Formal averaging of periodic and quasi-periodic vector fields

Ander Murua
Work in progress with P. Chartier and J.M. Sanz-Serna

Euskal Herriko Unibertsitatea

Dinard, January 2010

Example (Fermi-Pasta-Ulam problem)

Hamiltonian system with Hamiltonian function

$$
\begin{aligned}
H(p, \bar{p}, q, \bar{q})= & \frac{1}{2}\left(p^{T} p+\bar{p}^{T} \bar{p}\right)+\frac{1}{2 \epsilon^{2}} q^{T} q+U(q, \bar{q}), \\
U(q, \bar{q})= & \frac{1}{4}\left(\left(\bar{q}_{1}-q_{1}\right)^{4}+\left(\bar{q}_{m}+q_{m}\right)^{4}\right) \\
& +\frac{1}{4} \sum_{j=1}^{m-1}\left(\bar{q}_{j+1}-q_{j+1}-\bar{q}_{j}-q_{j}\right)^{4} .
\end{aligned}
$$

We consider $m=3, \epsilon=1 / 100$, and initial values

$$
\bar{p}(0)=p(0)=\bar{q}(0)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), q(0)=\left(\begin{array}{l}
\epsilon \\
0 \\
0
\end{array}\right) .
$$

Example (Fermi-Pasta-Ulam problem (cont.))

Solution for the component $q_{2}(t)$,

\qquad

Example (Fermi-Pasta-Ulam problem (cont.))

Solution for the component $q_{2}(t)$,

and for $n=0,1,2,3, \ldots$,

$$
q_{2}(2 \pi \epsilon n)
$$

Example (Fermi-Pasta-Ulam problem (cont.))

Solution for the component $q_{2}(t)$,

and for $n=0,1,2,3, \ldots$,

$$
q_{2}(2 \pi \epsilon n)
$$

Example (Fermi-Pasta-Ulam problem (cont.))

Solution for the component $q_{2}(t)$,

and for $n=0,1,2,3, \ldots$,

$$
q_{2}(2 \pi \epsilon n), \quad \text { and } \quad q_{2}\left(\frac{\pi \epsilon}{2}+2 \pi \epsilon n\right)
$$

Consider a Hamiltonian system

$$
\frac{d}{d t} y=J^{-1} \nabla H(y ; \epsilon), \quad H(y ; \epsilon):=\epsilon^{-1} H^{0}(y)+R(y)
$$

Let $\varphi_{\tau}: \mathbb{R}^{2 d} \rightarrow \mathbb{R}^{2 d}$ be such that $\varphi_{t / \epsilon}$ is the t-flow of that system. Assume that the τ-flow φ_{τ}^{0} of H^{0} is (2π)-periodic. ($H^{0}(y)$ and $R(y)$ may depend on ϵ).
It can be shown that $\varphi_{2 \pi}$ is a near-to-identity map,
Backward error analysis
There exists $\mathcal{H}(Y ; \epsilon)=\mathcal{H}_{0}(Y)$
such that, $Y(2 \pi \epsilon n)=y(2 \pi \epsilon n)$ if $Y(0)=y(0)=y_{0}$.

Consider a Hamiltonian system

$$
\frac{d}{d t} y=J^{-1} \nabla H(y ; \epsilon), \quad H(y ; \epsilon):=\epsilon^{-1} H^{0}(y)+R(y)
$$

Let $\varphi_{\tau}: \mathbb{R}^{2 d} \rightarrow \mathbb{R}^{2 d}$ be such that $\varphi_{t / \epsilon}$ is the t-flow of that system. Assume that the τ-flow φ_{τ}^{0} of H^{0} is (2π)-periodic. ($H^{0}(y)$ and $R(y)$ may depend on ϵ).
It can be shown that $\varphi_{2 \pi}$ is a near-to-identity map,

Backward error analysis

There exists $\mathcal{H}(Y ; \epsilon)=\mathcal{H}_{0}(Y)+\epsilon \mathcal{H}_{1}(Y)+\epsilon^{2} \mathcal{H}_{2}(y)+\cdots$,

$$
\frac{d}{d t} Y=J^{-1} \nabla \mathcal{H}(Y ; \epsilon)
$$

such that, $Y(2 \pi \epsilon n)=y(2 \pi \epsilon n)$ if $Y(0)=y(0)=y_{0}$.

Example (Fermi-Pasta-Ulam problem)

We consider

$$
\begin{aligned}
\tilde{\mathcal{H}}(Y, \epsilon) & :=\mathcal{H}_{0}(Y)+\epsilon^{2} \mathcal{H}_{2}(Y)+\epsilon^{4} \mathcal{H}_{4}(Y) \\
& =\mathcal{H}(Y ; \epsilon)+\mathcal{O}\left(\epsilon^{6}\right),
\end{aligned}
$$

and plot the variation $\tilde{\mathcal{H}}(y(t) ; \epsilon)-\tilde{\mathcal{H}}(y(0) ; \epsilon)$

Smooth invariant

Under the previous assumtions for

$$
\frac{d}{d t} y=J^{-1} \nabla H(y ; \epsilon), \quad H(y ; \epsilon):=\epsilon^{-1} H^{0}(y)+R(y)
$$

consider $\mathcal{H}(Y ; \epsilon)=\mathcal{H}_{0}(Y)+\epsilon \mathcal{H}_{1}(Y)+\epsilon^{2} \mathcal{H}_{2}(y)+\cdots$ as before, then $\mathcal{H}(y ; \epsilon)$ is a first integral of the original system.

Indeed, for $t_{n}=2 \pi \epsilon n, n=1,2, \ldots$

$$
H\left(Y\left(t_{n}\right) ; \epsilon\right)=H\left(y\left(t_{n}\right) ; \epsilon\right)=\text { Const }
$$

and by a interpolating argument, $H(Y(t) ; \epsilon)=$ Const, and thus

$$
\{H, \mathcal{H}\} \equiv 0 .
$$

Numerical integration of HOS with ϵ-independent time-steps

Integrate the smooth system

$$
\frac{d}{d t} Y=J^{-1} \nabla H(Y ; \epsilon), \quad Y(0)=y_{0}
$$

instead of the highly oscillatory one. Different options

- Symbolic-numeric algorithms using explicit knowledge of \mathcal{H}
- Purely numerical schemes that try to approximate $Y(t)$ by using H as input (HMSM, ...).

