and structure probability field atlas is nonlinearly aligned to each in-
dividual subject. Dual-echo scans are segmented utilizing the individual subject-
aligned tissue probability atlases at the Surgical Planning Laboratory, SPL; re-
gions of interest and cerebral tissues are classified by an expectation maximization
algorithm.

LONI completes the scan processing with a measurement of lobar volumes via
a nonlinear registration of study-specific lobar atlas to native subject spaces, and
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Figure C.1: File structure of the OASIS database
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Figure C.2: Types of Images included in the dataset

Figure C.3: Demographic summary of the OASIS database
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regional and lobar tissue volumes are computed. The image processing results,
both the images and volumetric measurements, are uploaded to the SRB. Initial
statistical analyses were performed at Duke, as the associated metadata (e.g., age,
sex, diagnosis, clinical scales) resided there at the beginning of the project.

C.7 ELUDE
The Efficient Longitudinal Upload of Depression in the Elderly (ELUDE) data set
is an anonymized collection of a longitudinal study of late-life depression at Duke
University. There are 281 depressed subjects and 154 controls included. An MR
scan of each subject was obtained every 2 years for up to 8 years (total of 1093
scans). Clinical assessments occurred more frequently and consists of a battery of
psychiatric tests including several depression-specific tests such as the HAM-D,
CESD, and MADRS.

C.8 Alzheimer’s CATX
This Data set [15] contains activation maps of 9 AD patients & 9 elderly controls
[145]. It was provided by Andrew Saykin, Dartmouth Medical School and the last
updated was in May 10, 2004. The task is about semantic processing: category ex-
emplar (CATX)-identify word pairs with correct category examplar relationships
from among incorrect ones.

C.9 Realistic MRI data set
This Data set [15] contains realistic brain lesion distributions generated using a
lesion-deficit simulator with spatial statistical model conforming to the Frontal
Lobe Injury in Childhood Study [112, 70].

C.10 DTMRI Data
This is a DTI data set [5] acquired under Human Brain Project and National Re-
search Resource Center grant. It contains raw and processed DTI data of 15 nor-
mal population, WM atlases, DTI software. Currently the database has 2.5 mm
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isotropic resolution images and 2.2 mm isotropic resolution images. Only 2.5 mm
data are available.

C.11 BIRN (Biomedical Informatics Research Net-
work)

The Biomedical Informatics Research Network (BIRN) [2] was launched in 2001
with the goal of fostering large-scale collaborations in biomedical science by uti-
lizing emerging cyberinfrastructure. An essential feature of the project is the col-
laboration of computer scientists and biomedical researchers from different re-
search disciplines to design and implement a distributed architecture of shared
resources usable by all biomedical researchers in order to advance the diagnosis
and treatment of disease.

FBIRN_Traveling_Subject2003
This dataset includes five healthy subjects imaged twice at each of ten FBIRN
MRI scanners on successive days. Functional and structural imaging, behavioral,
and demographic data are available from 100 scanning sessions on these subjects.

BrainScape_BS002
This dataset includes seventeen healthy subjects with four resting state fixation
scans plus one T1 scan and one T2 scan. The data were collected as part of a
study on the behavioral effects of spontaneous BOLD fluctuations [60].

BrainScape_BS003
This dataset includes ten healthy subjects scanned 3 times with 3 conditions: eyes
open, eyes closed, and fixating in addition to two anatomical scans (T1 and T2)
[59].

fBIRN PhaseII
The Phase II multi-site clinical imaging study consists of approximately 250 sub-
jects, both chronic schizophrenics and age- and gender- matched controls. The
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MRI data include structural and fMRI images from two separate scanning vis-
its for each subject, including the Sternberg Item Recognition Paradigm and the
Auditory Oddball paradigm, a breath hold task, and a sensorimotor task. The
clinical assessments include behavioral measures, handedness and demographic
measures, SES, smoking measurements, North American Adult Reading Test
(NARRT), and clinical severity assessments for the clinical subjects. Currently
data from three sites are released to the general research community; the remain-
der are awaiting IRB approvals for public data sharing.

