Splitting methods for the time integration of wave equations

Ander Murua
Joint work with Sergio Blanes and Fernando Casas

Bilbao, July 2009

We are concerned with the application of splitting methods for the time-integration of wave equations, for instance

The semilinear wave equations

 in a bounded $\Omega \subset \mathbb{R}^{d}$ with homogeneous Dirichlet boundary conds.$$
\begin{aligned}
u_{t t} & =\Delta u+f(u) & & \text { in } \Omega \times \mathbb{R}, \\
u & =0 & & \text { in } \partial \Omega \times \mathbb{R}, \\
u(0) & =u_{0}, \quad u_{t}(0)=v_{0} & & \text { in } \Omega .
\end{aligned}
$$

We also consider
The semilinear wave equation with periodic boundary conditions

$$
\begin{aligned}
& u_{t t}=\Delta u+f(u) \\
& u(0)=u_{0}, \quad u_{t}(0)=v_{0} \quad \text { in } \quad \mathbb{T}^{d} \times \mathbb{R}, \\
& \mathbb{T}^{d} .
\end{aligned}
$$

Splitting methods

The simplest splitting method consists on approximating $e^{t L}$ by splitting the operator L as $X+Y$ and

$$
e^{t(X+Y)}=\left(e^{\tau(X+Y)}\right)^{m} \approx\left(e^{\tau X} e^{\tau Y}\right)^{m}
$$

with a small time-step $\tau=t / m$. Alternatively, one can use the

Strang splitting

$$
e^{\tau(X+Y)} \approx e^{\frac{\tau}{2} X} e^{\tau Y} e^{\frac{\tau}{2} X} .
$$

Using more general products of exponentials is also possible:

$$
e^{\tau(X+Y)} \approx e^{\tau a_{1} X} e^{\tau b_{1} Y} \cdots e^{\tau a_{m} X} e^{\tau b_{m} Y}
$$

with appropriately chosen $a_{1}, b_{1}, \cdots, a_{m}, b_{m} \in \mathbb{R}$.

How to split the semilinear wave equation?

- A possible option is splitting the wave equation as

$$
u_{t t}=\Delta u, \quad \text { and } \quad u_{t t}=f(u)
$$

- A better option, provided that $f(u)=\rho u+\mathcal{O}\left(u^{2}\right)$, is

$$
u_{t t}=\Delta u+\rho u, \quad \text { and } \quad u_{t t}=f(u)-\rho u
$$

- A third option, based on rewritting the equations as

$$
u_{t}=v, \quad v_{t}=\Delta u+f(u)
$$

and splitting it as

$$
\left\{\begin{array} { l }
{ u _ { t } = v , } \\
{ v _ { t } = 0 , }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
u_{t}=0 \\
v_{t}=\Delta u+f(u)
\end{array}\right.\right.
$$

But that only makes sense after spatial semidiscretization!

Semidiscretization in space

For a spatial grid $x_{1}, \ldots, x_{N} \in \Omega$, consider

$$
q(t) \approx\left(\begin{array}{c}
u\left(x_{1}, t\right) \\
\vdots \\
u\left(x_{N}, t\right)
\end{array}\right), \quad p(t) \approx\left(\begin{array}{c}
u_{t}\left(x_{1}, t\right) \\
\vdots \\
u_{t}\left(x_{N}, t\right)
\end{array}\right)
$$

determined as the solutions of a

Semidiscretized problem

$$
\frac{d}{d t} q=p, \quad \frac{d}{d t} p=A q+g(q),
$$

with initial values $q(0)=q_{0}, \quad p(0)=q_{0}$.
Here, $A \in \mathbb{R}^{N \times N}$ is such that

$$
A q(t) \approx\left(\begin{array}{c}
\Delta u\left(x_{1}, t\right) \\
\vdots \\
\Delta u\left(x_{N}, t\right)
\end{array}\right), \quad \text { and } \quad g(q(t))=\left(\begin{array}{c}
f\left(u\left(x_{1}, t\right)\right) \\
\vdots \\
f\left(u\left(x_{N}, t\right)\right)
\end{array}\right) .
$$