Motivated by that, we aim at

- Obtaining formulae for $\mathcal{H}(Y ; \epsilon)$ and its solutions $Y(t)$
- Such formulae should be as explicit as possible and
- Of universal character

Time-dependent ($2 \pi \epsilon$)-periodic change of variables

Let φ_{τ}^{0} be the τ-flow of H^{0}, consider

$$
y=\varphi_{t / \epsilon}^{0}(\hat{y}) .
$$

Notice that for $t_{n}=2 \pi \epsilon n$, it reduces to the identity map.
The system with $H(y ; \epsilon)=\epsilon^{-1} H^{0}(y)+R(y)$ is transformed into a non-autonomous Hamiltonian system with $\hat{H}(\hat{y}, t / \epsilon)$, where

$$
\hat{H}(\hat{y}, \tau):=R\left(\varphi_{\tau}^{0}(\hat{y})\right)=\sum_{k \in \mathbb{Z}} e^{i k \tau} \hat{H}_{k}(\hat{y})
$$

$\left(\varphi_{\tau}^{0}(\hat{y})\right.$ is (2π)-periodic in $\left.\tau\right)$. Clearly,

$$
\frac{d}{d t} \hat{y}=\sum_{k \in \mathbb{Z}} e^{i k t / \epsilon} f_{k}(\hat{y})
$$

From now on, we consider systems of that general form. The $f_{k}(\hat{y})$ mav depend on ϵ, but not reflected in the notation

Time-dependent ($2 \pi \epsilon$)-periodic change of variables

Let φ_{τ}^{0} be the τ-flow of H^{0}, consider

$$
y=\varphi_{t / \epsilon}^{0}(\hat{y}) .
$$

Notice that for $t_{n}=2 \pi \epsilon n$, it reduces to the identity map.
The system with $H(y ; \epsilon)=\epsilon^{-1} H^{0}(y)+R(y)$ is transformed into a non-autonomous Hamiltonian system with $\hat{H}(\hat{y}, t / \epsilon)$, where

$$
\hat{H}(\hat{y}, \tau):=R\left(\varphi_{\tau}^{0}(\hat{y})\right)=\sum_{k \in \mathbb{Z}} e^{i k \tau} \hat{H}_{k}(\hat{y})
$$

$\left(\varphi_{\tau}^{0}(\hat{y})\right.$ is (2π)-periodic in $\left.\tau\right)$. Clearly,

$$
\frac{d}{d t} \hat{y}=\sum_{k \in \mathbb{Z}} e^{i k t / \epsilon} f_{k}(\hat{y})
$$

From now on, we consider systems of that general form. The $f_{k}(\hat{y})$ may depend on ϵ, but not reflected in the notation.

Standard high order averaging [Sanders, Verhulst, Murdock 2007]

Under suitable assumptions on the HOS

$$
\frac{d}{d t} y=\sum_{k \in \mathbb{Z}} e^{i k t / \epsilon} f_{k}(y)
$$

there exists a formal $(2 \pi \epsilon)$-periodic change of variables $y=K(Y, t / \epsilon)$ that transforms the original HOS into the (averaged) autonomous equations

$$
\frac{d}{d t} Y=F(Y ; \epsilon):=F_{0}(Y)+\epsilon F_{1}(Y)+\epsilon^{2} F_{2}(Y)+\cdots
$$

The change of variables $y=K(Y, \tau)$ is not unique:

- Stroboscopic averaging: $K(Y, 0)=Y$, which implies

$$
Y(2 \pi \epsilon n)=y(2 \pi \epsilon n) \text { for all } n \in \mathbb{Z}
$$

- $\int_{0}^{2 \pi} K(Y, \tau) d \tau=Y$,

Stroboscopic averaging of HOS autonomous Hamiltonian systems

Back to the HOS Hamiltonian system $H(y)=\epsilon^{-1} H^{0}(y)+R(y)$, the $(2 \pi \epsilon)$-periodic change of variables

$$
y=\varphi_{t / \epsilon}^{0}(K(Y, t / \epsilon))
$$

transforms the original HOS autonomous Hamiltonian H into a smooth autonomous Hamiltonian \mathcal{H}.

Comments:

- The smooth Hamiltonian \mathcal{H} is exactly the same as that derived from backward error analysis applied to $\varphi_{2 \pi \epsilon}$
- The (stroboscopically) averaged system of general HOS

can also be derived from backward error analysis applied to the near-identity map ψ such that $\psi(y(0))=y(2 \pi \epsilon)$ for any
solution $y(t)$.

Stroboscopic averaging of HOS autonomous Hamiltonian systems

Back to the HOS Hamiltonian system $H(y)=\epsilon^{-1} H^{0}(y)+R(y)$, the $(2 \pi \epsilon)$-periodic change of variables

$$
y=\varphi_{t / \epsilon}^{0}(K(Y, t / \epsilon))
$$

transforms the original HOS autonomous Hamiltonian H into a smooth autonomous Hamiltonian \mathcal{H}.

Comments:

- The smooth Hamiltonian \mathcal{H} is exactly the same as that derived from backward error analysis applied to $\varphi_{2 \pi \epsilon}$.
- The (stroboscopically) averaged system of general HOS

$$
\frac{d}{d t} y=\sum_{k \in \mathbb{Z}} e^{i k t / \epsilon} f_{k}(y)
$$

can also be derived from backward error analysis applied to the near-identity map ψ such that $\psi(y(0))=y(2 \pi \epsilon)$ for any solution $y(t)$.

We next focus on obtaining, using standard techniques in numerical analysis (B-series, ...), universal formulae for the averaging of non-autonomous periodic HOS.

B-series expansion of solution of the HOS

For the solutions of $\dot{y}=\sum_{k} e^{i k t / \epsilon} f_{k}(y)$,

$$
y(t)=y(0)+\sum_{u \in \mathcal{T}} \frac{\alpha_{u}(t)}{\sigma_{u}} \mathcal{F}_{u}(y(0))
$$

\mathcal{T} is the set of rooted trees labelled by $k \in \mathbb{Z}$, and for each $u \in \mathcal{T}$,

- the coefficients $\alpha_{u}(\tau)$ are linear combinations of $t^{j} e^{i k t / \epsilon}$,
- The elementary differentials $\mathcal{F}_{u}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ are smooth,

We next focus on obtaining, using standard techniques in numerical analysis (B-series, ...), universal formulae for the averaging of non-autonomous periodic HOS.

B-series expansion of solution of the HOS

For the solutions of $\dot{y}=\sum_{k} e^{i k t / \epsilon} f_{k}(y)$,

$$
y(t)=y(0)+\sum_{u \in \mathcal{T}} \frac{\alpha_{u}(t)}{\sigma_{u}} \mathcal{F}_{u}(y(0))
$$

\mathcal{T} is the set of rooted trees labelled by $k \in \mathbb{Z}$, and for each $u \in \mathcal{T}$,

- the coefficients $\alpha_{u}(\tau)$ are linear combinations of $t^{j} e^{i k t / \epsilon}$,
- The elementary differentials $\mathcal{F}_{u}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ are smooth, ($\sigma_{u} \in \mathbb{Z}$ is a normalization factor.)

Elementary coefficients

We next focus on obtaining, using standard techniques in numerical analysis (B-series, ...), universal formulae for the averaging of non-autonomous periodic HOS.