C.12 ADNI (Alzheimer’s Disease Neuroimaging Ini-
tiative)

The ADNI [1] was launched in 2003 by the National Institute on Aging (NIA),
the National Institute of Biomedical Imaging and Bioengineering (NIBIB), the
Food and Drug Administration (FDA), private pharmaceutical companies and
non-profit organizations, as a $60 million, 5-year public-private partnership.

The primary goal of ADNI has been to test whether serial MRI, PET, other
biological markers, and clinical and neuropsychological assessment can be com-
bined to measure the progression of mild cognitive impairment (MCI) and early
AD. Currently there are available more than 32,000 MR and PET scans.

The initial goal of ADNI was to recruit 800 adults, ages 55 to 90, to partic-
ipate in the research, approximately 200 cognitively normal older individuals to
be followed for 3 years, 400 people with MCI to be followed for 3 years, and 200
people with early AD to be followed for 2 years.

C.13 Functional Brain Imaging of Young, Nonde-
mented, and Demented Older Adults

This fMRI data set is available on Internet [16] since the year 2000. A paradigm
involving repeated presentation of sensory-motor response trails was administered
to 41 participants (14 young adults (18-24), 14 nondemented older adults (66-89)
and 13 demented older adults (68-83)) [28].

All subjects were right-handed, english speakers, with normal (corrected) vi-
sual acuity. A history of neurological or visual illness served as exclusion criteria
for all potential subjects. Furthermore, older adults were excluded if they had
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neurologic, psychiatric or mental illness which could cause dementia. Demen-
tia status was determined using recruitment and assessment procedures developed
by the Alzheimer’s Disease Research Center at Washington University. Clini-
copathology studies in cognitively healthy aging and AD; Relation of histologic
markers to dementia severity, age, sex, and APOE genotype; CDR.

Stimulus display was controlled by a Power Macintosh computer (Apple, Cu-
pernico, CA) using PsyScope software (Cohen, MacWhinney, Flatt, & Provost,
1993). Keypress responses were recorded using a fiber-optic light-sensitive key-
press connected to a PsyScope button box (Carnegie Mellon University, Pitts-
burgh, PA). All buttons except one were physically covered to minimize response
complexity.

Stimuli were rear projected (Am- Pro Model LCD-150, Ampro, Melbourne,
FL) onto a screen placed at the back of the magnet bore. Participants viewed the
screen through a mirror fastened to the top of the head coil. Participants requiring
corrective lenses (mostly older adults) were supplied magnetcompatible glasses.

The basic task paradigm consisted of presentation of a 1.5-sec duration visual
stimulus. Participants pressed a key with their right index fingers upon stimulus
onset. The visual stimulus was an 8-Hz counterphase flickering (black to white)
checkerboard subtending approximately 12º of visual angle (6º in each visual
field). Stimulus parameters were identical to those used by [114]. The stimu-
lus onset was triggered at the beginning of the image acquisition via the PsyScope
button box. Spatial frequency of the checkerboard decreased with visual angle
to be approximately constant in relation to acuity across the visual field. Runs
were structured such that for every eight-image acquisition (21.44 sec), one of
two kinds of trial condition were presented (15 trials per run for a total of 60 trials
per subject).

Task trials either involved stimuli presented in isolation (one-trial condition)
or in pairs with an inter-trial interval of 5.36 sec (two-trial condition). One-trial
and two-trial conditions were pseudorandomly intermixed such that eight trials of
one type and seven of the other appeared in each run. The logic of this design [42]
is that the onetrial conditions can be examined to determine the evoked hemody-
namic response to an isolated, transient event. The two-trial conditions further
allowed the summation properties of the hemodynamic response to be examined:
To the degree that the added responses in the two-trial conditions were similar
to the responses in the one-trial conditions, the hemodynamic dynamic response
exhibits linear summation. Four image acquisitions involving only fixation were
acquired prior to the first trial and following the last trial in each run.
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C.14 Neuroscience Database Gateway (NDG)
The Neuroscience Database Gateway (NDG) [11] began in 2004 as a pilot project
developed by the Society’s Brain Information Group (BIG). The NDG is now
overseen by the Society’s Neuroinformatics Committee and is hosted at Yale
University (by Gordon Shepherd and Luis Marenco). The SfN Neuroscience
Database Gateway provides links to five main types of database: Databases of
experimental data; knowledge bases; software tools for neuroscience; bioinfor-
matics resources; providers of research materials; all neuroscience databases.

