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Example (Fermi-Pasta-Ulam problem)

Hamiltonian system with Hamiltonian function

L 1 1 )
H(p.p,q.3) = 5(pTP+p"P)+ 559" a4+ U(q,3),
_ 1, _ _
U(g.9) = (@~ a)* + (@m+ am)*)
1 m—1
+7 2 (@1 — g1 -4 — )"
j=1




Example (Fermi-Pasta-Ulam problem (cont.))

Solution for the component gx(t),
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Example (Fermi-Pasta-Ulam problem (cont.))

Solution for the component gx(t),
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Example (Fermi-Pasta-Ulam problem (cont.))

Solution for the component gx(t),
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and for n=20,1,2,3,...

g2(2men), and q2(2 + 27en).




Consider a Hamiltonian system

d _ _

—y =J7IVH(yie),  Hyie) :=eTH(y) + R(y),
Let ¢, : R%2¢ — R 29 be such that ¥¢/e i1s the t-flow of that
system. Assume that the 7-flow 9 of H? is (2r)-periodic.
(H°(y) and R(y) may depend on ).

It can be shown that (o is a near-to-identity map,



Consider a Hamiltonian system

d _ _

—y =J7IVH(yie),  Hyie) :=eTH(y) + R(y),
Let ¢, : R%2¢ — R 29 be such that ¥¢/e i1s the t-flow of that
system. Assume that the 7-flow 9 of H? is (2r)-periodic.
(H°(y) and R(y) may depend on ).

It can be shown that (o is a near-to-identity map,

Backward error analysis
There exists H(Y;¢€) = Ho(Y) + eH1(Y) + Ha(y) + -+,

d
il Vap -1 Y-
g JTVH(Ye),

such that, Y(2mwen) = y(2men) if Y(0) = y(0) = yo.




Example (Fermi-Pasta-Ulam problem)

We consider
H(Y,e) = Ho(Y)+ Ha(Y) + *Ha(Y)
= H(Y;e)—l—@(eﬁ),

and plot the variation H(y(t); €) — H(y(0); €)
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Smooth invariant

Under the previous assumtions for

d _ _

—¥ =J7IVH(yie),  Hlyie):= e TH(y) + R(y),
consider H(Y;€) = Ho(Y) + eH1(Y) + e2Ha(y) + - - - as before,
then H(y;€) is a first integral of the original system.

Indeed, for t, = 2men, n=1,2,...
H(Y(tn); €) = H(y(tn); €) = Const
and by a interpolating argument, H(Y(t); €) = Const, and thus

{H,H} =0.



Numerical integration of HOS with e-independent time-steps

Integrate the smooth system

%Y = J7IVH(Y;€), Y(0)=yo

instead of the highly oscillatory one. Different options
@ Symbolic-numeric algorithms using explicit knowledge of H

@ Purely numerical schemes that try to approximate Y'(t) by
using H as input (HMSM, ...).

Motivated by that, we aim at
@ Obtaining formulae for H(Y;€) and its solutions Y(t)
@ Such formulae should be as explicit as possible and

@ Of universal character



Time-dependent (27e)-periodic change of variables

Let ¢ be the 7-flow of HC, consider

Notice that for t, = 27en, it reduces to the identity map.

The system with H(y; €) = e *H%(y) + R(y) is transformed into a
non-autonomous Hamiltonian system with H(y, t/¢), where

A, 1) = R(L2(>P Z e* Hi (3
keZ

(©%(y) is (2m)-periodic in 7). Clearly,

Z eikt/sfk(y)

kEZ



Time-dependent (27e)-periodic change of variables

Let ¢ be the 7-flow of HC, consider

Notice that for t, = 27en, it reduces to the identity map.

The system with H(y; €) = e *H%(y) + R(y) is transformed into a
non-autonomous Hamiltonian system with H(y, t/¢), where

A5.7) = RA9)) = D e* Hi(9)
keZ
(©%(y) is (2m)-periodic in 7). Clearly,
Z eikt/sfk(y)
kEZ

From now on, we consider systems of that general form. The £ ()
may depend on ¢, but not reflected in the notation.



