On the time-scale of B-series methods and symplectic integration

Joseba Makazaga, Ander Murua

Euskal Herriko Unibertsitatea / Universidad del Pais Vasco

Beijing, May 2009

We are concerned with the geometric numerical integration of

Hamiltonian systems

$$
y^{\prime}=J^{-1} \nabla H(y), \quad J=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) .
$$

Example

Perturbed Kepler problem: We consider (for $0<\epsilon \ll 1$)
$H(p, q)=\frac{1}{2}\|p\|^{2}+V(\|q\|)$, where $\quad V(r)=-\frac{1}{r}-\frac{\epsilon}{3 r^{3}}$
Implicit midpoint: The approximations $y_{n} \approx y\left(t_{n}\right)$ for $t_{n}=n h$, are implicitly defined as

$f(y)=J^{-1} \nabla H(y)$.

We are concerned with the geometric numerical integration of

Hamiltonian systems

$$
y^{\prime}=J^{-1} \nabla H(y), \quad J=\left(\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right)
$$

Example

Perturbed Kepler problem: We consider (for $0<\epsilon \ll 1$)

$$
H(p, q)=\frac{1}{2}\|p\|^{2}+V(\|q\|), \quad \text { where } \quad V(r)=-\frac{1}{r}-\frac{\epsilon}{3 r^{3}} .
$$

Implicit midpoint: The approximations $y_{n} \approx y\left(t_{n}\right)$ for $t_{n}=n h$, are implicitly defined as

$$
y_{n}=y_{n-1}+h f\left(\frac{1}{2}\left(y_{n-1}+y_{n}\right)\right), \quad f(y)=J^{-1} \nabla H(y) .
$$

Example (Application to implicit midpoint to perturbed Kepler)
$y(0)=\left(1-e, 0,0, \sqrt{\frac{1+e}{1-e}}\right), e=0.6, \epsilon=0.015, h=0.02$.
Local error $\delta\left(t_{n}\right)$ (in logarithmic scale) versus time t_{n} :

$$
\max _{n}\left\|\delta\left(t_{n}\right)\right\|=0.052762, \quad \max _{n}\left\|y_{n}-y\left(t_{n}\right)\right\|=0.92829
$$

Observed by Gladman, Duncan and Candy (1991), Calvo and Sanz-Serna (1992): Standard variable step-size implementation destroys the nice properties of symplectic integrators.

Time transformation
Consider a ficticious time variable τ such that $t=t(\tau)$ is defined
as the solution of
for a suitably chosen function $s(y)$, and obtain $x(\tau)=y(t(\tau))$ by
integrating

with $x(0)=y(0)$ and $t(0)=0$

Observed by Gladman, Duncan and Candy (1991), Calvo and Sanz-Serna (1992): Standard variable step-size implementation destroys the nice properties of symplectic integrators.

Time transformation

Consider a ficticious time variable τ such that $t=t(\tau)$ is defined as the solution of

$$
\frac{d}{d \tau} t=s(y(t)), \quad t(0)=0
$$

for a suitably chosen function $s(y)$, and obtain $x(\tau)=y(t(\tau))$ by integrating

$$
\frac{d}{d \tau} t=s(x), \quad \frac{d}{d \tau} x=s(y) f(x)
$$

with $x(0)=y(0)$ and $t(0)=0$.

Observed by Gladman, Duncan and Candy (1991), Calvo and Sanz-Serna (1992): Standard variable step-size implementation destroys the nice properties of symplectic integrators.

Time transformation

Consider a ficticious time variable τ such that $t=t(\tau)$ is defined as the solution of

$$
\frac{d}{d \tau} t=s(y(t)), \quad t(0)=0
$$

for a suitably chosen function $s(y)$, and obtain $x(\tau)=y(t(\tau))$ by integrating

$$
\frac{d}{d \tau} t=s(x), \quad \frac{d}{d \tau} x=s(y) f(x)
$$

with $x(0)=y(0)$ and $t(0)=0$.

- The function $s(y)$ needs to be chosen in advance.

Observed by Gladman, Duncan and Candy (1991), Calvo and Sanz-Serna (1992): Standard variable step-size implementation destroys the nice properties of symplectic integrators.