C.15 LONI Image Data Archive (IDA)
The LONI Image Data Archive (IDA) [9] is a user-friendly environment for archiv-
ing, searching, sharing, tracking and disseminating neuroimaging and related clin-
ical data. The IDA is utilized for dozens of neuroimaging research projects across
North America and Europe and accommodates MRI, PET, MRA, DTI and other
imaging modalities. A flexible data de-identification engine and encrypted file
transmission help ensure compliance with patient-privacy regulations.

C.16 mBIRN Data Repository (mBDR)
The mBIRN Data Repository (mBDR) [3] is a public resource presented by the
Morphometry testbed of the Biomedical Informatics Research Network (BIRN).
It includes a range of raw and post-processed MRI images, related derived mea-
sures, and related subject measures. The data are organized by project OASIS,
morphDTI_p0001, MIRIAD, ELUDE

C.17 fMRI Data Center (fMRIDC)
The fMRIDC is a public repository [16] of peer-reviewed fMRI publications projects
and their underlying data. Currently there are 122 data sets available.
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C.18 DEnLab Data Repository
The repository [15] contains both medical data such as the ones referred in se-
cions C.8 and C.9, as well as some information about methods and computational
techniques for medical image processing.

C.19 ICBM Human Atlases
The LONI Atlas site [9] consists of a collection of data, online viewers, images
and animations that describe the various atlases (e.g. Alzheimer’s disease Tem-
plate) developed at LONI. A complete description and discussion of these atlas
requires a dedicated chapter.



.



Appendix D

The General Linear Model and SPM

In this appendix we give a brief account of the fundamentals of the statistical
methods that are implemented in SPM software, freely available from the web-
site http://www.fil.ion.ucl.ac.uk/spm/, and constitute the standard
analysis protocol for several applications, among them the Voxel Based Mor-
phometry (VBM) and the analysis of fMRI data. We introduce the nomenclature,
we review the General Linear Model (GLM) formulation, the statistical inference
tests and the way Random Field Theory are applied to obtain detection of signi-
ficative differences (VBM) or activations (fMRI).

D.1 Introduction
Characterizing a regionally specific effect rests on estimation and inference. In-
ferences in neuroimaging may be about differences expressed when comparing
one group of subjects to another or, within subjects, changes over a sequence of
observations. They may refer to structural differences (e.g. in VBM) [20] or neu-
rophysiological measures of brain functions (e.g. fMRI or functional magnetic
resonance imaging). The principles of data analysis are very similar for all of
these applications.

Looking for any effect in each voxel we fit a statistical model to the data,
to give us model parameters. We then use the model parameters to look for an
effect we are interested in, such as the difference between a task and baseline or
identifying and characterizing structural differences among populations. To do
this, we usually calculate a statistic for each brain voxel that tests for the effect of
interest in that voxel.

149
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The result is a large volume of statistic values. We now need to decide if
this volume shows any evidence of the effect. To do this, we have to take into
account that there are many thousands of voxels and therefore many thousands of
statistic values. This is the multiple comparison problem in functional imaging.
Random field theory is a recent branch of mathematics that can be used to solve
this problem.

D.2 Nomenclature
• Contrast: The linear combination of the estimated parameters to formulate

a question on the data as a statistical test, either a t-test or an F-test.

• Degrees of Freedom: of the distribution of the statistics specified by the
contrast.

• Design Matrix: The matrix of covariates for the GLM. In the case of the
fMRI analysis it corresponds to the design of the experiment and the models
of diverse effects in the data. In the VBM it corresponds to the specification
of the two population t-test and some covariates.

• The Euler characteristic (EC): is a property of an image after it has been
thresholded (number of blobs of Z-scores above a certain threshold).