Application of $e^{\tau(A+B)}=e^{\tau / 2 A} e^{\tau B} e^{\tau / 2 A}$ to the equations split as

$$
\left\{\begin{array} { l }
{ \frac { d } { d t } q = p , } \\
{ \frac { d } { d t } p = 0 , }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
\frac{d}{d t} q=0 \\
\frac{d}{d t} p=A q+g(q)
\end{array}\right.\right.
$$

gives the

Leapfrog method

$\left(q_{n}, p_{n}\right) \approx\left(q\left(t_{n}\right), p\left(t_{n}\right)\right)$ computed for $t_{n}=n \tau$ as follows:

$$
\begin{aligned}
p_{n-\frac{1}{2}} & =p_{n-1}+\frac{\tau}{2}\left(A q_{n-1}+g\left(q_{n-1}\right)\right) \\
q_{n} & =q_{n-1}+\tau p_{n-\frac{1}{2}} \\
p_{n} & =p_{n-\frac{1}{2}}+\frac{\tau}{2}\left(A q_{n}+g\left(q_{n}\right)\right),
\end{aligned}
$$

or in two step formulation, $q_{1}=q_{0}+\tau p_{0}+\frac{\tau^{2}}{2}\left(A q_{0}+g\left(q_{0}\right)\right)$ and

$$
q_{n+1}-2 q_{n}+q_{n-1}=\tau^{2}\left(A q_{n}+g\left(q_{n}\right)\right)
$$

Central finite differences in space and leapfrog in time
Example: 1D-wave equation with homogeneous Dirichlet b.c.
$\Omega=(0,1), f(u)=2 u-4 u^{3}, u_{0}(x)=\frac{1}{10+\sin ^{2}(\pi x)}, v_{0}(x)=0$,
$x_{j}=j h,(j=1, \ldots, 15), h=\frac{1}{16}, \tau=\frac{h}{2}$.
Space discretization errors and time discr. errors versus time:

Standard ODE error analysis: Consider a semidiscretized problem (for a fixed small h) and study errors as $\tau \rightarrow 0$.

We would like to analyze the full discretization error as $h, \tau \rightarrow 0$.

Approx. analysis of fully discretized solutions of small amplitude

Assume that

- $f(0)=0$, so that for u with small amplitude, $f(u) \approx f^{\prime}(0) u$,
- $-\left(A+f^{\prime}(0) I\right)$ is diagonalizable with positive real eigenvalues. Then consider $B=\left(-\left(A+f^{\prime}(0) I\right)\right)^{1 / 2}$, and analyze leapfrog method applied to

$$
\frac{d}{d t} q=p, \quad \frac{d}{d t} p=-B^{2} q
$$

If $\tau \leq \frac{2}{\rho(B)}$, then the numerical solution given by

$$
q_{n+1}-2 q_{n}+q_{n-1}=-\tau^{2} B^{2} q_{n}
$$

(where $q_{1}=q_{0}+\tau p_{0}-\frac{\tau^{2}}{2} B^{2} q_{0}$) lies in the trajectory of the

Modified problem

$$
\frac{d}{d t} \tilde{q}=\tilde{p}, \quad \frac{d}{d t} \tilde{p}=-\tilde{B}^{2} q,
$$

with

$$
\tilde{B}=\frac{2}{\tau} \arcsin \left(\frac{\tau}{2} B\right)=B+\frac{\tau^{2}}{24} B^{3}+\cdots
$$

and initial values

$$
\tilde{q}(0)=q_{0}, \quad \tilde{p}(0)=\left(I-\frac{\tau^{2}}{4} B^{2}\right)^{-\frac{1}{2}} p_{0}=p_{0}-\frac{\tau^{2}}{8} B^{2} p_{0}+\cdots .
$$

Central finite differences in space and leapfrog in time
Example: 1D-wave equation with homogeneous Dirichlet b.c.
Previous example with $h=\frac{1}{16}$ and $\tau=h$ (instead of $\tau=\frac{h}{2}$). Space, time and full discretization errors versus time:

2nd order central finite differences with leapfrog in 1D

Stability requirement:

$$
|\tau| \leq \frac{2}{\rho(B)}=\frac{h}{\sin \left(\frac{(1-h) \pi}{2}\right)}, \quad(\text { for } f(u)=0,)
$$

hence, leapfrog scheme is stable for $\tau=h$.
Exceptional performance of full discretization for $\tau=h$:

- $\omega_{k}=k \pi \rightarrow \omega_{k}^{h}=\frac{2}{h} \sin (k \pi h / 2) \rightarrow \omega_{k}^{h, \tau}=\frac{2}{\tau} \arcsin \left(\tau \omega_{k}^{h} / 2\right)$. If $\tau=h$, then $\omega_{k}^{h, \tau}=k \pi$!
- Solutions of $u_{t t}=u_{x x}$ exactly satisfy

2nd order central finite differences with leapfrog in 1D

Stability requirement:

$$
|\tau| \leq \frac{2}{\rho(B)}=\frac{h}{\sin \left(\frac{(1-h) \pi}{2}\right)}, \quad(\text { for } f(u)=0,)
$$

hence, leapfrog scheme is stable for $\tau=h$.
Exceptional performance of full discretization for $\tau=h$:

- $\omega_{k}=k \pi \rightarrow \omega_{k}^{h}=\frac{2}{h} \sin (k \pi h / 2) \rightarrow \omega_{k}^{h, \tau}=\frac{2}{\tau} \arcsin \left(\tau \omega_{k}^{h} / 2\right)$. If $\tau=h$, then $\omega_{k}^{h, \tau}=k \pi$!
- Solutions of $u_{t t}=u_{x x}$ exactly satisfy

$$
\begin{aligned}
& \frac{1}{\tau^{2}}(u(x, t+\tau)-2 u(x, t)+u(x, t-\tau))= \\
& \frac{1}{h^{2}}(u(x+h, t)-2 u(x, t)+u(x-h, t))
\end{aligned}
$$

for $\tau=h$.

Fourier spectral collocation methods with leapfrog in time:
Example: 1D-wave equation with periodic boundary conditions
$x \in(0,2 \pi), f(u)=\frac{u}{10}-4 u^{3}, u_{0}(x)=\frac{e^{\sin (x)}}{10}, v_{0}(x)=0$, $h=\frac{2 \pi}{16}, \tau=\frac{h}{4}<\frac{2}{\rho(B)} \approx \frac{2 h}{\pi}$. Variation of discrete Hamiltonian, momentum and oscillatory energy:

Fourier spectral collocation methods with leapfrog in time: Space discr. errors and time discr. errors (for $\tau=h / 4$ and $\tau=h / 24$) versus time:

Fourier spectral collocation methods with optimized splitting:

$$
e^{\tau(X+Y)} \approx e^{\tau a_{1} X} e^{\tau b_{1} Y} \cdots e^{\tau a_{m} X} e^{\tau b_{m} Y}
$$

Time discr. error of new splitting method with $m=17$ and $\tau=\frac{m h}{4}$

Fourier spectral collocation methods with optimized splitting methods for non-smooth data: $f(u)=2 u^{3}, n=64$,

$$
u_{0}(x)=\left\{\begin{array}{cl}
\frac{x}{20 \pi} & \text { if } 0 \leq x \leq \pi \\
\frac{2 \pi-x}{20 \pi} & \text { if } \pi \leq x \leq 2 \pi .
\end{array}, \quad v_{0}(x)=0\right.
$$

(i) Space discr. errors, (ii) time discr. errors for leapfrog with $\tau=h / 2$ and (iii) another new method with $m=17$ and $\tau=\frac{m h}{2}$.

Errors

Consider the problem

$$
\frac{d}{d t} q=p, \quad \frac{d}{d t} p=A q+g(q)
$$

arising from the spatial semidiscretization of a wave equation.

Splitting scheme

$\left(q_{n}, p_{n}\right) \approx\left(q\left(t_{n}\right), p\left(t_{n}\right)\right)$ computed for $t_{n}=n \tau$ as follows: Take $Q_{0}=q_{n-1}, P_{0}=p_{n-1}$, and compute for $j=1, \ldots, m$

$$
\begin{aligned}
P_{j} & =P_{j-1}+a_{j} \tau\left(A Q_{j-1}+g\left(q_{j-1}\right)\right) \\
Q_{j} & =Q_{j}+b_{j} \tau P_{j}
\end{aligned}
$$

and take $\left(q_{n}, p_{n}\right)=\left(Q_{m}, P_{m}\right)$.
The coefficients a_{j} and $b_{j}(j=1, \ldots, m)$ appropriately chosen real numbers.