Standard high order averaging [Sanders, Verhulst, Murdock 2007]

Under suitable assumptions on the HOS

d ikt/e
a) = Z et/ fi(y)-
keZ

there exists a formal (2me)-periodic change of variables
y = K(Y,t/e€) that transforms the original HOS into the
(averaged) autonomous equations

%Y = F(Y;€):=Fo(Y)+eF(Y)+ER(Y)+

The change of variables y = K(Y, 7) is not unique:

@ Stroboscopic averaging: K(Y,0) = Y, which implies
Y (2men) = y(2men) for all n € Z.

o [ZTK(Y,T)dT =Y,



Stroboscopic averaging of HOS autonomous Hamiltonian systems

Back to the HOS Hamiltonian system H(y) = ¢ *HO(y) + R(y),
the (2me)-periodic change of variables

y = ¢i(K(Y, t/e))

transforms the original HOS autonomous Hamiltonian H into a
smooth autonomous Hamiltonian H.




Stroboscopic averaging of HOS autonomous Hamiltonian systems

Back to the HOS Hamiltonian system H(y) = ¢ *H(y) + R(y),
the (2me)-periodic change of variables

y = &2 (K(Y, £/6))

transforms the original HOS autonomous Hamiltonian H into a
smooth autonomous Hamiltonian H.

Comments:
@ The smooth Hamiltonian H is exactly the same as that
derived from backward error analysis applied to ©o .
@ The (stroboscopically) averaged system of general HOS

d _ ikt /e
al = Z e"fi(y).
kEZ

can also be derived from backward error analysis applied to
the near-identity map ¢ such that ¢(y(0)) = y(2me) for any
solution y(t).



We next focus on obtaining, using standard techniques in
numerical analysis (B-series, ...), universal formulae for the
averaging of non-autonomous periodic HOS.

B-series expansion of solution of the HOS

For the solutions of y = 3, e*t/f(y),

a

ult
y(0) = () + 32 29 7,0,
ueT u
T is the set of rooted trees labelled by k € Z, and for each v € T,
o the coefficients a,(7) are linear combinations of /e/t/¢,

@ The elementary differentials F,, : R9 — R? are smooth,
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We next focus on obtaining, using standard techniques in
numerical analysis (B-series, ...), universal formulae for the
averaging of non-autonomous periodic HOS.

B-series expansion of solution of the HOS

For the solutions of y = 3, e*t/f(y),

a

ult
y(0) = () + 32 29 7,0,
ueT u
T is the set of rooted trees labelled by k € Z, and for each v € T,
o the coefficients a,(7) are linear combinations of /e/t/¢,

@ The elementary differentials F,, : R9 — R? are smooth,
(o4 € Z is a normalization factor.)

<

Elementary coefficients

t
ozu(t):/o e ey (t') - ay, () dt,  u=[ur- Um]k.

<



Examples for rooted trees with less than 4 vertices

fu(y) Oéu(t)
ikt:
@ fk(y) fO eTl dty
i(kty +mt
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Examples for rooted trees with less than 4 vertices

Fuly) ay(t)
@ fk(y) fO e’k% dtl
% OVR) =
0 (ktq +mty+Lt
@ FOEWEY) | JE 8 [ e gty dy dts
©
R\ . S ROl 60D) | I3 e e

For each u € 7, a,(t) = ay(t, t/e), with
au(t,7) =) ak(t)e*,
kEZ

where each aX(t) is a polynomial in t.




Relation with modulated Fourier series

For any solution of y = 3", e*t/f(y),

WH = y +Z““”/E (v(0)).

ueT

= ¥+ Z /< Fu(y(0)),

ueT keZ
u(Y(O))> elt/e

- +z(z
_ yo(t)+ Z e'kt/ezk(t).

kez \uer v
keZ\{0}




Modulated Fourier series versus B-series approach

In the case of exact solution of the Hamiltonian system with
H(yie) = e tHO(y) + R(y):
@ Modulated Fourier approach [Hairer& Lubich 2000]: Expand
exact solution y(t) in the form

y(@) =y + Y ")

keZ\{0}
by Taylor-expanding R(y) around y°(t).