• Family Wise Error (FWE): the accepted rate of false positives when we
have a large number of simultaneous tests (the probability of having even
one false discovery over the ensemble of tests.)

• False Discovery Rate (FDR): the expected proportion of incorrectly rejected
null hypotheses.

• Resel: is a term introduced by Worsley [172] and allows us to express the
search volume in terms of the number of ‘resolution elements’ in the statis-
tical map. We can use the FWHM to calculate the number of resels in the
image. In 3D a resel is a cube of voxels of size (FWHM in x) by (FWHM
in y) by (FWHM in z).

• Statistical parametric maps (SPMs) are images or fields with values that
are, under the null hypothesis, distributed according to a known probability
density function, usually the Student’s t or F-distributions. These are known
colloquially as t- or F-maps.
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SPM Statistical parametric map(ping) fMRI Functional Magnetic resonance imaging
GLM general linear model PET Positron emission tomography
RFT Random field theory HRF Haemodynamic response function
VBM Voxel-based morphometry IID Independent and identically distributed
FWE Family-wise error DCT Discrete cosine transform
FDR False discovery rate MR Magnetic Resonance
MRI Magnetic resonance imaging FWHM Full width at half maximum

Table D.1: Some common acronyms

• Statistical parametric mapping (SPM software) is a suit of MATLAB func-
tions and subroutines with some externally compiled C routines. The SPM
software package has been designed for the analysis of brain imaging data
sequences.

D.3 The GLM Formulation
The GLM is a statistical linear model, which supports many parametric techniques
such as linear or multiple regression models by an equation that expresses the ob-
served response variable in terms of a linear combination of explanatory variables
X , the design matrix, plus a well behaved error term. Each column of the de-
sign matrix corresponds to an effect one has built into the experiment or that may
confound the results. The general expression of the GLM model is

y = Xβ + ε, (D.1)

where y is a M × 1 vector of observations and M is the number of observations.
The M × L matrix X is the design matrix and it has one row per observation and
one colum per model parameter (explanatory variable). β is a L × 1 vector of
unknown parameters and ε is a M × 1 vector of error terms, usually assumed to
be εj

iid∼ N(0, σ2). In some applications (i.e. fMRI) the columns of X are called
the regressors and the β parameters are the regression coefficients. If we consider
the simultaneous modeling of all the voxels in a collection of MRI data, either a
a group of subject’s MRI for VBM or a sequence of T2* MRI volumes for fMRI,
then we have:

Y = XB + ε, (D.2)
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where Y is the M × N matrix of voxel observations reshaped in a columnwise
disposition, and M is as before the number of observations, and N is the number
of voxels. The L × N matrix B is the matrix of parameters of the models of all
the voxels also disposed columnwise.

But there are some situations that this model does not cover. For instance,
in fMRI (a) BOLD responses have a delayed and dispersed form, (b) the BOLD
signal includes substantial amounts of low-frequency noise and (c) the data are se-
rially correlated (temporally autocorrelated) violating the statistical independence
assumption about the noise model in the eq. D.1.

To account for the shape of BOLD response a convolution model is intro-
duced, which convolves stimulus function with a canonical haemodynamic re-
sponse function (HRF). The response of a linear time-invariant (LTI) system is
the convolution of the input with the system response to an impulse.

The solution for the low-frequency noise is the highpass filtering. Removing
low frequencies from the time-series allows the model to fit serial correlations
over a more restricted frequency range or shorter time spans. Drift removal can
be implemented by including drift terms in the design matrix or by including the
implicit residual forming matrix of DCT set in S to make it a highpass filter,
Sy = SXβ + ε.

To deal with serial correlations Worsley and Friston [173] proposed a proce-
dure known as pre − colouring , that replaces the unknown endogenous autocor-
relation by imposing some known autocorrelation structure on the data (filtering
with a matrix W ) and use Satterthwaite correction for df’s (degrees of freedom).
An alternative approach [173] is the pre − whitening , which tries to estimate a
filter matrix W from the data to de-correlate the errors. Wy = WXβ +Wε.

