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We are concerned with the application of splitting methods for the
time-integration of wave equations, for instance

The semilinear wave equations

in a bounded Ω ⊂ Rd with homogeneous Dirichlet boundary conds.

utt = ∆u + f (u) in Ω× R,
u = 0 in ∂Ω× R,

u(0) = u0, ut(0) = v0 in Ω.

We also consider

The semilinear wave equation with periodic boundary conditions

utt = ∆u + f (u) in Td × R,
u(0) = u0, ut(0) = v0 in Td .



Splitting methods

The simplest splitting method consists on approximating et L by
splitting the operator L as X + Y and

et (X+Y ) =
(
eτ (X+Y )

)m
≈
(
eτ X eτ Y

)m

with a small time-step τ = t/m. Alternatively, one can use the

Strang splitting

eτ (X+Y ) ≈ e
τ
2

X eτ Y e
τ
2

X .

Using more general products of exponentials is also possible:

eτ (X+Y ) ≈ eτa1X eτb1Y · · · eτamX eτbmY

with appropriately chosen a1, b1, · · · , am, bm ∈ R.



How to split the semilinear wave equation?

A possible option is splitting the wave equation as

utt = ∆u, and utt = f (u),

A better option, provided that f (u) = ρ u +O(u2), is

utt = ∆u + ρ u, and utt = f (u)− ρ u.

A third option, based on rewritting the equations as

ut = v , vt = ∆u + f (u)

and splitting it as{
ut = v ,
vt = 0,

and

{
ut = 0,
vt = ∆u + f (u).

But that only makes sense after spatial semidiscretization!



Semidiscretization in space

For a spatial grid x1, . . . , xN ∈ Ω, consider

q(t) ≈

u(x1, t)
...

u(xN , t)

 , p(t) ≈

ut(x1, t)
...

ut(xN , t)


determined as the solutions of a

Semidiscretized problem

d

dt
q = p,

d

dt
p = A q + g(q),

with initial values q(0) = q0, p(0) = q0.

Here, A ∈ RN×N is such that

A q(t) ≈

∆u(x1, t)
...

∆u(xN , t)

 , and g(q(t)) =

 f (u(x1, t))
...

f (u(xN , t))

 .



Application of eτ (A+B) = eτ/2Aeτ Beτ/2 A to the equations split as{
d
dt q = p,
d
dt p = 0,

and

{
d
dt q = 0,
d
dt p = A q + g(q),

gives the

Leapfrog method

(qn, pn) ≈ (q(tn), p(tn)) computed for tn = nτ as follows:

pn− 1
2

= pn−1 +
τ

2
(Aqn−1 + g(qn−1)),

qn = qn−1 + τ pn− 1
2
,

pn = pn− 1
2

+
τ

2
(Aqn + g(qn)),

or in two step formulation, q1 = q0 + τp0 + τ2

2 (Aq0 + g(q0)) and

qn+1 − 2qn + qn−1 = τ2(Aqn + g(qn)).



Central finite differences in space and leapfrog in time

Example: 1D-wave equation with homogeneous Dirichlet b.c.

Ω = (0, 1), f (u) = 2u − 4u3, u0(x) = 1
10+sin2(πx)

, v0(x) = 0,

xj = jh, (j = 1, . . . , 15), h = 1
16 , τ = h

2 .
Space discretization errors and time discr. errors versus time:
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Standard ODE error analysis: Consider a semidiscretized problem
(for a fixed small h) and study errors as τ → 0.

We would like to analyze the full discretization error as h, τ → 0.

Approx. analysis of fully discretized solutions of small amplitude

Assume that

f (0) = 0, so that for u with small amplitude, f (u) ≈ f ′(0)u,

−(A + f ′(0)I ) is diagonalizable with positive real eigenvalues.
Then consider B = (−(A + f ′(0)I ))1/2, and analyze leapfrog
method applied to

d

dt
q = p,

d

dt
p = −B2 q,



If τ ≤ 2
ρ(B) , then the numerical solution given by

qn+1 − 2qn + qn−1 = −τ2B2qn

(where q1 = q0 + τp0 − τ2

2 B2q0) lies in the trajectory of the

Modified problem

d

dt
q̃ = p̃,

d

dt
p̃ = −B̃2 q,

with

B̃ =
2

τ
arcsin(

τ

2
B) = B +

τ2

24
B3 + · · ·

and initial values

q̃(0) = q0, p̃(0) = (I − τ2

4
B2)−

1
2 p0 = p0 −

τ2

8
B2p0 + · · · .



Central finite differences in space and leapfrog in time

Example: 1D-wave equation with homogeneous Dirichlet b.c.

Previous example with h = 1
16 and τ = h (instead of τ = h

2 ).
Space, time and full discretization errors versus time:
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2nd order central finite differences with leapfrog in 1D

Stability requirement:

|τ | ≤ 2

ρ(B)
=

h

sin( (1−h)π
2 )

, (for f (u) = 0, )

hence, leapfrog scheme is stable for τ = h.
Exceptional performance of full discretization for τ = h:

ωk = kπ → ωh
k = 2

h sin(kπh/2) → ωh,τ
k = 2

τ arcsin(τωh
k/2).

If τ = h, then ωh,τ
k = kπ!