Time transformation

Consider a ficticious time variable τ such that $t=t(\tau)$ is defined as the solution of

$$
\frac{d}{d \tau} t=s(y(t)), \quad t(0)=0
$$

for a suitably chosen function $s(y)$, and obtain $x(\tau)=y(t(\tau))$ by integrating

$$
\frac{d}{d \tau} t=s(x), \quad \frac{d}{d \tau} x=s(y) f(x)
$$

with $x(0)=y(0)$ and $t(0)=0$.

- The function $s(y)$ needs to be chosen in advance.
- The new ODE system is not Hamiltonian.

Adaptative symplectic integration (Hairer 1997, Reich 1999)

Consider a new Hamiltonian function

$$
\mathcal{H}(y)=s(y)\left(H(y)-H_{0}\right), \quad H_{0}=H(y(0)),
$$

so that $t=t(\tau), x(\tau)=y(t(\tau))$ is the solution of

$$
\frac{d}{d \tau} t=s(x), \quad \frac{d}{d \tau} x=J^{-1} \nabla \mathcal{H}(x)
$$

with $x(0)=y(0)$ and $t(0)=0$.
We normalize s, when integrating for $t \in\left[0, t_{f}\right]$ in such a way that,

Adaptative symplectic integration (Hairer 1997, Reich 1999)

Consider a new Hamiltonian function

$$
\mathcal{H}(y)=s(y)\left(H(y)-H_{0}\right), \quad H_{0}=H(y(0)),
$$

so that $t=t(\tau), x(\tau)=y(t(\tau))$ is the solution of

$$
\frac{d}{d \tau} t=s(x), \quad \frac{d}{d \tau} x=J^{-1} \nabla \mathcal{H}(x)
$$

with $x(0)=y(0)$ and $t(0)=0$.
We normalize s, when integrating for $t \in\left[0, t_{f}\right]$ in such a way that,

$$
\int_{0}^{t_{f}} s(y(t(\tau))) d \tau=t_{f} .
$$

Adaptative symplectic integration (Hairer 1997, Reich 1999)

Consider a new Hamiltonian function

$$
\mathcal{H}(y)=s(y)\left(H(y)-H_{0}\right), \quad H_{0}=H(y(0))
$$

so that $t=t(\tau), x(\tau)=y(t(\tau))$ is the solution of

$$
\frac{d}{d \tau} t=s(x), \quad \frac{d}{d \tau} x=J^{-1} \nabla \mathcal{H}(x)
$$

with $x(0)=y(0)$ and $t(0)=0$.
We normalize s, when integrating for $t \in\left[0, t_{f}\right]$ in such a way that,

$$
\int_{0}^{t_{f}} s(y(t(\tau))) d \tau=t_{f}
$$

Ideally: Find $s(y)$ such that, once normalized, minimize the discretization errors in some sense.

Example (Adaptative symplectic integration of perturbed Kepler)

We consider $s(p, q)=c\|q\|^{3 / 2}$ (Budd and Piggott 2003). Local error $\delta\left(t_{n}\right)$ (in logarithmic scale) versus time t_{n} :

$$
\max _{n}\left\|\delta\left(t_{n}\right)\right\|=0.00166186, \quad \max _{n}\left\|y_{n}-y\left(t_{n}\right)\right\|=0.00429137
$$

Backward error analysis for B-series methods

Modified equations of a one-step method of order N
$y_{n}=\bar{y}\left(t_{n}\right)$, where $\bar{y}(t)$ is the solution of a nearby problem

$$
\frac{d}{d t} \bar{y}=f(\bar{y})+h^{N} f_{N}(\bar{y})+h^{N+1} f_{N+1}(\bar{y})+\cdots, \quad \bar{y}(0)=y_{0} .
$$

For a B-series method (RK,

where \mathcal{T}_{j} is the set of rooted trees with j vertices, and $\forall u \in \mathcal{T}_{j}$ - $b(u) \in \mathbb{R}$ depends on the method. - $F(u)(y)$ is the elementary differential of u associated with f - $\sigma(u) \in \mathbb{Z}^{+}$is a normalization factor