B-series expansion of solution of the HOS

For the solutions of $\dot{y}=\sum_{k} e^{i k t / \epsilon} f_{k}(y)$,

$$
y(t)=y(0)+\sum_{u \in \mathcal{T}} \frac{\alpha_{u}(t)}{\sigma_{u}} \mathcal{F}_{u}(y(0))
$$

\mathcal{T} is the set of rooted trees labelled by $k \in \mathbb{Z}$, and for each $u \in \mathcal{T}$,

- the coefficients $\alpha_{u}(\tau)$ are linear combinations of $t^{j} e^{i k t / \epsilon}$,
- The elementary differentials $\mathcal{F}_{u}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ are smooth, ($\sigma_{u} \in \mathbb{Z}$ is a normalization factor.)

Elementary coefficients

$$
\alpha_{u}(t)=\int_{0}^{t} e^{i k t^{\prime} / \epsilon} \alpha_{u_{1}}\left(t^{\prime}\right) \cdots \alpha_{u_{m}}\left(t^{\prime}\right) d t^{\prime}, \quad u=\left[u_{1} \cdots u_{m}\right]_{k}
$$

Examples for rooted trees with less than 4 vertices

u	$\mathcal{F}_{u}(y)$	$\alpha_{u}(t)$
(k)	$f_{k}(y)$	$\int_{0}^{t} e^{\frac{i k t_{1}}{\epsilon}} d t_{1}$
$\begin{aligned} & k^{k} \\ & \text { (m) } \end{aligned}$	$f_{m}^{\prime}(y) f_{k}(y)$	$\int_{0}^{t} \int_{0}^{t_{2}} e^{\frac{i\left(k t_{1}+m t_{2}\right)}{\epsilon}} d t_{1} d t_{2}$
	$f_{\ell}^{\prime}(y) f_{m}^{\prime}(y) f_{k}(y)$	$\int_{0}^{t} \int_{0}^{t_{3}} \int_{0}^{t_{2}} e^{\frac{i\left(k t_{1}+m t_{2}+\ell t_{3}\right)}{\epsilon}} d t_{1} d t_{2} d t_{3}$
	$f_{\ell}^{\prime \prime}(y)\left(f_{m}(y), f_{k}(y)\right)$	$\int_{0}^{t} \int_{0}^{t_{2}} e^{\frac{i\left(k t_{1}+m t_{1}+\ell t_{2}\right)}{\epsilon}} d t_{1} d t_{2}$

For each $u \in \mathcal{T}, \alpha_{u}(t)=\alpha_{u}(t, t / \epsilon)$, with

Examples for rooted trees with less than 4 vertices

u	$\mathcal{F}_{u}(y)$	$\alpha_{u}(t)$
(k)	$f_{k}(y)$	$\int_{0}^{t} e^{\frac{i k t_{1}}{\epsilon}} d t_{1}$
$\begin{aligned} & (k) \\ & (m) \end{aligned}$	$f_{m}^{\prime}(y) f_{k}(y)$	$\int_{0}^{t} \int_{0}^{t_{2}} e^{\frac{i\left(k t_{1}+m t_{2}\right)}{\epsilon}} d t_{1} d t_{2}$
	$f_{\ell}^{\prime}(y) f_{m}^{\prime}(y) f_{k}(y)$	$\int_{0}^{t} \int_{0}^{t_{3}} \int_{0}^{t_{2}} e^{\frac{i\left(k t_{1}+m t_{2}+\ell t_{3}\right)}{\epsilon}} d t_{1} d t_{2} d t_{3}$
	$f_{\ell}^{\prime \prime}(y)\left(f_{m}(y), f_{k}(y)\right)$	$\int_{0}^{t} \int_{0}^{t_{2}} e^{\frac{i\left(k t_{1}+m t_{1}+\ell t_{2}\right)}{\epsilon}} d t_{1} d t_{2}$

For each $u \in \mathcal{T}, \alpha_{u}(t)=\alpha_{u}(t, t / \epsilon)$, with

$$
\alpha_{u}(t, \tau)=\sum_{k \in \mathbb{Z}} \alpha_{u}^{k}(t) e^{i k \tau}
$$

where each $\alpha_{u}^{k}(t)$ is a polynomial in t.

Relation with modulated Fourier series

For any solution of $\dot{y}=\sum_{k} e^{i k t / \epsilon} f_{k}(y)$,

$$
\begin{aligned}
y(t) & =y(0)+\sum_{u \in \mathcal{T}} \frac{\alpha_{u}(t, t / \epsilon)}{\sigma_{u}} \mathcal{F}_{u}(y(0)), \\
& =y(0)+\sum_{u \in \mathcal{T}} \sum_{k \in \mathbb{Z}} \frac{\alpha_{u}^{k}(t)}{\sigma_{u}} e^{i k t / \epsilon} \mathcal{F}_{u}(y(0)), \\
& =y(0)+\sum_{k \in \mathbb{Z}}\left(\sum_{u \in \mathcal{T}} \frac{\alpha_{u}^{k}(t)}{\sigma_{u}} \mathcal{F}_{u}(y(0))\right) e^{i k t / \epsilon} \\
& =y^{0}(t)+\sum_{k \in \mathbb{Z} \backslash\{0\}} e^{i k t / \epsilon} z^{k}(t) .
\end{aligned}
$$

Modulated Fourier series versus B-series approach

In the case of exact solution of the Hamiltonian system with $H(y ; \epsilon)=\epsilon^{-1} H^{0}(y)+R(y)$:

- Modulated Fourier approach [Hairer\& Lubich 2000]: Expand exact solution $y(t)$ in the form

$$
y(t)=y^{0}(t)+\sum_{k \in \mathbb{Z} \backslash\{0\}} e^{i k t / \epsilon} z^{k}(t)
$$

by Taylor-expanding $R(y)$ around $y^{0}(t)$.

- Our approach: Expand $\hat{y}(t)=\varphi_{-t / \epsilon}(y(t))$ as a B-series in terms of the Fourier modes \hat{H}_{k} of

$$
\hat{H}(\hat{y}, \tau):=R\left(\varphi_{\tau}^{0}(\hat{y})\right)=\sum_{k \in \mathbb{Z}} e^{i k t / \epsilon} \hat{H}_{k}(\hat{y})
$$

Averaging with B-series

There exist $\bar{\beta}_{u}, \bar{\alpha}_{u}(t), \kappa_{u}(\tau), u \in \mathcal{T},\left(\bar{\alpha}_{u}(t)\right.$ polynomial, $\kappa_{u}(\tau)$ (2π)-periodic) such that for any solution $y(t)$ of the HOS

$$
y(t)=K(Y(t), t / \epsilon), \quad \frac{d}{d t} Y(t)=F(y(t))
$$

where

$$
\begin{aligned}
F(Y) & =\sum_{u \in \mathcal{T}} \frac{\bar{\beta}_{u}}{\sigma_{u}} \mathcal{F}_{u}(Y) \\
Y(t) & =Y(0)+\sum_{u \in \mathcal{T}} \frac{\bar{\alpha}_{u}(t)}{\sigma_{u}} \mathcal{F}_{u}(Y(0)), \\
K(Y, \tau) & =Y+\sum_{u \in \mathcal{T}} \frac{\kappa_{u}(\tau)}{\sigma_{u}} \mathcal{F}_{u}(Y),
\end{aligned}
$$

Not unique (but uniquely determined for prescribed $\kappa_{u}(0), u \in \mathcal{T}$).