D.4 Parameter estimation
In this step we need some method of estimating parameters that “best” fits the
data. In the case of SPM5 that is achieved by the method of ordinary least squares,
which defines "best" as the sum, S, of squared residuals (or differences between
the actual and fitted values):

S =
M∑
m=1

e2
m =

M∑
m=1

(ym − xm1β̂1 − ...− xmLβ̂L)2 (D.3)

where e = y − ŷ = y −Xβ̂ and β̂ =
[
β̂1,..., β̂L

]
is the vector of parameter
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estimates. The minimum of S is found by equating the gradient to zero:

∂S

∂β̂l
= 2

M∑
m=1

(−xmlβ̂1 − ...− xmLβ̂L) = 0, l = 1, ..., L (D.4)

The least squares estimate β̂ satisfy the normal equations XTy = (XTX)β̂,
thus, if (XTX) is invertible the least squares estimates are:

β̂ = (XTX)−1XTy. (D.5)

If we take into account all the voxels, the parameter estimation can be done for all
the voxels simultaneously:

B̂ = (XTX)−1XTY. (D.6)

If X has linearly dependent columns, it is rank deficient, i.e. (XTX) is
singular and has no inverse. In this case, the model is overparameterized (overde-
termined), therefore the parameters are not ‘unique’, ‘identifiable’ or ‘estimable’.
For such models, XTX is not invertible so we must resort to generalised inverses
(SPM uses the pseudo-inverse).

The term XTX is called information matrix and reflects the orthogonality of
the design matrix. High covariance between the columns of the design matrix in-
troduces redundancy. This can increase the covariance of the parameter estimates
(XTX)−1 and leads to low efficiency (depending on the particular contrast). In
the SPM package, for each pair of columns of the design matrix, the orthogonality
matrix depicts the magnitude of the cosine of the angle between them, with the
range 0 to 1 mapped from white to black. The cosine of the angle between two
vectors a and b is obtained by: cos α = a·b

‖a‖‖b‖ . If both vectors have zero mean
then the cosine of the angle between the vectors is the same as the correlation
between the two variates.

D.5 Statistical Inference
This is the last part of the analysis where we derive t- and F-statistics to test for
a linear combination of effects. The way to do that is using voxel-wise statistical
tests, which are comprised in a SPM. After that, RFT is applied to correct for
multiple dependent comparisons.

Using statistical hypothesis testing we look for a linear combination of effects.
The null hypothesis H0 is the hypothesis that there is no effect, and the alternative
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hypothesis H1 is the hypothesis that there is an effect. Absence of evidence is not
evidence of absence, therefore one can not accept the null hypothesis (one can just
fail to reject it).

The evidence aboutH0 is summarised by the test statistic T , which is typically
small in magnitude when the hypothesis H0 is true and large when false. We
need to know the distribution of T under the null hypothesis. We denote α the
acceptable false positive rate (Type I Error) and uα the threshold, which controls
α = p(T > uα |H0) . We obtain the conclusion about the hypothesis through
the observed significance level (or p value), which is the smallest fixed level t at
which the null hypothesis can be rejected in favour of the alternative hypothesis if
t > uα, where p(T > t |H0).

We are usually not interested in the whole β, the vector of effects. Therefore,
we define c as a contrast vector of the same length as β to select specific effects
of interest, so that cTβ is a linear combination of regression coefficients β. Under
the i.i.d. assumptions:

cT β̂ ∼ N(cTβ, σ2cT (XTX)−1c). (D.7)

In the SPM software we can perform t or F statistics for making inferences,
depending on what we are looking for. While t-tests are used to assess individual
effects, F-tests allow us to assess the significance of a set of effects. The t-tests
are specified by one dimensional contrasts (t-contrast) so that the alternative hy-
pothesis corresponds to the contrast being greather than 0, that is, H1 : cTβ > 0.
The null hypothesis is H0 : cTβ = 0 and the test statistic is computed as

T =
cT β̂√
var(cT β̂)

=
cT β̂√

σ2cT (XTX)−1c
∼ tN−p (D.8)

Where T does not depend neither on the scaling of regressors nor on the scal-
ing of the contrast.