Solutions of utt = uxx exactly satisfy

1

τ2
(u(x , t + τ)− 2u(x , t) + u(x , t − τ)) =

1

h2
(u(x + h, t)− 2u(x , t) + u(x − h, t))

for τ = h.
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Fourier spectral collocation methods with leapfrog in time:

Example: 1D-wave equation with periodic boundary conditions

x ∈ (0, 2π), f (u) = u
10 − 4u3, u0(x) = esin(x)

10 , v0(x) = 0,

h = 2π
16 , τ = h

4 <
2

ρ(B) ≈
2h
π . Variation of discrete Hamiltonian,

momentum and oscillatory energy:
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Fourier spectral collocation methods with leapfrog in time: Space
discr. errors and time discr. errors (for τ = h/4 and τ = h/24)
versus time:
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Fourier spectral collocation methods with optimized splitting:

eτ (X+Y ) ≈ eτa1X eτb1Y · · · eτamX eτbmY .

Time discr. error of new splitting method with m = 17 and τ = mh
4
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Fourier spectral collocation methods with optimized splitting
methods for non-smooth data: f (u) = 2u3, n = 64,

u0(x) =

{
x

20π if 0 ≤ x ≤ π
2π−x
20π if π ≤ x ≤ 2π.

, v0(x) = 0

(i) Space discr. errors, (ii) time discr. errors for leapfrog with
τ = h/2 and (iii) another new method with m = 17 and τ = mh

2 .
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Consider the problem

d

dt
q = p,

d

dt
p = A q + g(q),

arising from the spatial semidiscretization of a wave equation.

Splitting scheme

(qn, pn) ≈ (q(tn), p(tn)) computed for tn = nτ as follows: Take
Q0 = qn−1, P0 = pn−1, and compute for j = 1, . . . ,m

Pj = Pj−1 + aj τ (AQj−1 + g(qj−1)),

Qj = Qj + bj τ Pj ,

and take (qn, pn) = (Qm,Pm).

The coefficients aj and bj (j = 1, . . . ,m) appropriately chosen real
numbers.



We want to analyse the application of the splitting method to

d

dt
q = p,

d

dt
p = −B2 q,

where B2 = −(f ′(0)I + A). We assume that B is symmetric
positive definite.

Obviously, ρ(B)→∞ as the spacial discretization converges
to the continuous problem.

For each splitting method, there exists x∗ ≥ 0 such that the
scheme is stable if τ < x∗

ρ(B) (x∗ = 2 for leapfrog).

We want to apply a splitting method with τ = r
ρ(B) for fixed

r ≤ x∗. How are the time discretization errors as ρ(B)→∞?

It depends on the splitting method, and the (smoothness of the)
initial data u0, v0.



We obtain estimates depending on

Cs := ||Bs+1q0||+ ||Bsp0||
≈ ||(f ′(0) + ∆)

s+1
2 u0||+ ||(f ′(0) + ∆)

s
2 v0||.

Theorem

Given a splitting scheme with stability threshold x∗, for each s > 0
and each r ∈ (0, x∗), there exist µs(r), νs(r) > 0 such that

||qn − q(tn)|| ≤ Cs

ρ(B)s
(|tn|µs(r) + νs(r)),

for tn = n τ with τ = r/ρ(B).

Similar estimates can be obtained for ||pn − p(tn)||.
For the leapfrog method, given 0 ≤ s ≤ 2 and r < x∗ = 2,

µs(r) = sup
0<x≤r

∣∣( r
x

)s ( 2
x arcsin

(
x
2

)
− 1
)∣∣ ,

νs(r) = sup
0<x≤r

∣∣∣ ( r
x

)s √
1− x2

4

∣∣∣.
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Given a splitting scheme with coefficients a1, b1, . . . , am, bm, there
exist x∗ ≥ 0 and two even functions κ(x) and γ(x) such that, if B
is symmetric positive definite and |τ |ρ(B) ≤ x∗, then

qn = q̃(n τ), pn = γ(τB)p̃(n τ),

where (q̃(t), p̃(t)) is the exact solution of

d

dt
q̃ = p̃,

d

dt
p̃ = −B̃2 q,

with B̃ = κ(τB)B and initial values

q̃(0) = q0, p̃(0) = γ(τB)−1 p0.

Furthermore, the theorem above holds with

µs(r) = sup
0<x≤r

∣∣( r
x

)s
(κ(x)− 1)

∣∣ ,
νs(r) = sup

0<x≤r

∣∣( r
x

)s
(γ(x)− 1)

∣∣ .



Work in progress

Construction of optimized splitting methods with relatively
large number m of factors with optimized values of
µs(r) + ε νs(r) for prescribed m, s, r , ε.

Testing/analysis of methods for (weakly) non-linear wave
equations, and eventually adapt the optimization criteria
(Conjecture: Small coefficients |aj |, |bj | required, in addition
to small µs(r) + ε νs(r)).

Apply and adapt optimized splitting methods to other linear
problems of the form

d

dt
q = M p,

d

dt
p = −N q

with all eigenvalues in the imaginary axis: Schrödinger,
Maxwel.

. . .



Parameters for known splitting methods with m stages and
order 2n

Relative stability threshold x∗/m,

Values for (µs(r m), νs(r m)) in the error estimate

||qn − q(tn)|| ≤ Cs

ρ(B)s
(|tn|µs(r m) + νs(r m))

with time-step τ = r m
ρ(B) .

Method Leapfrog Yoshida Blanes & Moan

m 1 4 6
2n 2 4 4

x∗/m 2 0.393 0.482
(µ2( 5m

4 ), ν2( 5m
4 )) (0.078, 0.27) (∞,∞) (∞,∞)

(µ2(m), ν2(m)) (0.0472, 0.155) (∞,∞) (∞,∞)
(µ2( 3m

10 ), ν2( 3m
10 )) (0.0037, 0.011) (0.186, 0.230) (0.0002, 0.003)

(µ4( 3m
10 ), ν4( 3m

10 )) (∞,∞) (0.186, 0.230) (0.0002, 0.003)