Averaging with B-series

There exist $\bar{\beta}_{u}, \bar{\alpha}_{u}(t), \kappa_{u}(\tau), u \in \mathcal{T},\left(\bar{\alpha}_{u}(t)\right.$ polynomial, $\kappa_{u}(\tau)$ (2π)-periodic) such that for any solution $y(t)$ of the HOS

$$
y(t)=K(Y(t), t / \epsilon), \quad \frac{d}{d t} Y(t)=F(y(t))
$$

where

$$
\begin{aligned}
F(Y) & =\sum_{u \in \mathcal{T}} \frac{\bar{\beta}_{u}}{\sigma_{u}} \mathcal{F}_{u}(Y) \\
Y(t) & =Y(0)+\sum_{u \in \mathcal{T}} \frac{\bar{\alpha}_{u}(t)}{\sigma_{u}} \mathcal{F}_{u}(Y(0)), \\
K(Y, \tau) & =Y+\sum_{u \in \mathcal{T}} \frac{\kappa_{u}(\tau)}{\sigma_{u}} \mathcal{F}_{u}(Y),
\end{aligned}
$$

Not unique (but uniquely determined for prescribed $\kappa_{u}(0), u \in \mathcal{T}$).
That is, $\alpha(t, \tau)=\bar{\alpha}(t) \kappa(\tau)$ with $\frac{d}{d t} \bar{\alpha}(t)=\bar{\alpha}(t) \bar{\beta}$.

That is, $\alpha(t, \tau)=\bar{\alpha}(t) \kappa(\tau)$ with $\frac{d}{d t} \bar{\alpha}(t)=\bar{\alpha}(t) \bar{\beta}$.

Stroboscopic averaging:

So that $Y(2 \pi n \epsilon)=y(2 \pi n \epsilon)$. Thus, $\kappa(0)=\mathbb{1}$ which implies $\bar{\alpha}(0)=\mathbb{1}$, and

$$
\bar{\alpha}_{u}(t)=\alpha_{u}(t, 0), \quad \kappa_{u}(\tau)=\alpha_{u}(0, \tau), \quad \bar{\beta}_{u}=\frac{d}{d t} \bar{\alpha}_{u}(t)
$$

That is, $\alpha(t, \tau)=\bar{\alpha}(t) \kappa(\tau)$ with $\frac{d}{d t} \bar{\alpha}(t)=\bar{\alpha}(t) \bar{\beta}$.
Stroboscopic averaging: $K(Y, 0)=Y$
So that $Y(2 \pi n \epsilon)=y(2 \pi n \epsilon)$. Thus, $\kappa(0)=\mathbb{1}$ which implies $\bar{\alpha}(0)=\mathbb{1}$, and

$$
\bar{\alpha}_{u}(t)=\alpha_{u}(t, 0), \quad \kappa_{u}(\tau)=\alpha_{u}(0, \tau), \quad \bar{\beta}_{u}=\left.\frac{d}{d t} \bar{\alpha}_{u}(t)\right|_{t=0} .
$$

'Classical' averaging:
$Y(2 \pi n \epsilon) \neq y(2 \pi n \epsilon)$. We have $\frac{1}{2 \pi} \int_{0}^{2 \pi} \kappa(\tau) d \tau=\mathbb{1}$, and thus

That is, $\alpha(t, \tau)=\bar{\alpha}(t) \kappa(\tau)$ with $\frac{d}{d t} \bar{\alpha}(t)=\bar{\alpha}(t) \bar{\beta}$.

Stroboscopic averaging: $K(Y, 0)=Y$

So that $Y(2 \pi n \epsilon)=y(2 \pi n \epsilon)$. Thus, $\kappa(0)=\mathbb{1}$ which implies $\bar{\alpha}(0)=\mathbb{1}$, and

$$
\bar{\alpha}_{u}(t)=\alpha_{u}(t, 0), \quad \kappa_{u}(\tau)=\alpha_{u}(0, \tau), \quad \bar{\beta}_{u}=\left.\frac{d}{d t} \bar{\alpha}_{u}(t)\right|_{t=0}
$$

'Classical' averaging: $\frac{1}{2 \pi} \int_{0}^{2 \pi} K(Y, \tau) d \tau=Y$
$Y(2 \pi n \epsilon) \neq y(2 \pi n \epsilon)$. We have $\frac{1}{2 \pi} \int_{0}^{2 \pi} \kappa(\tau) d \tau=\mathbb{1}$, and thus

$$
\begin{gathered}
\bar{\alpha}_{u}(t)=1 /(2 \pi) \int_{0}^{2 \pi} \alpha_{u}(t, \tau) d \tau, \quad \kappa_{u}(\tau)=\left(\bar{\alpha}(0)^{-1} \alpha(0, \tau)\right)_{u} \\
\bar{\beta}_{u}=\left.\frac{d}{d t} \bar{\alpha}(t)\right|_{t=0}
\end{gathered}
$$

Given $\omega \in \mathbb{R}^{d}$ non-resonant and $\theta(t)=\theta_{0}+\omega t$,

$$
\frac{d}{d t} y:=f(y, \theta(t))=\sum_{k \in \mathbb{Z}^{d}} e^{i(k \cdot \theta(t))} f_{k}(y), \quad, \quad y(0)=y_{0}
$$

Expansion of solutions of quasi-periodic vector fields

$$
y(t)=y_{0}+\sum \alpha_{w}(t, \theta(t)) f_{w}\left(y_{0}\right)
$$

where \mathcal{W} is the set of 'words' $w=k_{1} \cdots k_{r}$ on the alphabet \mathbb{Z}^{d},

Given $\omega \in \mathbb{R}^{d}$ non-resonant and $\theta(t)=\theta_{0}+\omega t$,

$$
\frac{d}{d t} y:=f(y, \theta(t))=\sum_{k \in \mathbb{Z}^{d}} e^{i(k \cdot \theta(t))} f_{k}(y), \quad, \quad y(0)=y_{0}
$$

Expansion of solutions of quasi-periodic vector fields

$$
y(t)=y_{0}+\sum_{w \in \mathcal{W}} \alpha_{w}(t, \theta(t)) f_{w}\left(y_{0}\right)
$$

where \mathcal{W} is the set of 'words' $w=k_{1} \cdots k_{r}$ on the alphabet \mathbb{Z}^{d},

$$
\begin{aligned}
\alpha_{k_{1} \cdots k_{r}}(t) & =\int_{0}^{t} \int_{0}^{t_{r}} \cdots \int_{0}^{t_{2}} e^{i \omega \cdot\left(k_{1} t_{1}+\cdots+k_{r} t_{r}\right)} d t_{1} \cdots d t_{r} \\
f_{k_{1} \cdots k_{r}}(y) & =\frac{\partial}{\partial y} f_{k_{2} \cdots k_{r}}(y) f_{k_{1}}(y)
\end{aligned}
$$