F-test uses the extra-sum-of-squares principle. F-contrast allows to assess gen-
eral linear hypotheses, and compare models in a hierarchy, where inference is
based on an F-statistic. Therefore employing the extra-sum-of-squares principle
we can compare the model and a reduced model. Suppose we have a model with
parameter vector β that can be bi-partitioned into, β =

[
βT1 ,β

T
2

]T
, and suppose

we wish to test H : β1 = 0. The correspondig partitioning of the design matrix

X is X =

[
X1

...X2

]
, and the full model is:
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Y =

[
X1

...X2

] β1

· · ·
β2

+ ε, (D.9)

which, when H is true, reduces to the reduced model Y = X2β2 + ε. The
residual sum-of-squares for the full model is defined as RSS =

∑
ε̂2
full and that

of the reduced model as RSS0 =
∑
ε̂2
reduced . Therefore the following F-statistic

expresses the ratio of explained variability and unexplained variability (error)

F ∝ RSS0 −RSS
RSS

∼ Fv1, v2 (D.10)

where the extra sum-of-squares due to β1 after β2 is defined asESS = RSS0−
RSS; v1 = rank(X)− rank(X0) and v2 = M − rank(X).

Some remarks about F-test:

• F tests a weighted sum of squares of one or several combinations of the
regression coefficients β.

• In practice, we do not have to explicitly separate X into [X1X2] thanks to
multidimensional contrasts.

• Null Hypothesis: H0 : β1 = β2 = · · · = βn1 = 0; H1 : at least one βk 6= 0.

• In testing uni-dimensional contrast with an F-test, for example β1 − β2, the
result will be the same as testing β2 − β1. It will be exactly the square of
the t-test, testing for both positive and negative effects.

The t-contrast basically tells us about whether a specific linear contrast of beta
estimates differs from zero. The F-contrast tells us about how much a given linear
contrast of parameter estimates (as a subset of such contrasts) contributes uniquely
to explaining variance in the data.

D.6 Thresholding methods
In this section we will give a brief summary of the Bonferroni correction and the
Random Field Theory (RFT), which correct for multiple dependent comparisons
and are used by SPM2 and later versions of the SPM package. Although there are
other thresholding methods that are currently implemented in many fMRI stud-
ies such as cluster thresholds, thresholds obtained by permutations and ad hoc
methods.
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D.6.1 Bonferroni correction
If we have a number n of simultaneous statistical tests, such as it is the case when
performing VBM or fMRI analysis, for a given significance level α, the prob-
ability that all the computed statistics fall, by chance, below the corresponding
threshold is (1− α)n , [61]. The Family-Wise Error (FWE) rate P FWE is defined
as the probability that at least one of the statistics is, by chance, above the test
threshold is P FWE = 1 − (1− α)n . Since α is small the family-wise error rate
can be approximated by P FWE ≤ n ·α. Therefore the following is a lower bound
on the value of the significance level if we want to ensure that the probability of
false positives is the FWE rate:

α =
P FWE

n
. (D.11)

This is the so-called Bonferroni correction, which is very conservative when the
statistical test are not in fact independent, such as in the case of the VBM and
fMRI.

D.6.2 Random Field Theory
In the case of MRI image analysis the assumption of independence of the voxel-
wise test is not correct, because there are always spatial correlations due to the
physiological processes. The extreme conservativeness of the Bonferroni method,
coupled with its inability to take into consideration the particular features of fMRI
data, requires other technique for error control such as the RFT in which the ex-
pected Euler characteristic (EC) is given as an approximation of the probability of
a FWE P FWE ≈ E [EC].