Backward error analysis for B-series methods

Modified equations of a one-step method of order N
$y_{n}=\bar{y}\left(t_{n}\right)$, where $\bar{y}(t)$ is the solution of a nearby problem

$$
\frac{d}{d t} \bar{y}=f(\bar{y})+h^{N} f_{N}(\bar{y})+h^{N+1} f_{N+1}(\bar{y})+\cdots, \quad \bar{y}(0)=y_{0} .
$$

For a B-series method (RK, ...)

$$
f_{j-1}(y)=\sum_{u \in \mathcal{T}_{j}} \frac{b(u)}{\sigma(u)} F(u)(y),
$$

where \mathcal{T}_{j} is the set of rooted trees with j vertices, and $\forall u \in \mathcal{T}_{j}$,

- $b(u) \in \mathbb{R}$ depends on the method,
- $F(u)(y)$ is the elementary differential of u associated with f,
- $\sigma(u) \in \mathbb{Z}^{+}$is a normalization factor

Rigorous backward error analysis for B-series methods

Rigorous backward error analysis: Benettin and Giorgilli (1994), Hairer and Lubich (1997), Reich (1999).

Estimates for real analytic ODE systems

There exists $\lambda: \cup \mathcal{T}_{j} \rightarrow \mathbb{R}$ such that, given a norm $\|\cdot\|$ on \mathbb{R}^{D} and $f(y)$ real analytic, $\exists L(y), C(y)>0$ such that $\forall u \in \mathcal{T}_{j}$,

$$
\frac{1}{\sigma(u)}\|F(u)(y)\| \leq \lambda(u) C(y) L(y)^{j-1},
$$

If these estimates are tight enough, then $h L\left(y_{n}\right)$ somehow reflects the time-scale of $y_{n}=\bar{y}\left(t_{n}\right)$ at $t=t_{n}$.

Rigorous backward error analysis for B-series methods

Rigorous backward error analysis: Benettin and Giorgilli (1994), Hairer and Lubich (1997), Reich (1999).

Estimates for real analytic ODE systems

There exists $\lambda: \cup \mathcal{T}_{j} \rightarrow \mathbb{R}$ such that, given a norm $\|\cdot\|$ on \mathbb{R}^{D} and $f(y)$ real analytic, $\exists L(y), C(y)>0$ such that $\forall u \in \mathcal{T}_{j}$,

$$
\begin{aligned}
\frac{1}{\sigma(u)}\|F(u)(y)\| & \leq \lambda(u) C(y) L(y)^{j-1} \\
\left\|h^{j} f_{j}(y)\right\| & \leq d_{j} C(y)(h L(y))^{j-1}
\end{aligned}
$$

, where $d_{j}=\sum_{u \in \mathcal{T}_{j}} \lambda(u)|b(u)|$.
If these estimates are tight enough, then $h L\left(y_{n}\right)$ somehow reflects the time-scale of $y_{n}=\bar{y}\left(t_{n}\right)$ at $t=t_{n}$.
Aim: Find a normalized $s(y)$ that minimizes max $L\left(y_{n}\right)$

Rigorous backward error analysis for B-series methods

Rigorous backward error analysis: Benettin and Giorgilli (1994), Hairer and Lubich (1997), Reich (1999).

Estimates for real analytic ODE systems

There exists $\lambda: \cup \mathcal{T}_{j} \rightarrow \mathbb{R}$ such that, given a norm $\|\cdot\|$ on \mathbb{R}^{D} and $f(y)$ real analytic, $\exists L(y), C(y)>0$ such that $\forall u \in \mathcal{T}_{j}$,

$$
\begin{aligned}
\frac{1}{\sigma(u)}\|F(u)(y)\| & \leq \lambda(u) C(y) L(y)^{j-1} \\
\left\|h^{j} f_{j}(y)\right\| & \leq d_{j} C(y)(h L(y))^{j-1}
\end{aligned}
$$

, where $d_{j}=\sum_{u \in \mathcal{T}_{j}} \lambda(u)|b(u)|$.
If these estimates are tight enough, then $h L\left(y_{n}\right)$ somehow reflects the time-scale of $y_{n}=\bar{y}\left(t_{n}\right)$ at $t=t_{n}$.
Aim: Find a normalized $s(y)$ that minimizes $\max _{n} L\left(y_{n}\right)$.