Given $\omega \in \mathbb{R}^{d}$ non-resonant and $\theta(t)=\theta_{0}+\omega t$,

$$
\frac{d}{d t} y:=f(y, \theta(t))=\sum_{k \in \mathbb{Z}^{d}} e^{i(k \cdot \theta(t))} f_{k}(y), \quad, \quad y(0)=y_{0}
$$

Expansion of solutions of quasi-periodic vector fields

$$
y(t)=y_{0}+\sum_{w \in \mathcal{W}} \alpha_{w}(t, \theta(t)) f_{w}\left(y_{0}\right)
$$

where \mathcal{W} is the set of 'words' $w=k_{1} \cdots k_{r}$ on the alphabet \mathbb{Z}^{d},

$$
\begin{aligned}
\alpha_{k_{1} \cdots k_{r}}(t) & =\int_{0}^{t} \int_{0}^{t_{r}} \cdots \int_{0}^{t_{2}} e^{i \omega \cdot\left(k_{1} t_{1}+\cdots+k_{r} t_{r}\right)} d t_{1} \cdots d t_{r} \\
f_{k_{1} \cdots k_{r}}(y) & =\frac{\partial}{\partial y} f_{k_{2} \cdots k_{r}}(y) f_{k_{1}}(y)
\end{aligned}
$$

In particular, $f_{m k}=f_{k}^{\prime} f_{m}, \quad f_{\ell m k}=f_{k}^{\prime \prime}\left(f_{m}, f_{\ell}\right)+f_{k}^{\prime} f_{m}^{\prime} f_{\ell}$.

Indeed, consider for each $k \in \mathbb{Z}^{d}$, the Lie operator associated to f_{k},

$$
E_{k}=\sum_{i=1}^{d^{\prime}} f_{k}^{i} \frac{\partial}{\partial y^{i}}, \quad \text { so that } \quad f_{k_{1} \cdots k_{r}}=E_{k_{1}} \cdots E_{k_{r}}[\mathrm{id}]
$$

Let Φ_{t} be such that $\Phi_{t}[g]\left(y_{0}\right)=g(y(t))$ for smooth $g(y)$

$$
\begin{aligned}
\frac{d}{d t} \Phi_{t}[g]\left(y_{0}\right) & =\frac{d}{d t} g(y(t))=\frac{\partial}{\partial y} g(y(t)) f(y(t), \theta(t)) \\
& =\sum_{k \in \mathbb{Z}^{d}} e^{i k \cdot \theta(t)} E_{k}[g](y(t))=\sum_{k \in \mathbb{Z}^{d}} e^{i k \cdot \theta(t)} \Phi_{t} E_{k}[g]\left(y_{0}\right)
\end{aligned}
$$

Indeed, consider for each $k \in \mathbb{Z}^{d}$, the Lie operator associated to f_{k},

$$
E_{k}=\sum_{i=1}^{d^{\prime}} f_{k}^{i} \frac{\partial}{\partial y^{i}}, \quad \text { so that } \quad f_{k_{1} \cdots k_{r}}=E_{k_{1}} \cdots E_{k_{r}}[\mathrm{id}]
$$

Let Φ_{t} be such that $\Phi_{t}[g]\left(y_{0}\right)=g(y(t))$ for smooth $g(y)$

$$
\begin{aligned}
\frac{d}{d t} \Phi_{t}[g]\left(y_{0}\right) & =\frac{d}{d t} g(y(t))=\frac{\partial}{\partial y} g(y(t)) f(y(t), \theta(t)) \\
& =\sum_{k \in \mathbb{Z}^{d}} e^{i k \cdot \theta(t)} E_{k}[g](y(t))=\sum_{k \in \mathbb{Z}^{d}} e^{i k \cdot \theta(t)} \Phi_{t} E_{k}[g]\left(y_{0}\right)
\end{aligned}
$$

Linear non-autonomous quasi-periodic differential equation

$$
\frac{d}{d t} \Phi_{t}=\Phi_{t} \sum_{k \in \mathbb{Z}^{d}} e^{i k \cdot \theta(t)} E_{k}, \quad \Phi_{0}=l
$$

Indeed, consider for each $k \in \mathbb{Z}^{d}$, the Lie operator associated to f_{k},

$$
E_{k}=\sum_{i=1}^{d^{\prime}} f_{k}^{i} \frac{\partial}{\partial y^{i}}, \quad \text { so that } \quad f_{k_{1} \cdots k_{r}}=E_{k_{1}} \cdots E_{k_{r}}[\mathrm{id}]
$$

Let Φ_{t} be such that $\Phi_{t}[g]\left(y_{0}\right)=g(y(t))$ for smooth $g(y)$

$$
\begin{aligned}
\frac{d}{d t} \Phi_{t}[g]\left(y_{0}\right) & =\frac{d}{d t} g(y(t))=\frac{\partial}{\partial y} g(y(t)) f(y(t), \theta(t)) \\
& =\sum_{k \in \mathbb{Z}^{d}} e^{i k \cdot \theta(t)} E_{k}[g](y(t))=\sum_{k \in \mathbb{Z}^{d}} e^{i k \cdot \theta(t)} \Phi_{t} E_{k}[g]\left(y_{0}\right)
\end{aligned}
$$

Linear non-autonomous quasi-periodic differential equation

$$
\frac{d}{d t} \Phi_{t}=\Phi_{t} \sum_{k \in \mathbb{Z}^{d}} e^{i k \cdot \theta(t)} E_{k}, \quad \Phi_{0}=l
$$

$$
\Phi_{t}=I+\sum_{k_{1} \cdots k_{r} \in \mathcal{W}} \alpha_{k_{1} \cdots k_{r}}(t) E_{k_{1}} \cdots E_{k_{r}} \quad \text { (by Picard iteration) }
$$

Each $\alpha_{w}(t)$ can be written as a linear combination of terms of the form $t^{j} e^{i(k \cdot \theta(t))}$. Actually, $\alpha_{w}(t)=\alpha_{w}(t, \theta(t))$, where
$\frac{\partial}{\partial t} \alpha_{w k}(t, \theta)+\omega \cdot \nabla_{\theta} \alpha_{w k}(t, \theta)=e^{i k \cdot \theta} \alpha_{w}(t, \theta), \quad \alpha_{w}\left(0, \theta_{0}\right)=0$. Recursive formulae for $\alpha_{w}(t, \theta)$

Each $\alpha_{w}(t)$ can be written as a linear combination of terms of the form $t^{j} e^{i(k \cdot \theta(t))}$. Actually, $\alpha_{w}(t)=\alpha_{w}(t, \theta(t))$, where

$$
\frac{\partial}{\partial t} \alpha_{w k}(t, \theta)+\omega \cdot \nabla_{\theta} \alpha_{w k}(t, \theta)=e^{i k \cdot \theta} \alpha_{w}(t, \theta), \quad \alpha_{w}\left(0, \theta_{0}\right)=0
$$