We want to analyse the application of the splitting method to

$$
\frac{d}{d t} q=p, \quad \frac{d}{d t} p=-B^{2} q,
$$

where $B^{2}=-\left(f^{\prime}(0) I+A\right)$. We assume that B is symmetric positive definite.

- Obviously, $\rho(B) \rightarrow \infty$ as the spacial discretization converges to the continuous problem.
- For each splitting method, there exists $x^{*} \geq 0$ such that the scheme is stable if $\tau<\frac{x^{*}}{\rho(B)}\left(x^{*}=2\right.$ for leapfrog).
- We want to apply a splitting method with $\tau=\frac{r}{\rho(B)}$ for fixed $r \leq x^{*}$. How are the time discretization errors as $\rho(B) \rightarrow \infty$?
It depends on the splitting method, and the (smoothness of the) initial data u_{0}, v_{0}.

We obtain estimates depending on

$$
\begin{aligned}
C_{s} & :=\left\|B^{s+1} q_{0}\right\|+\left\|B^{s} p_{0}\right\| \\
& \approx\left\|\left(f^{\prime}(0)+\Delta\right)^{\frac{s+1}{2}} u_{0}\right\|+\left\|\left(f^{\prime}(0)+\Delta\right)^{\frac{s}{2}} v_{0}\right\| .
\end{aligned}
$$

Theorem

Given a splitting scheme with stability threshold x^{*}, for each $s>0$ and each $r \in\left(0, x^{*}\right)$, there exist $\mu_{s}(r), \nu_{s}(r)>0$ such that

$$
\left\|q_{n}-q\left(t_{n}\right)\right\| \leq \frac{C_{s}}{\rho(B)^{s}}\left(\left|t_{n}\right| \mu_{s}(r)+\nu_{s}(r)\right)
$$

for $t_{n}=n \tau$ with $\tau=r / \rho(B)$.

We obtain estimates depending on

$$
\begin{aligned}
C_{s} & :=\left\|B^{s+1} q_{0}\right\|+\left\|B^{s} p_{0}\right\| \\
& \approx\left\|\left(f^{\prime}(0)+\Delta\right)^{\frac{s+1}{2}} u_{0}\right\|+\left\|\left(f^{\prime}(0)+\Delta\right)^{\frac{s}{2}} v_{0}\right\| .
\end{aligned}
$$

Theorem

Given a splitting scheme with stability threshold x^{*}, for each $s>0$ and each $r \in\left(0, x^{*}\right)$, there exist $\mu_{s}(r), \nu_{s}(r)>0$ such that

$$
\left\|q_{n}-q\left(t_{n}\right)\right\| \leq \frac{C_{s}}{\rho(B)^{s}}\left(\left|t_{n}\right| \mu_{s}(r)+\nu_{s}(r)\right)
$$

$$
\text { for } t_{n}=n \tau \text { with } \tau=r / \rho(B)
$$

Similar estimates can be obtained for $\left\|p_{n}-p\left(t_{n}\right)\right\|$.

We obtain estimates depending on

$$
\begin{aligned}
C_{s} & :=\left\|B^{s+1} q_{0}\right\|+\left\|B^{s} p_{0}\right\| \\
& \approx\left\|\left(f^{\prime}(0)+\Delta\right)^{\frac{s+1}{2}} u_{0}\right\|+\left\|\left(f^{\prime}(0)+\Delta\right)^{\frac{s}{2}} v_{0}\right\| .
\end{aligned}
$$

Theorem

Given a splitting scheme with stability threshold x^{*}, for each $s>0$ and each $r \in\left(0, x^{*}\right)$, there exist $\mu_{s}(r), \nu_{s}(r)>0$ such that

$$
\left\|q_{n}-q\left(t_{n}\right)\right\| \leq \frac{C_{s}}{\rho(B)^{s}}\left(\left|t_{n}\right| \mu_{s}(r)+\nu_{s}(r)\right)
$$

$$
\text { for } t_{n}=n \tau \text { with } \tau=r / \rho(B)
$$

Similar estimates can be obtained for $\left\|p_{n}-p\left(t_{n}\right)\right\|$.
For the leapfrog method, given $0 \leq s \leq 2$ and $r<x^{*}=2$,

$$
\begin{aligned}
\mu_{s}(r) & =\sup _{0<x \leq r}\left|\left(\frac{r}{x}\right)^{s}\left(\frac{2}{x} \arcsin \left(\frac{x}{2}\right)-1\right)\right|, \\
\nu_{s}(r) & =\sup _{0<x \leq r}\left|\left(\frac{r}{x}\right)^{s} \sqrt{1-\frac{x^{2}}{4}}\right| .
\end{aligned}
$$