How to obtain $L(y)$? Let $\|\cdot\|$ be a norm in \mathbb{C}^{D}.
Preliminary estimates for real analytic $f(y)$

$$
\tilde{L}(y)=\max _{\|z-y\| \leq 1}\|f(z)\|,
$$

where $f(z)$ is the complex analytic extension of $f(y)$. Then,

$$
\frac{1}{\sigma(u)}\|F(u)(y)\| \leq \lambda(u) \tilde{L}(y)^{j}
$$

Observation: For invertible matrices $\mathcal{P} \in \mathbb{R}^{D \times D}$

How to obtain $L(y)$? Let $\|\cdot\|$ be a norm in \mathbb{C}^{D}.
Preliminary estimates for real analytic $f(y)$

$$
\tilde{L}(y)=\max _{\|z-y\| \leq 1}\|f(z)\|
$$

where $f(z)$ is the complex analytic extension of $f(y)$. Then,

$$
\frac{1}{\sigma(u)}\|F(u)(y)\| \leq \lambda(u) \tilde{L}(y)^{j}
$$

Observation: For invertible matrices $\mathcal{P} \in \mathbb{R}^{D \times D}$,

$$
\left.\begin{array}{rll}
f(y) & \longrightarrow & \hat{f}(\hat{y}) \\
\downarrow & =\mathcal{P} f\left(\mathcal{P}^{-1} \hat{y}\right) \\
F(u)(y) & \longrightarrow & \hat{F}(u)(\hat{y})
\end{array}\right)=\mathcal{P F}(u)\left(\mathcal{P}^{-1} \hat{y}\right) .
$$

This implies that

$$
\frac{1}{\sigma(u)}\|F(u)(y)\| \leq \lambda(u) C_{\mathcal{P}}(y) L_{\mathcal{P}}(y)^{j-1}
$$

where

$$
L_{\mathcal{P}}(y)=\max _{\|\mathcal{P}(z-y)\| \leq 1}\|\mathcal{P} f(z)\|, \quad C_{\mathcal{P}}(y)=\left\|\mathcal{P}^{-1}\right\| L_{\mathcal{P}}(y)
$$

Time-scale function $L(y)$

This implies that

$$
\frac{1}{\sigma(u)}\|F(u)(y)\| \leq \lambda(u) C_{\mathcal{P}}(y) L_{\mathcal{P}}(y)^{j-1}
$$

where

$$
L_{\mathcal{P}}(y)=\max _{\|\mathcal{P}(z-y)\| \leq 1}\|\mathcal{P} f(z)\|, \quad C_{\mathcal{P}}(y)=\left\|\mathcal{P}^{-1}\right\| L_{\mathcal{P}}(y)
$$

Timescale function $L(y)$

$$
L(y)=\inf _{\mathcal{P}} \max _{\|\mathcal{P}(z-y)\| \leq 1}\|\mathcal{P} f(z)\| .
$$

If $\exists \mathcal{P}=\mathcal{P}(y)$ such that $L_{\mathcal{P}}(y)=L(y)$, then our estimates for the elementary differentials $\|F(u)(y)\|$ hold with $L(y)$ and

This implies that

$$
\frac{1}{\sigma(u)}\|F(u)(y)\| \leq \lambda(u) C_{\mathcal{P}}(y) L_{\mathcal{P}}(y)^{j-1}
$$

where

$$
L_{\mathcal{P}}(y)=\max _{\|\mathcal{P}(z-y)\| \leq 1}\|\mathcal{P} f(z)\|, \quad C_{\mathcal{P}}(y)=\left\|\mathcal{P}^{-1}\right\| L_{\mathcal{P}}(y)
$$

Time-scale function $L(y)$

$$
L(y)=\inf _{\mathcal{P}} \max _{\|\mathcal{P}(z-y)\| \leq 1}\|\mathcal{P} f(z)\|
$$

If $\exists \mathcal{P}=\mathcal{P}(y)$ such that $L_{\mathcal{P}}(y)=L(y)$, then our estimates for the elementary differentials $\|F(u)(y)\|$ hold with $L(y)$ and

$$
C(y)=\max _{\|\mathcal{P}(y)(z-y)\| \leq 1}\|f(z)\| \leq\left\|\mathcal{P}(y)^{-1}\right\| L(y) .
$$