Recursive formulae for $\alpha_{w}(t, \theta)$

Each $\alpha_{w}(t)$ can be written as a linear combination of terms of the form $t^{j} e^{i(k \cdot \theta(t))}$. Actually, $\alpha_{w}(t)=\alpha_{w}(t, \theta(t))$, where

$$
\frac{\partial}{\partial t} \alpha_{w k}(t, \theta)+\omega \cdot \nabla_{\theta} \alpha_{w k}(t, \theta)=e^{i k \cdot \theta} \alpha_{w}(t, \theta), \quad \alpha_{w}\left(0, \theta_{0}\right)=0
$$

Recursive formulae for $\alpha_{w}(t, \theta)$

$$
\text { If } r \in \mathbb{Z}^{+}, k \in \mathbb{Z}^{d}-\{0\}, I \in \mathbb{Z}^{d} \text {, and } w \in \mathcal{W} \cup\{\emptyset\} \text {, }
$$

$$
\begin{aligned}
\alpha_{k}(t, \theta) & =\frac{i}{k \cdot \omega}\left(e^{i\left(k \cdot \theta_{0}\right)}-e^{i(k \cdot \theta)}\right), \\
\alpha_{0^{r}}(t, \theta) & =\frac{t^{r}}{r!}, \\
\alpha_{0^{r} k}(t, \theta) & =\frac{i}{k \cdot \omega}\left(\alpha_{0^{r-1} k}(t, \theta)-\alpha_{0^{r}}(t, \theta) e^{i(k \cdot \theta)}\right), \\
\alpha_{k / w}(t, \theta) & =\frac{i}{k \cdot \omega}\left(\alpha_{l w}(t, \theta)-\alpha_{(k+l) w}(t, \theta)\right), \\
\alpha_{0^{r} k / w}(t, \theta) & =\frac{i}{k \cdot \omega}\left(\alpha_{0^{r-1} k l w}(t, \theta)-\alpha_{0^{r}(k+l) w}(t, \theta)\right) .
\end{aligned}
$$

Formal high order averaging: Find a factorization

$$
\begin{aligned}
I+\sum_{w \in \mathcal{W}} \alpha_{w}(t, \theta) E_{w} & =\left(I+\sum_{w \in \mathcal{W}} \bar{\alpha}_{w}(t) E_{w}\right)\left(I+\sum_{w \in \mathcal{W}} \kappa_{w}(\theta) E_{w}\right) \\
\frac{d}{d t}\left(I+\sum_{w \in \mathcal{W}} \bar{\alpha}_{w}(t) E_{w}\right) & =\left(I+\sum_{w \in \mathcal{W}} \bar{\alpha}_{w}(t) E_{w}\right)\left(\sum_{w \in \mathcal{W}} \bar{\beta}_{w} E_{w}\right)
\end{aligned}
$$

Or more compactly,

$$
\alpha(t, \theta)=\bar{\alpha}(t) \kappa(\theta), \quad \frac{d}{d t} \bar{\alpha}(t)=\bar{\alpha}(t) \bar{\beta}
$$

Pseudo-stroboscopic averaging: $\kappa\left(\theta_{0}\right)=\mathbb{1}$

Formal high order averaging: Find a factorization

$$
\begin{aligned}
I+\sum_{w \in \mathcal{W}} \alpha_{w}(t, \theta) E_{w} & =\left(I+\sum_{w \in \mathcal{W}} \bar{\alpha}_{w}(t) E_{w}\right)\left(I+\sum_{w \in \mathcal{W}} \kappa_{w}(\theta) E_{w}\right) \\
\frac{d}{d t}\left(I+\sum_{w \in \mathcal{W}} \bar{\alpha}_{w}(t) E_{w}\right) & =\left(I+\sum_{w \in \mathcal{W}} \bar{\alpha}_{w}(t) E_{w}\right)\left(\sum_{w \in \mathcal{W}} \bar{\beta}_{w} E_{w}\right) .
\end{aligned}
$$

Or more compactly,

$$
\alpha(t, \theta)=\bar{\alpha}(t) \kappa(\theta), \quad \frac{d}{d t} \bar{\alpha}(t)=\bar{\alpha}(t) \bar{\beta}
$$

Pseudo-stroboscopic averaging: $\kappa\left(\theta_{0}\right)=\mathbb{1}$

$$
\bar{\alpha}_{w}(t)=\alpha_{w}\left(t, \theta_{0}\right), \quad \kappa_{w}(\theta)=\alpha_{w}(0, \theta), \quad \bar{\beta}_{w}=\left.\frac{d}{d t} \bar{\alpha}_{w}(t)\right|_{t=0}
$$

Pseudo-stroboscopic averaging for quasi-periodic problems
We get $y(t)=K(Y(t), \theta(t)),\left(\theta(t)=\theta_{0}+\omega t\right.$, where

$$
\frac{d}{d t} Y=F(Y), \quad Y(0)=y_{0}
$$

with

$$
\begin{aligned}
K(Y, \theta) & =Y+\sum_{w \in \mathcal{W}} \kappa_{w}(\theta) f_{w}(Y) \\
F(Y) & =\sum_{w \in \mathcal{W}} \bar{\beta}_{w} f_{w}(Y) \\
Y(t) & =y_{0}+\sum_{w \in \mathcal{W}} \bar{\alpha}_{w}(t) f_{w}\left(y_{0}\right) .
\end{aligned}
$$

Recursion for coefficients of averaged equation

$$
\begin{aligned}
\bar{\beta}_{k} & =0, \quad \bar{\beta}_{0}=1, \quad \bar{\beta}_{0 r+1}=0, \\
\bar{\beta}_{0^{r k}} & =\frac{i}{k \cdot \omega}\left(\bar{\beta}_{0^{r-1} k}-\bar{\beta}_{0 r} e^{i\left(k \cdot \theta_{0}\right)}\right), \\
\bar{\beta}_{k / w} & =\frac{i}{k \cdot \omega}\left(\bar{\beta}_{l w}-\bar{\beta}_{(k+l) w}\right), \\
\bar{\beta}_{0^{r} k / w} & =\frac{i}{k \cdot \omega}\left(\bar{\beta}_{0^{r-1} k / w}-\bar{\beta}_{0^{r}(k+l) w}\right),
\end{aligned}
$$

Similar recusions for $\bar{\alpha}(t)$ and $\kappa(\theta)$ from those of $\alpha(t, \theta)$

Recursion for coefficients of averaged equation

$$
\begin{aligned}
\bar{\beta}_{k} & =0, \quad \bar{\beta}_{0}=1, \quad \bar{\beta}_{0^{r+1}}=0, \\
\bar{\beta}_{0 r k} & =\frac{i}{k \cdot \omega}\left(\bar{\beta}_{0^{r-1} k}-\bar{\beta}_{0} r e^{i\left(k \cdot \theta_{0}\right)}\right), \\
\bar{\beta}_{k / w} & =\frac{i}{k \cdot \omega}\left(\bar{\beta}_{l w}-\bar{\beta}_{(k+1) w}\right), \\
\bar{\beta}_{0 r k / w} & =\frac{i}{k \cdot \omega}\left(\bar{\beta}_{0^{r-1} k / w}-\bar{\beta}_{0^{r}(k+1) w}\right),
\end{aligned}
$$

Similar recusions for $\bar{\alpha}(t)$ and $\kappa(\theta)$ from those of $\alpha(t, \theta)$.