In RFT we need a smooth statistical map, so its application proceeds in stages.
First, we estimate the smoothness (spatial correlation) of our statistical map. Then
we use the smoothness values in the appropriate RFT equation. This allows us to
calculate the threshold at which we would expect 5 per cent of equivalent sta-
tistical maps arising under the null hypothesis to contain at least one area above
threshold. For an image of two dimensions

E [EC] = R(4 loge 2)(2π)−
3
2Zte

− 1
2
Z2
t (D.12)

Where R is the number of resels and Zt is the Z-score threshold. There are
other kind of random fields besides of Z-scores, such as t, F and χ2 random fields
(i.e. the SPM software uses t and F random fields).
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D.7 SPM for Voxel-Based Morphometry
Voxel-based morphometry (VBM) has been developed to characterise brain differ-
ences in vivo using structural magnetic resonance (MR) images. VBM is a simple
procedure that enables classical inferences about the regionally-specific effects,
of experimental factors, on some structural measure. These effects are tested after
discounting the large-scale anatomical differences removed by spatial normaliza-
tion. Because these differences have been removed, VBM is not a surrogate for
classical volume analysis of large structures or lesions [113].

D.7.1 Preprocessing for VBM
The procedure is relatively straightforward, and involves spatially normalizing
and segmenting high-resolution magnetic resonance images into the same stereo-
taxic space. The MR images are segmented, producing images that reflect the
spatial distribution of a tissue type or attribute (e.g., GM). To compare brains of
different subjects, all the GM segments are warped to the same stereotaxic space.
A correction can be applied to the data that accounts for expansion and contrac-
tion during this nonlinear spatial normalization. The normalized segments are
then smoothed. This makes each voxel a measure of the proportion of the brain in
a region around the voxel that is GM (i.e. GM density).

D.7.2 Design matrix construction, experimental design
Statistical analysis using the GLM is performed on the pre-procesed images to
identify regions that are significantly related to the effects under study [63]. Each
row of the design matrix corresponds to a scan, whereas each column is some
effect that is modelled.

Occasionally, images from different scanners or data from different sequences
are mixed. The effects of different types of images can generally be modelled by
including confounds in the design matrix.

D.7.3 Specific statistical assumptions/problems
Parametric statistical tests are based on assumptions about the data. In particu-
lar, they assume that the residuals after fitting the model are normally distributed.
There is a special caveat in VBM concerning the normality assumption: GM seg-
ments contain values between zero and one, where most of the values are close to
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either of the extremes. In this case, smoothing is essential to render the residuals
sufficiently normal.

For group comparisons, normality can be assured with smoothing at or above
4mm FWHM [20]. For single-case comparisons, numerical studies suggest that
at least 12mm should be used [141].

D.8 SPM for fMRI analysis
In fMRI analysis we can address two different questions of interest. With block
designs, which are especially useful for detection of the “activated” voxels in re-
sponse to a given task, compared to a control condition and with event-related
designs, which provide a means of estimating the hemodynamic response func-
tion.

D.8.1 Preprocessing for fMRI
It is always necessary to perform some preprocessing, or cleaning, of the data,
prior to statistical analysis. Different software packages accomplish this in differ-
ent ways; even different laboratories using the same software preprocess their data
differently [118]. However, there are certain commonalities. In SPM the general
steps for the preprocessing are: motion correction (fMRI-fMRI: a) head motion
and b) slice timing differences), spatial normalisation (fMRI-MRI: a) corregistra-
tion between structural and functional data for further visualization of the activa-
tions and b) align the fMRI scans to a common coordinate space) and smoothing.

D.8.2 Design matrix construction, experimental design
There are two main approaches to the design of fMRI experiments (block designs
and event-related designs), from the perspective of stimulus presentation, which
are capable of effectively addressing two different questions of interest.

In block designs periods of rest alternated with periods of task (t statistics), or
periods of different task were alternated (F statistics). These designs are especially
useful for locating voxels in which the level of activity is significantly different in
the task versus the control conditions.

Event-related designs generally consist of rapidly presented interleaved trials
of multiple event types of short duration, and provide a mean of estimating the
hemodynamic response function.
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D.8.3 Specific statistical assumptions/problems
There are many sources of noise that are prevalent in fMRI data. Even after pre-
procesing, considerable variability remains (statistical noise) in data, presenting a
challenge to statistical methods and limiting, to some extent, the types of analysis
that will be effective. Another complication is the spatial and temporal structure
in the data. fMRI data acquired on a single subject are abundant, noisy, and they
are highly correlated both spatially and temporally.
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