Example (Perturbed Kepler problem)

If $H(p, q)<0$, then there exist $\mu, \nu, c_{1}, c_{2}>0$ such that

$$
L_{\mathcal{P}}(p, q) \leq \tilde{L}_{\mathcal{P}}(p, q):=c_{1}\|q\|^{-3 / 2}+\epsilon c_{2}\|q\|^{-7 / 2}
$$

for

$$
\mathcal{P}=\left(\begin{array}{cc}
\frac{\mu}{\sqrt{\|q\|}} I_{2} & 0 \\
0 & \nu\|q\| I_{2}
\end{array}\right)
$$

It then seems reasonable to choose $s(p, q) \approx L_{\mathcal{P}}(p, q)^{-1}$, and $s(p, q)=c\|q\|^{3 / 2}$ when $\epsilon\|q\|^{-2} \ll 1$. Furthermore,

Consider $\hat{\delta}\left(t_{n}\right)=\delta\left(t_{n}\right) /\left(\tilde{C}_{\mathcal{P}}(y) \tilde{L}_{\mathcal{P}(y)}^{2}\right)$, then compare

Example (Perturbed Kepler problem)

If $H(p, q)<0$, then there exist $\mu, \nu, c_{1}, c_{2}>0$ such that

$$
L_{\mathcal{P}}(p, q) \leq \tilde{L}_{\mathcal{P}}(p, q):=c_{1}\|q\|^{-3 / 2}+\epsilon c_{2}\|q\|^{-7 / 2}
$$

for

$$
\mathcal{P}=\left(\begin{array}{cc}
\frac{\mu}{\sqrt{\|q\|}} I_{2} & 0 \\
0 & \nu\|q\| I_{2}
\end{array}\right) .
$$

It then seems reasonable to choose $s(p, q) \approx L_{\mathcal{P}}(p, q)^{-1}$, and $s(p, q)=c\|q\|^{3 / 2}$ when $\epsilon\|q\|^{-2} \ll 1$. Furthermore,

$$
C_{\mathcal{P}}(p, q) \leq \tilde{C}_{\mathcal{P}}(p, q):=\max \left(\mu^{-1}\|q\|^{-1 / 2}, \nu^{-1}\|q\|^{-1}\right) .
$$

Consider $\hat{\delta}\left(t_{n}\right)=\delta\left(t_{n}\right) /\left(\tilde{C}_{\mathcal{P}}(y) \tilde{L}_{\mathcal{P}(y)}^{2}\right)$, then compare

$$
\frac{\max _{n}\left\|\hat{\delta}\left(t_{n}\right)\right\|}{\min _{n}\left\|\hat{\delta}\left(t_{n}\right)\right\|}=1.29709, \quad \text { with } \frac{\max _{n}\left\|\delta\left(t_{n}\right)\right\|}{\min _{n}\left\|\delta\left(t_{n}\right)\right\|}=672.716
$$

A simple rule of thumb for the case of a

Motion in a central field

Consider $H(p, q)=\frac{1}{2}\|p\|^{2}+V(\|q\|)$, where

$$
V(r)=\sum_{j=-1}^{1} c_{j} r^{j}
$$

then set

$$
s(q)=\frac{\|q\|}{\sqrt{V^{+}(\|q\|)}}, \quad \text { where } \quad V^{+}(r)=\sum_{j=-1}^{1}\left|c_{j}\right| r^{j}
$$

When $V(r)=r^{ \pm I}$, then it reduces to the recipe based on scaling invariance of Blanes and Budd (2004).
When one term $r^{ \pm!}$clearly dominates in $V(q)$, then both recipes give similar results.

A simple rule of thumb for the case of a

N-body problem

Consider $p_{j}, q_{j} \in \mathbb{R}^{3}, q=\left(q_{1}, \ldots, q_{N}\right)$, and $p=\left(p_{1}, \ldots, p_{N}\right)$, and

$$
H(p, q)=\frac{1}{2}\|p\|^{2}+\sum_{i<j} V\left(r_{i j}\right)
$$

where $r_{i j}=\left\|q_{i}-q_{j}\right\|$ and $V(r)=\sum_{j=-1}^{l} c_{j} r^{j}$. Then set

$$
s(q)=\left(\sum_{i<j} V^{+}\left(r_{i j}\right)\right)^{-1 / 2}\left(\sum_{i<j} r_{i j}^{-2}\right)^{-1 / 2}
$$

where $V^{+}(r)=\sum_{j=-1}^{l}\left|c_{j}\right| r^{j}$.