But does the factorization

$$
\alpha(t, \theta)=\bar{\alpha}(t) \kappa(\theta), \quad \frac{d}{d t} \bar{\alpha}(t)=\bar{\alpha}(t) \bar{\beta}, \quad \kappa\left(\theta_{0}\right)=\mathbb{1}
$$

of $\alpha(t, \theta)$ exist?

$$
\left(\frac{\partial}{\partial t}+\omega \cdot \nabla_{\theta}\right) \alpha(t, \theta)=\alpha(t, \theta) \beta(\theta), \quad \alpha(0,0)=\mathbb{1}
$$

where $\beta_{k}(\theta)=e^{i k \cdot \theta}$ and $\beta_{w}(\theta)=0$ for $w=k_{1} \cdots k_{r}$ with $r>1$. If $n(t, \theta)=\bar{n}(t)_{k}(\theta)$ then

But does the factorization

$$
\alpha(t, \theta)=\bar{\alpha}(t) \kappa(\theta), \quad \frac{d}{d t} \bar{\alpha}(t)=\bar{\alpha}(t) \bar{\beta}, \quad \kappa\left(\theta_{0}\right)=\mathbb{1}
$$

of $\alpha(t, \theta)$ exist? First observe that

$$
\left(\frac{\partial}{\partial t}+\omega \cdot \nabla_{\theta}\right) \alpha(t, \theta)=\alpha(t, \theta) \beta(\theta), \quad \alpha(0,0)=\mathbb{1}
$$

where $\beta_{k}(\theta)=e^{i k \cdot \theta}$ and $\beta_{w}(\theta)=0$ for $w=k_{1} \cdots k_{r}$ with $r>1$.
If $\alpha(t, \theta)=\bar{\alpha}(t) \kappa(\theta)$, then

But does the factorization

$$
\alpha(t, \theta)=\bar{\alpha}(t) \kappa(\theta), \quad \frac{d}{d t} \bar{\alpha}(t)=\bar{\alpha}(t) \bar{\beta}, \quad \kappa\left(\theta_{0}\right)=\mathbb{1}
$$

of $\alpha(t, \theta)$ exist? First observe that

$$
\left(\frac{\partial}{\partial t}+\omega \cdot \nabla_{\theta}\right) \alpha(t, \theta)=\alpha(t, \theta) \beta(\theta), \quad \alpha(0,0)=\mathbb{1}
$$

where $\beta_{k}(\theta)=e^{i k \cdot \theta}$ and $\beta_{w}(\theta)=0$ for $w=k_{1} \cdots k_{r}$ with $r>1$.
If $\alpha(t, \theta)=\bar{\alpha}(t) \kappa(\theta)$, then

$$
\begin{aligned}
0 & =\bar{\alpha}(t)^{-1}\left(\frac{\partial}{\partial t}+\omega \cdot \nabla_{\theta}\right)(\alpha(t, \theta)-\bar{\alpha}(t) \kappa(\theta)) \\
& =\kappa(\theta) \beta(\theta)-\bar{\beta} \kappa(\theta)-\omega \cdot \nabla_{\theta} \kappa(\theta) .
\end{aligned}
$$

Sketch of proof: We first show that $\exists \kappa(\theta), \bar{\beta}$ such that

$$
\omega \cdot \nabla_{\theta} \kappa(\theta)=\kappa(\theta) \beta(\theta)-\bar{\beta} \kappa(\theta), \quad \kappa\left(\theta_{0}\right)=\mathbb{1} .
$$

Determine $\bar{\alpha}(t)$ from

$$
\frac{d}{d t} \bar{\alpha}(t)=\bar{\alpha}(t) \bar{\beta}, \quad \bar{\alpha}(0)=\mathbb{1}
$$

whence

$$
\left(\frac{\partial}{\partial t}+\omega \cdot \nabla_{\theta}\right) \bar{\alpha}(t) \kappa(\theta)=\bar{\alpha}(t) \kappa(\theta) \beta(\theta) .
$$

Finally, $\alpha(t, \theta):=\bar{\alpha}(t) \kappa(\theta)$, and $\alpha(t):=\alpha(t, \theta(t))$, for which

$$
\left(\frac{\partial}{\partial t}+\omega \cdot \nabla_{\theta}\right) a(t, 0)=a(t, \theta) \rho(0), \quad a(0,0)=\pi
$$

and thus $\frac{d}{d t} \alpha(t)=\alpha(t) \beta(\theta(t)), \quad \alpha(0)=\mathbb{1}$.

Sketch of proof: We first show that $\exists \kappa(\theta), \bar{\beta}$ such that

$$
\omega \cdot \nabla_{\theta} \kappa(\theta)=\kappa(\theta) \beta(\theta)-\bar{\beta} \kappa(\theta), \quad \kappa\left(\theta_{0}\right)=\mathbb{1}
$$

Determine $\bar{\alpha}(t)$ from

$$
\frac{d}{d t} \bar{\alpha}(t)=\bar{\alpha}(t) \bar{\beta}, \quad \bar{\alpha}(0)=\mathbb{1}
$$

whence

$$
\left(\frac{\partial}{\partial t}+\omega \cdot \nabla_{\theta}\right) \bar{\alpha}(t) \kappa(\theta)=\bar{\alpha}(t) \kappa(\theta) \beta(\theta) .
$$

Finally, $\alpha(t, \theta):=\bar{\alpha}(t) \kappa(\theta)$, and $\alpha(t):=\alpha(t, \theta(t))$, for which

$$
\left(\frac{\partial}{\partial t}+\omega \cdot \nabla_{\theta}\right) \alpha(t, \theta)=\alpha(t, \theta) \beta(\theta), \quad \alpha(0,0)=\mathbb{1}
$$

and thus $\frac{d}{d t} \alpha(t)=\alpha(t) \beta(\theta(t)), \quad \alpha(0)=\mathbb{1}$.

Sketch of proof: We first show that $\exists \kappa(\theta), \bar{\beta}$ such that

$$
\omega \cdot \nabla_{\theta} \kappa(\theta)=\kappa(\theta) \beta(\theta)-\bar{\beta} \kappa(\theta), \quad \kappa\left(\theta_{0}\right)=\mathbb{1}
$$

Determine $\bar{\alpha}(t)$ from

$$
\frac{d}{d t} \bar{\alpha}(t)=\bar{\alpha}(t) \bar{\beta}, \quad \bar{\alpha}(0)=\mathbb{1}
$$

whence

$$
\left(\frac{\partial}{\partial t}+\omega \cdot \nabla_{\theta}\right) \bar{\alpha}(t) \kappa(\theta)=\bar{\alpha}(t) \kappa(\theta) \beta(\theta) .
$$

Finally, $\alpha(t, \theta):=\bar{\alpha}(t) \kappa(\theta)$, and $\alpha(t):=\alpha(t, \theta(t))$, for which

$$
\left(\frac{\partial}{\partial t}+\omega \cdot \nabla_{\theta}\right) \alpha(t, \theta)=\alpha(t, \theta) \beta(\theta), \quad \alpha(0,0)=\mathbb{1}
$$

and thus $\frac{d}{d t} \alpha(t)=\alpha(t) \beta(\theta(t)), \quad \alpha(0)=\mathbb{1}$.