® Our approach: Expand y(t) = ¢_;/.(y(t)) as a B-series in
terms of the Fourier modes Hj of

A7) = R(ED3) = Y_ "/ Fi(5).
kEZ




Averaging with B-series

There exist (3, ay(t), ku(7), u € T, (au(t) polynomial, #,(7)
(2m)-periodic) such that for any solution y(t) of the HOS

y(6) = K(Y (D) t/e), SY(8) = Fly(t),

where
F(Y) = Zﬂ“
ueT
Y(t) = 0)+Z Fu(Y(0)),
ueT Tu
K(Y,7) = Y+Z“:(T)
ueT v

Not unique (but uniquely determined for prescribed ,(0), u € 7).




Averaging with B-series

There exist (3, ay(t), ku(7), u € T, (au(t) polynomial, #,(7)
(2m)-periodic) such that for any solution y(t) of the HOS

y(6) = K(Y (D) t/e), SY(8) = Fly(t),

where
F(Y) = Zﬂ“
ueT
Y(t) = 0)+Z Fu(Y(0)),
ueT Tu
K(Y,7) = Y+Z“:(T)
ueT v

Not unique (but uniquely determined for prescribed ,(0), u € 7).

That is, a(t,7) = a(t)r(r) with La(t) = a(t)s.
D



That is, a(t,7) = a(t)s(r) with La(t) = a(t)s.



That is, a(t,7) = a(t)s(r) with La(t) = a(t)s.

Stroboscopic averaging: K(Y,0) =Y

So that Y(2mne) = y(2mne). Thus, £(0) = 1 which implies
a(0) =1, and

ay(t) = ay(t,0), ku(1) = ay(0,7), By = ic_yu(t)




That is, a(t,7) = a(t)s(r) with La(t) = a(t)s.

Stroboscopic averaging: K(Y,0) =Y

So that Y(2mne) = y(2mne). Thus, £(0) = 1 which implies
a(0) =1, and

ay(t) = ay(t,0), ku(1) = ay(0,7), By = ic_yu(t)

Y (2mne) # y(2mne). We have L [27 (r)dr = 1, and thus

27
ayu(t) =1/(2n) ay(t,7)dr, Ku(T) = (c_y(O)fla(O,T))u7
0




Given w € R 9 non-resonant and 6(t) = 6 + wt,

d

Sy = 00) = D CDh(y), L y(0) =,
kezd



Given w € R 9 non-resonant and 6(t) = 6 + wt,

d o
Sy = 00) = D CDh(y), L y(0) =,
kezd

Expansion of solutions of quasi-periodic vector fields

y(t) = yo+ Y aw(t,6(t)) fulxo),

wew

where W is the set of 'words' w = kj - - - k, on the alphabet yAS

ok (1) = / / / i latitthet) gy gy

ik (y) = 3y sz At (V) fir (¥),



Given w € R 9 non-resonant and 6(t) = 6 + wt,

d o
Sy = 00) = D CDh(y), L y(0) =,
kezd

Expansion of solutions of quasi-periodic vector fields

y(t) = yo+ Y aw(t,6(t)) fulxo),

wew

where W is the set of 'words' w = kj - - - k, on the alphabet yAS

ok (1) = / / / i latitthet) gy gy

ik (y) = 3y sz At (V) fir (¥),

In particular, fok = ffm, fimk = ' (fm, o) + L1
D



Indeed, consider for each k € Z 9, the Lie operator associated to fy,
.0
Ex=> fi a0 that fi,..., = E, - - Ex [id],

Let ®; be such that ®:[g](yo) = g(y(t)) for smooth g(y)

D oulgln) = Sely(e) = jyg(y(t))f(yuw(t))
= Y e E(y(r) = ) "o Edlg](yo0)-
kezd kezd



Indeed, consider for each k € Z 9, the Lie operator associated to fy,
d P
By = Z fkl 87)/"7 so that fkl"’kr = Ekl o0c Ek, [id],

Let ®; be such that ®:[g](yo) = g(y(t)) for smooth g(y)