A variant of $L(y)$ for $\|\cdot\|_{\infty}$ and for
Real analytic Hamiltonian systems
For each $y \in \mathbb{R}^{2 d}$, for each invertible matrix \mathcal{P} consider

$$
L_{\mathcal{P}}(y)=\max _{i, j}\left|\left(\mathcal{P} J^{-1} \mathcal{P}^{T}\right)_{i, j}\right|\left(\max _{\|\mathcal{P}(z-y)\| \leq 1}|H(z)|\right),
$$

then define

$$
L(y)=\inf _{\mathcal{P}} L_{\mathcal{P}}(y) .
$$

Example (Perturbed Kepler with $s(q)=\|q\|^{3 / 2}$)

For the Hamiltonian system
$\mathcal{H}(p, q)=\|q\|^{3 / 2}\left(\frac{1}{2}\|p\|^{2}+V(\|q\|)-H_{0}\right), \quad V(r)=\frac{1}{r}-\frac{\epsilon}{3 r^{3}}$, one can similarly obtain

$$
\begin{aligned}
L_{\mathcal{P}}(p, q) \leq & c_{1}\|p\|\|q\|^{1 / 2}+c_{2}\|p\|^{-1}\|q\|^{-1 / 2} \\
& +\epsilon c_{3}\|p\|^{-1}\|q\|^{-5 / 2}+\delta c_{4}\|p\|^{-1}\|q\|^{1 / 2}
\end{aligned}
$$

where $\left|\frac{1}{2}\right|\left|p \|^{2}+V(\|q\|)-H_{0}\right| \leq \delta$.
For $\epsilon=0$ and $\delta=0$ and $H_{0}<0$,

Example (Perturbed Kepler with $s(q)=\|q\|^{3 / 2}$)

For the Hamiltonian system
$\mathcal{H}(p, q)=\|q\|^{3 / 2}\left(\frac{1}{2}\|p\|^{2}+V(\|q\|)-H_{0}\right), \quad V(r)=\frac{1}{r}-\frac{\epsilon}{3 r^{3}}$,
one can similarly obtain

$$
\begin{aligned}
L_{\mathcal{P}}(p, q) \leq & c_{1}\|p\|\|q\|^{1 / 2}+c_{2}\|p\|^{-1}\|q\|^{-1 / 2} \\
& +\epsilon c_{3}\|p\|^{-1}\|q\|^{-5 / 2}+\delta c_{4}\|p\|^{-1}\|q\|^{1 / 2}
\end{aligned}
$$

where $\left|\frac{1}{2}\right|\left|p \|^{2}+V(\|q\|)-H_{0}\right| \leq \delta$.
For $\epsilon=0$ and $\delta=0$ and $H_{0}<0$,

$$
L_{\mathcal{P}}(p, q) \leq \sqrt{2} c_{1}+c_{2}\left(2\left(1+H_{0}\|q\|\right)\right)^{-1 / 2} .
$$

Scaling invariance and adaptativity (Budd et al. 2003, ...)

If $\frac{d}{d t} y=f(y)$ is such that there exists a one-parameter family of invertible matrices $Q_{\lambda}($ for $\lambda \neq 0)$ such that

$$
\lambda f\left(Q_{\lambda} y\right)=Q_{\lambda} f(y)
$$

then the time reparametrization function $s(y)$ should satisfy

$$
s\left(Q_{\lambda} y\right)=\lambda s(y)
$$

Actually, for the original system,

$$
L\left(Q_{\lambda} y\right)=\lambda^{-1} L(y)
$$

and thus cannot be bounded for all y. The criterium based on the scaling invariance guarantees that, for $\hat{f}(y)=s(y) f(y)$, it holds that $\hat{L}\left(Q_{\lambda} y\right)=\hat{L}(y)$.