B-series expansion of exact solution of quasi-periodic ODEs
$y(t)=B\left(\alpha(t), y_{0}\right), \quad$ where $\quad \alpha_{u}(t)=\alpha_{u}(t, \theta(t))=\sum_{w \in \mathcal{W}_{u}} \alpha_{w}(t, \theta(t))$.

Averaging formulae in B-series form

$$
Y(t)=B\left(\bar{\alpha}(t), y_{0}\right), \quad \dot{Y}=B(\bar{\beta}, Y), \quad Y(t)=B(\kappa(\theta(t)), Y(t))
$$

- Quasi-stroboscopic averaging:

$$
\bar{\alpha}(t)=\alpha\left(t, \theta_{0}\right), \quad \bar{\beta}=\left.\frac{d}{d t} \bar{\alpha}(t)\right|_{t=0}, \quad \kappa(\theta)=\alpha(0, \theta)
$$

- Classical averaging:

$$
\begin{gathered}
\bar{\alpha}(t)=\int_{\mathcal{T}^{d}} \alpha(t, \theta) d \theta, \quad \bar{\beta}=\left.\frac{d}{d t} \bar{\alpha}(t)\right|_{t=0}, \\
\kappa(\theta)=\bar{\alpha}(0)^{-1} \alpha(0, \theta)
\end{gathered}
$$

Future work

- Prove rigorous results (bound independently the coefficients and the smooth y-dependent maps),
- Study approximate preservarion of formal invariants of HOS,
- Analyze existing numerical methods for highly oscillatory systems
- Desing and analyze new numerical methods. In particular, heterogenous multiscale methods based on
microintegration+
numerical evaluation of averaged equations+ macrointegration

Algebraic/geometric properties of exact solution

For $u_{1}, u_{2}, u_{3} \in \mathcal{T}$

- $\alpha_{u_{1} \circ u_{2}}+\alpha_{u_{2} \circ u_{1}}=\alpha_{u_{1}} \alpha_{u_{2}}, \rightarrow$ symplectic for each fixed t, τ.
- In addition

$$
\alpha_{u_{1} \circ u_{2} u_{3}}+\alpha_{{u_{2} \circ u_{1} u_{3}}+\alpha_{{u_{3} \circ u_{1} u_{2}}}=\alpha_{u_{1}} \alpha_{\nu_{2}} \alpha_{u_{3}} .}
$$

Hence, for each fixed t, τ, it represents the 1 -flow of a vector field in the Lie algebra generated by the f_{k}.

- Classical averaging does not preserve the properties of $\alpha(t, \tau)$ $1 /(2 \pi) \int_{0}^{2 \pi}\left(\alpha_{u_{1} \circ u_{2}}(t, \tau)+\alpha_{u_{2} \circ u_{1}}(t, \tau)\right) d \tau$ $\neq 1 /(2 \pi)^{2}\left(\int_{0}^{2 \pi} \alpha_{u_{1}}(t, \tau) d \tau\right)\left(\int_{0}^{2 \pi} \alpha_{t_{2}}(t, \tau) d \tau\right)$
\qquad (and $\bar{\beta}$). Stroboscopic averaging is well defined for periodic vector fields on manifolds.

Algebraic/geometric properties of exact solution

For $u_{1}, u_{2}, u_{3} \in \mathcal{T}$

- $\alpha_{u_{1} \circ u_{2}}+\alpha_{{u_{2}}^{\circ} u_{1}}=\alpha_{u_{1}} \alpha_{\nu_{2}}, \rightarrow$ symplectic for each fixed t, τ.
- In addition

$$
\alpha_{u_{1} \circ u_{2} u_{3}}+\alpha_{{u_{2} \circ u_{1} u_{3}}+\alpha_{{u_{3} \circ u_{1} u_{2}}}=\alpha_{u_{1}} \alpha_{\nu_{2}} \alpha_{u_{3}} .}
$$

Hence, for each fixed t, τ, it represents the 1 -flow of a vector field in the Lie algebra generated by the f_{k}.

- Classical averaging does not preserve the properties of $\alpha(t, \tau)$:

$$
\begin{aligned}
& 1 /(2 \pi) \int_{0}^{2 \pi}\left(\alpha_{u_{1} \circ u_{2}}(t, \tau)+\alpha_{u_{2} \circ u_{1}}(t, \tau)\right) d \tau \\
& \neq 1 /(2 \pi)^{2}\left(\int_{0}^{2 \pi} \alpha_{u_{1}}(t, \tau) d \tau\right)\left(\int_{0}^{2 \pi} \alpha_{u_{2}}(t, \tau) d \tau\right)
\end{aligned}
$$

- Stroboscopic averaging: Properties inherited by $\bar{\alpha}(t)=\alpha(t, 0)$ (and $\bar{\beta}$). Stroboscopic averaging is well defined for periodic vector fields on manifolds.

Algebraic/geometric properties of exact solution

For $u_{1}, u_{2}, u_{3} \in \mathcal{T}$

- $\alpha_{u_{1} \circ u_{2}}+\alpha_{{u_{2}}^{\circ} u_{1}}=\alpha_{u_{1}} \alpha_{\nu_{2}}, \rightarrow$ symplectic for each fixed t, τ.
- In addition

$$
\alpha_{u_{1} \circ u_{2} u_{3}}+\alpha_{{u_{2} \circ u_{1} u_{3}}+\alpha_{{u_{3} \circ u_{1} u_{2}}}=\alpha_{u_{1}} \alpha_{\nu_{2}} \alpha_{u_{3}} .}
$$

Hence, for each fixed t, τ, it represents the 1 -flow of a vector field in the Lie algebra generated by the f_{k}.

- Classical averaging does not preserve the properties of $\alpha(t, \tau)$:

$$
\begin{aligned}
& 1 /(2 \pi) \int_{0}^{2 \pi}\left(\alpha_{u_{1} \circ u_{2}}(t, \tau)+\alpha_{u_{2} \circ u_{1}}(t, \tau)\right) d \tau \\
& \neq 1 /(2 \pi)^{2}\left(\int_{0}^{2 \pi} \alpha_{u_{1}}(t, \tau) d \tau\right)\left(\int_{0}^{2 \pi} \alpha_{u_{2}}(t, \tau) d \tau\right)
\end{aligned}
$$

- Stroboscopic averaging: Properties inherited by $\bar{\alpha}(t)=\alpha(t, 0)$ (and $\bar{\beta}$). Stroboscopic averaging is well defined for periodic vector fields on manifolds.