S oudgln) = al(t) = fyg(y(t))f(ya),e(t))

dt
= > MOEE(v(1) = D e " DoEilg](v).
kezd kezd

Linear non-autonomous quasi-periodic differential equation

d ik-0(t) _
0= > E, dg=1.
kezd




Indeed, consider for each k € Z 9, the Lie operator associated to fy,
d P
By = Z fkl 87)/"7 so that fkl"’kr = Ek1 o0c Ek, [id],

Let ®; be such that ®:[g](yo) = g(y(t)) for smooth g(y)

S oudgln) = al(t) = fyg(y(t))f(ym,e(t))

dt
= > MOEE(v(1) = D e " DoEilg](v).
kezd kezd

=1+ > okui(t)Ex - Er (by Picard iteration)



Each ay,(t) can be written as a linear combination of terms of the
form t/e/(k-0(t))



Each ay,(t) can be written as a linear combination of terms of the
form t/e/(k0(t)  Actually, o, (t) = a(t, 6(t)), where

fia‘”k(t’ 0) +w - Voau(t,0) = e*%,(t,0), a,(0,6)=0.



Each ay,(t) can be written as a linear combination of terms of the
form t/e/(k0(t)  Actually, o, (t) = a(t, 6(t)), where

fia‘”k(t’ 0) +w - Voau(t,0) = e*%,(t,0), a,(0,6)=0.

Recursive formulae for o, (t, 6)
freZ*, keZ9—{0},/€Z9 and w e WU {0},

i .
ak(t,0) = m(e’(kﬂo)iel(kﬂ)),

tr
aO’(t,e) — ﬁ’

i .
aork(t,0) = ——(ao-1(t,0) — aor(t,0)e ),

i
ak/W(t7 6) = m(alw(ta 0) - a(k+l)w(t7 0))7
I
Qo kiw(t,0) = P u)(C’éorﬂk/W(E 0) — aor(k+nw(t, 0)).




Formal high order averaging: Find a factorization

I+ > aw(t,0)Ey = (/+ Y au(t) EW) (/+ 3 ku(9) EW>

wew weW wew
L0+ 3 mu0m) = (1 3 w85 22)
wew wew wew

Or more compactly,



Formal high order averaging: Find a factorization

I+ > aw(t,0)E (/ + 3 au(t) EW) (/+ 3 ku(9) EW>

wew wew wew
%(/Jerw(t)Ew) = (I—{—Zaw(t )(ZQWEW).
wew wew wew

Or more compactly,




Pseudo-stroboscopic averaging for quasi-periodic problems

We get y(t) = K(Y(t),0(t)), (0(t) = 6p + wt,) where

d
—Y =F(Y Y(0) =
dt ( )’ ( ) Yo,

with

K(Y79) = Y+ Z Kw(e)fw(y)a

wew
F(Y) - Z Bw fw(y
wew
Y(t) = yo+ . aw(t) ful(o):
wew




Recursion for coefficients of averaged equation

Bk = Oa BO - 17 BO’Jrl = 07
_ I _ _ WP
BO’k = w(ﬂO'—lk — Bo’el(k 60))7

-

_ P
Buw = m(ﬁlw — Blkt+tyw);
_ A _
Borkiw = k—(ﬁor—lklw — Bor(k+1yw)s

)




Recursion for coefficients of averaged equation

Bk = Oa BO = 17 BO’*I = 07
]

Bork = (Bor—1xc — Bor e’ %)),

)

-

_ P
ﬁklw - m(ﬁlw - /B(k+l)w)a
_ A _
Borkiw = P (Bor—1itw — Bor(k+1yw)>

Similar recusions for &(t) and k(@) from those of «(t, ).



But does the factorization

a(t,0) = a(t)s(0), %o‘z(t)

of a(t,0) exist?

a(t)B,

H(@o) =1



But does the factorization

a(t,0) = a(t)s(0), %o‘z(t) — a7, k() =1
of «a(t,0) exist? First observe that

(& +w-Vo)a(t,0) = a(t,0)3(0), «(0,0) =1,

where Gk (0) = e*? and 3,(0) = 0 for w = ky - - - k, with r > 1.



