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Perturbed Kepler problem: We consider (for 0 < € << 1)

1 1
H(p,q) = 5Ilpl>+ V(llgll), where V(r)=—=— ==
Implicit midpoint: The approximations y, =~ y(t,) for t, = nh, are
implicitly defined as

Yn = Yn-1+h f(%()/nfl +yn), fly)= J_IVH(y),




Example (Application to implicit midpoint to perturbed Kepler)

y(0) = (1—e,0,0,/1£8), e = 0.6, ¢ = 0.015, h = 0.02.

Local error 6(t,) (in logarithmic scale) versus time t,:

ll6(tnll
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max ||8(t,)]| = 0.052762, max ||y, — y(t,)|| = 0.92829.




Observed by Gladman, Duncan and Candy (1991), Calvo and
Sanz-Serna (1992): Standard variable step-size implementation
destroys the nice properties of symplectic integrators.
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Time transformation

Consider a ficticious time variable 7 such that t = t(7) is defined
as the solution of

Lt=siy(r), =0

for a suitably chosen function s(y), and obtain x(7) = y(t(7)) by
integrating

Ti=s09. Lx=s()r(0),

with x(0) = y(0) and t(0) = 0.
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@ The function s(y) needs to be chosen in advance.



Observed by Gladman, Duncan and Candy (1991), Calvo and
Sanz-Serna (1992): Standard variable step-size implementation
destroys the nice properties of symplectic integrators.

Time transformation

Consider a ficticious time variable 7 such that t = t(7) is defined
as the solution of

9t~ s(y(t)), t(0)=0

dr
for a suitably chosen function s(y), and obtain x(7) = y(t(7)) by
integrating
d d
Et—S(X), EX_S(y)f(X)v

with x(0) = y(0) and t(0) = 0.

@ The function s(y) needs to be chosen in advance.
@ The new ODE system is not Hamiltonian.



Adaptative symplectic integration (Hairer 1997, Reich 1999)

Consider a new Hamiltonian function

H(y) = s(y)(H(y) — Ho), Ho = H(y(0)),

so that t = t(7), x(7) = y(t(7)) is the solution of

d d
Jt= s(x), X = JVH(x)

with x(0) = y(0) and t(0) =
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We normalize s, when integrating for t € [0, t¢] in such a way that,

/ Y s(t(r)) dr = .



Adaptative symplectic integration (Hairer 1997, Reich 1999)

Consider a new Hamiltonian function

H(y) = s(y)(H(y) — Ho), Ho = H(y(0)),

so that t = t(7), x(7) = y(t(7)) is the solution of

d d
Jt= s(x), X = JVH(x)

with x(0) = y(0) and t(0) = 0.

v

We normalize s, when integrating for t € [0, t¢] in such a way that,

/ Y s(t(r)) dr = .

Ideally: Find s(y) such that, once normalized, minimize the
discretization errors in some sense.



Example (Adaptative symplectic integration of perturbed Kepler)

We consider s(p, g) = c||qg||*/? (Budd and Piggott 2003).
Local error 6(t,) (in logarithmic scale) versus time ty:
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max ||8(t,)|| = 0.00166186, max ||y, — y(t,)|| = 0.00429137.




Backward error analysis for B-series methods

Modified equations of a one-step method of order N

¥n = y(tn), where y(t) is the solution of a nearby problem

7 =D+ @)+ A () +- 5 7(0) = yo.




Backward error analysis for B-series methods

Modified equations of a one-step method of order N

¥n = y(tn), where y(t) is the solution of a nearby problem

d _ _ _ _ _
e f(y) + AV tn() + PNy (7)) + -, 7(0) = yo.

N h)
) = 3 X Fuy),

sz o)

where 7 is the set of rooted trees with j vertices, and Yu € 7},
@ b(u) € R depends on the method,
o F(u)(y) is the elementary differential of u associated with f,

e o(u) € 7% is a normalization factor

v




Rigorous backward error analysis for B-series methods

Rigorous backward error analysis: Benettin and Giorgilli (1994),
Hairer and Lubich (1997), Reich (1999).

Estimates for real analytic ODE systems

There exists A : UZ; — R such that, given a norm || - || on RP and
f(y) real analytic, 3L(y), C(y) > 0 such that Vu € 7,

IFW)I < Aw) Cly) LY,

o(u)
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If these estimates are tight enough, then hL(y,) somehow reflects
the time-scale of y, = y(t,) at t = t,.



Rigorous backward error analysis for B-series methods

Rigorous backward error analysis: Benettin and Giorgilli (1994),
Hairer and Lubich (1997), Reich (1999).

Estimates for real analytic ODE systems

There exists A : UZ; — R such that, given a norm || - || on RP and
f(y) real analytic, 3L(y), C(y) > 0 such that Vu € 7,

G IFOWI < A0 )Ly

1K DI < d; Cly) (hL(y)Y ™,

. where dj = >~ A(u) [b(u)|.

ueT;

If these estimates are tight enough, then hL(y,) somehow reflects
the time-scale of y, = y(t,) at t = t,.
Aim: Find a normalized s(y) that minimizes max L(yp).

n



How to obtain L(y)? Let || - || be a norm in CP.

Preliminary estimates for real analytic f(y)

Ly)= max [[f(z)ll,

llz— yll<1

where f(z) is the complex analytic extension of f(y). Then,

U(lu) IF ()W) < M) L(yY.