Given a splitting scheme with coefficients $a_{1}, b_{1}, \ldots, a_{m}, b_{m}$, there exist $x^{*} \geq 0$ and two even functions $\kappa(x)$ and $\gamma(x)$ such that, if B is symmetric positive definite and $|\tau| \rho(B) \leq x^{*}$, then

$$
q_{n}=\tilde{q}(n \tau), \quad p_{n}=\gamma(\tau B) \tilde{p}(n \tau)
$$

where $(\tilde{q}(t), \tilde{p}(t))$ is the exact solution of

$$
\frac{d}{d t} \tilde{q}=\tilde{p}, \quad \frac{d}{d t} \tilde{p}=-\tilde{B}^{2} q
$$

with $\tilde{B}=\kappa(\tau B) B$ and initial values

$$
\tilde{q}(0)=q_{0}, \quad \tilde{p}(0)=\gamma(\tau B)^{-1} p_{0} .
$$

Furthermore, the theorem above holds with

$$
\begin{aligned}
\mu_{s}(r) & =\sup _{0<x \leq r}\left|\left(\frac{r}{x}\right)^{s}(\kappa(x)-1)\right| \\
\nu_{s}(r) & =\sup _{0<x \leq r}\left|\left(\frac{r}{x}\right)^{s}(\gamma(x)-1)\right|
\end{aligned}
$$

- Construction of optimized splitting methods with relatively large number m of factors with optimized values of $\mu_{s}(r)+\epsilon \nu_{s}(r)$ for prescribed m, s, r, ϵ.
- Testing/analysis of methods for (weakly) non-linear wave equations, and eventually adapt the optimization criteria (Conjecture: Small coefficients $\left|a_{j}\right|,\left|b_{j}\right|$ required, in addition to small $\left.\mu_{s}(r)+\epsilon \nu_{s}(r)\right)$.
- Apply and adapt optimized splitting methods to other linear problems of the form

$$
\frac{d}{d t} q=M p, \quad \frac{d}{d t} p=-N q
$$

with all eigenvalues in the imaginary axis: Schrödinger, Maxwel.

- . .

Parameters for known splitting methods with m stages and order $2 n$

- Relative stability threshold x^{*} / m,
- Values for $\left(\mu_{s}(r m), \nu_{s}(r m)\right)$ in the error estimate

$$
\left\|q_{n}-q\left(t_{n}\right)\right\| \leq \frac{C_{s}}{\rho(B)^{s}}\left(\left|t_{n}\right| \mu_{s}(r m)+\nu_{s}(r m)\right)
$$

with time-step $\tau=\frac{r m}{\rho(B)}$.

Method	Leapfrog	Yoshida	Blanes \& Moan
m	1	4	6
$2 n$	2	4	4
x^{*} / m	2	0.393	0.482
$\left(\mu_{2}\left(\frac{5 m}{4}\right), \nu_{2}\left(\frac{5 m}{4}\right)\right)$	$(0.078,0.27)$	(∞, ∞)	(∞, ∞)
$\left(\mu_{2}(m), \nu_{2}(m)\right)$	$(0.0472,0.155)$	(∞, ∞)	(∞, ∞)
$\left(\mu_{2}\left(\frac{3 m}{10}\right), \nu_{2}\left(\frac{3 m}{10}\right)\right)$	$(0.0037,0.011)$	$(0.186,0.230)$	$(0.0002,0.003)$
$\left(\mu_{4}\left(\frac{3 m}{10}\right), \nu_{4}\left(\frac{3 m}{10}\right)\right)$	(∞, ∞)	$(0.186,0.230)$	$(0.0002,0.003)$