But does the factorization
a(t,0) = a(t)s(0), %o‘z(t) — a7, k() =1
of «a(t,0) exist? First observe that
(& +w-Vo)a(t,0) = a(t,0)3(0), «(0,0) =1,

where Gk (0) = e*? and 3,(0) = 0 for w = ky - - - k, with r > 1.
If a(t,0) = a(t)x(0), then

g - To)(a(t,0) — a(t)s(0))
) — B k(0) — w - Vyr(H).

0 = ()X
= x(0)5(6



Sketch of proof: We first show that 3x(#), 3 such that

w- Vo (#) = r(0)5(6) ~ B(6), r(fo) = 1. J

Determine @(t) from

d _ -
Za(t)=a()d, a©) =1,



Sketch of proof: We first show that 3x(#), 3 such that

w- Vo r(0) = K(0)8(0) — Br(6), r(0o) = 1. ]

Determine @(t) from

d _ B =
St =a(t)s, a0) =1,

whence

Finally, a(t,0) := a(t) (0), and a(t) := «(t,0(t)), for which

(& +w Vo)a(t,0) = a(t,0)3(0), (0,0)=1,



Sketch of proof: We first show that 3x(#), 3 such that

w- Vo r(0) = K(0)8(0) — Br(6), r(0o) = 1. ]

Determine @(t) from

d _ B =
St =a(t)s, a0) =1,

whence

Finally, a(t,0) := a(t) (0), and a(t) := «(t,0(t)), for which
(& +w Vo)a(t,0) = a(t,0)3(0), (0,0)=1,

and thus Za(t) = a(t)B(6(t)), «(0) = 1.



B-series expansion of exact solution of quasi-periodic ODEs

y(t) = B(a(t),y0), where au(t) = au(t,6(t)) = D auw(t,0().

v
Averaging formulae in B-series form

Y(t) = B(a(t),y), Y =B(3Y), Y(t)=B(x(b(t).Y(t)),

@ Quasi-stroboscopic averaging:

d(t) = Oé(t', 90)7 B = 7d(t)

@ Classical averaging:

o‘z(t):/Tda(t,Q)dH, 3= %d(t)

K(0) = a(0)"1a(0, 9).
e

t=0




Future work

@ Prove rigorous results (bound independently the coefficients
and the smooth y-dependent maps),

@ Study approximate preservarion of formal invariants of HOS,
@ Analyze existing numerical methods for highly oscillatory
systems

@ Desing and analyze new numerical methods. In particular,
heterogenous multiscale methods based on
microintegration-
numerical evaluation of averaged equations—
macrointegration




Algebraic/geometric properties of exact solution
For uy, up,u3 € T
@ Qyjou, + Quyory = Quyy @y, — Ssymplectic for each fixed t, 7.

@ In addition

Qo T Qupouguz T Cusouguy = Qlyg Qyy Qg -

Hence, for each fixed t, 7, it represents the 1-flow of a vector
field in the Lie algebra generated by the fy.
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@ Qyjou, + Quyory = Quyy @y, — Ssymplectic for each fixed t, 7.

@ In addition

Qo T Qupouguz T Cusouguy = Qlyg Qyy Qg -
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field in the Lie algebra generated by the fy.

o Classical averaging does not preserve the properties of «(t, 7):
21
1/(2m) 0 (Quyou (t, T) + Qugouy (t, 7)) dT
=L 1/(27r)2 ( 027r Oéul(l',T)dT> (fOZW ay,(t, T)dT)



Algebraic/geometric properties of exact solution

For ui,up,u3 € T
@ Qyjou, + Quyory = Quyy @y, — Ssymplectic for each fixed t, 7.
@ In addition
Qo T Qupouguz T Cusouguy = Qlyg Qyy Qg -

Hence, for each fixed t, 7, it represents the 1-flow of a vector
field in the Lie algebra generated by the fy.

o Classical averaging does not preserve the properties of «(t, 7):
21
1/(2m) 0 (Quyou (t, T) + Qugouy (t, 7)) dT
=L 1/(27r)2 ( 027r Oéul(l',T)dT> (fOZW ay,(t, T)dT)

o Stroboscopic averaging: Properties inherited by a(t) = a(t,0)
(and (3). Stroboscopic averaging is well defined for periodic
vector fields on manifolds.