How to obtain L(y)? Let || - || be a norm in CP.

Preliminary estimates for real analytic f(y)

Ly)= max [[f(z)ll,

llz— yll<1

where f(z) is the complex analytic extension of f(y). Then,

U(lu) IF ()W) < M) L(yY.

Observation: For invertible matrices P € RP*D,




This implies that

o IF@O)I < X0 Coly) Loy

where

Le(y) = pmax _ P AN, Cp(y) = 1P| Lp(y).



This implies that

O_(lu) IF ()W)l < AMu) Cr(y) Lo(y) L,
where
Lpy) = max _[PFE) Crly) = I[P Lo(y).

Time-scale function L(y)

~
—~
<
~—

I

1P ().

inf max
P |IP(z—y)lI<1




This implies that

o IF@O)I < X0 Coly) Loy

where

Lp(y) = L IPF(2)l,  Cply) = 1P| Lp(y)-

Time-scale function L(y)

Lly) = inf max [||Pf(2)|

P IP(z=y)lI<t

If 3P = P(y) such that Lp(y) = L(y), then our estimates for the
elementary differentials ||F(u)(y)|| hold with L(y) and

-1
Cly) = PO H<1H?‘(Z)H 1P(y) "1 L(y)-



Example (Perturbed Kepler problem)

If H(p, q) < 0, then there exist u, v, c1, c2 > 0 such that

Lp(p,q) < Lp(p,q):=cillgll ™ +ecllqll~"2,
for
E_ |, 0
D = llall i
0 vlallk
It then seems reasonable to choose s(p, q) ~ Lp(p,q)~*, and

s(p; q) = cllql[>/? when €]|q]| 72 << 1.




Example (Perturbed Kepler problem)

If H(p, q) < 0, then there exist u, v, c1, c2 > 0 such that

Lp(p,q) < Lp(p,q):=cillgll ™ +ecllqll~"2,
for
E_ |, 0
D = llall i
0 vlallk
It then seems reasonable to choose s(p, q) ~ Lp(p,q)~*, and

s(p, q) = c||q|[>/? when €||g||~? << 1. Furthermore,

Cp(p.q) < Cp(p, q) == max(u~|ql| =2, 71 ||q]| 7).

Consider 8(t,) = 6(ta)/(Cp(y) Z%(y)), then compare

max (2,)] max [6(t,)|
——— = 1.29709, with ————— =672.716.
min 5(¢,)| min [6(t)]



A simple rule of thumb for the case of a

Motion in a central field

Consider H(p, q) = 3l|pl[* + V(/[qll), where

/
V(r) = Z Gr,

=1

then set

/
s(q) = _ lall where VT (r) = Z i .

VVE(lal) £

When V(r) = r*!, then it reduces to the recipe based on scaling
invariance of Blanes and Budd (2004).

When one term r*/ clearly dominates in V(q), then both recipes
give similar results.




A simple rule of thumb for the case of a

N-body problem

Consider pj,q; € R%, g = (q1,.--,9n), and p= (p1, ..., pn), and

H(p,a) = 3Pl + > Vi)

i<j

/
where rj = ||gi — qj|| and V(r) = Z cj . Then set
j=—I

—1/2 —1/2

s(q) = ZV (ri) Zrif2 )

i<j i<j

/
where VT (r) = Z cj| .
j=—1




A variant of L(y) for || - ||oc and for

Real analytic Hamiltonian systems

For each y € R??, for each invertible matrix P consider

<PJ_1PT>:'J ’ <|P(Ln—z;)§|<1 |H(Z)|> ’

Lp(y) = e

then define

Lly) = infLp(y).




Example (Perturbed Kepler with s(q) = ||q||*/?)

For the Hamiltonian system

€

1 1
_ 3/2( L ([ nl]2 _ _
H(p,q) = IlalP/2(5 1ol + V(llall) - Ho), V() =~ — 555,

one can similarly obtain

Le(p,q) < cllpllllgllM?+ c|lpl| 7 |lq]| =2
+ecs||pl| 7 gl 72 + S callpl| 7 gl M,

where [3]|pl[* + V(llqll) — Hol < 6.




Example (Perturbed Kepler with s(q) = ||q||*/?)

For the Hamiltonian system

€

1 1
_ 3/2( = 2 . - - -
H(p,q) = IlalP/2(5 1ol + V(llall) - Ho), V() =~ — 555,

one can similarly obtain

Le(p,q) < cllpllllgllM?+ c|lpl| 7 |lq]| =2
+ecs||pl| 7 gl 72 + S callpl| 7 gl M,

where |3|pl[2 + V(I|q]]) — Ho| < 6.
Fore =0 and 6 =0 and Hp < 0,

Lp(p, q) < V2c1 + 2 (2(1 + Hollq|])) Y2




Scaling invariance and adaptativity (Budd et al. 2003, ...)

If %y = f(y) is such that there exists a one-parameter family of
invertible matrices @ (for A # 0) such that

AF(@ry) = Qaf(y),

then the time reparametrization function s(y) should satisfy

s(Qry) = As(y).

Actually, for the original system,

L(Quy) = A 'L(y),

and thus cannot be bounded for all y. The criterium based on the
scaling invariance guarantees that, for f(y) = s(y)f(y), it holds
that L(Qyy) = L(y).



