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Example (Fermi-Pasta-Ulam problem)

Hamiltonian system with Hamiltonian function

H(p, p̄, q, q̄) =
1

2
(pTp + p̄T p̄) +

1

2ε2
qTq + U(q, q̄),

U(q, q̄) =
1

4

(
(q̄1 − q1)4 + (q̄m + qm)4

)
+

1

4

m−1∑
j=1

(q̄j+1 − qj+1 − q̄j − qj)
4.

We consider m = 3, ε = 1/100, and initial values

p̄(0) = p(0) = q̄(0) =

(
1
0
0

)
, q(0) =

(
ε
0
0

)
.



Example (Fermi-Pasta-Ulam problem (cont.))

Solution for the component q2(t),
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Example (Fermi-Pasta-Ulam problem (cont.))

Solution for the component q2(t),
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q2(2πεn), and q2(
πε

2
+ 2πεn).



Consider a Hamiltonian system

d

dt
y = J−1∇H(y ; ε), H(y ; ε) := ε−1H0(y) + R(y),

Let ϕτ : R 2d → R 2d be such that ϕt/ε is the t-flow of that
system. Assume that the τ -flow ϕ0

τ of H0 is (2π)-periodic.
(H0(y) and R(y) may depend on ε).
It can be shown that ϕ2π is a near-to-identity map,

Backward error analysis

There exists H(Y ; ε) = H0(Y ) + εH1(Y ) + ε2H2(y) + · · · ,

d

dt
Y = J−1∇H(Y ; ε),

such that, Y (2πεn) = y(2πεn) if Y (0) = y(0) = y0.
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Example (Fermi-Pasta-Ulam problem)

We consider

H̃(Y , ε) := H0(Y ) + ε2H2(Y ) + ε4H4(Y )

= H(Y ; ε) +O(ε6),

and plot the variation H̃(y(t); ε)− H̃(y(0); ε)
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Smooth invariant

Under the previous assumtions for

d

dt
y = J−1∇H(y ; ε), H(y ; ε) := ε−1H0(y) + R(y),

consider H(Y ; ε) = H0(Y ) + εH1(Y ) + ε2H2(y) + · · · as before,
then H(y ; ε) is a first integral of the original system.

Indeed, for tn = 2πεn, n = 1, 2, . . .

H(Y (tn); ε) = H(y(tn); ε) = Const

and by a interpolating argument, H(Y (t); ε) = Const, and thus

{H,H} ≡ 0.



Numerical integration of HOS with ε-independent time-steps

Integrate the smooth system

d

dt
Y = J−1∇H(Y ; ε), Y (0) = y0

instead of the highly oscillatory one. Different options

Symbolic-numeric algorithms using explicit knowledge of H
Purely numerical schemes that try to approximate Y (t) by
using H as input (HMSM, . . .).

Motivated by that, we aim at

Obtaining formulae for H(Y ; ε) and its solutions Y (t)

Such formulae should be as explicit as possible and

Of universal character



Time-dependent (2πε)-periodic change of variables

Let ϕ0
τ be the τ -flow of H0, consider

y = ϕ0
t/ε(ŷ).

Notice that for tn = 2πεn, it reduces to the identity map.

The system with H(y ; ε) = ε−1H0(y) + R(y) is transformed into a
non-autonomous Hamiltonian system with Ĥ(ŷ , t/ε), where

Ĥ(ŷ , τ) := R(ϕ0
τ (ŷ)) =

∑
k∈Z

e ikτ Ĥk(ŷ).

(ϕ0
τ (ŷ) is (2π)-periodic in τ). Clearly,

d

dt
ŷ =

∑
k∈Z

e ikt/εfk(ŷ).

From now on, we consider systems of that general form. The fk(ŷ)
may depend on ε, but not reflected in the notation.
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τ (ŷ)) =

∑
k∈Z

e ikτ Ĥk(ŷ).
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τ (ŷ) is (2π)-periodic in τ). Clearly,

d

dt
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Standard high order averaging [Sanders, Verhulst, Murdock 2007]

Under suitable assumptions on the HOS

d

dt
y =

∑
k∈Z

e ikt/εfk(y).

there exists a formal (2πε)-periodic change of variables
y = K (Y , t/ε) that transforms the original HOS into the
(averaged) autonomous equations

d

dt
Y = F (Y ; ε) := F0(Y ) + εF1(Y ) + ε2F2(Y ) + · · ·

The change of variables y = K (Y , τ) is not unique:

Stroboscopic averaging: K (Y , 0) = Y , which implies
Y (2πεn) = y(2πεn) for all n ∈ Z .∫ 2π
0 K (Y , τ) dτ = Y ,



Stroboscopic averaging of HOS autonomous Hamiltonian systems

Back to the HOS Hamiltonian system H(y) = ε−1H0(y) + R(y),
the (2πε)-periodic change of variables

y = ϕ0
t/ε(K (Y , t/ε))

transforms the original HOS autonomous Hamiltonian H into a
smooth autonomous Hamiltonian H.

Comments:

The smooth Hamiltonian H is exactly the same as that
derived from backward error analysis applied to ϕ2πε.

The (stroboscopically) averaged system of general HOS

d

dt
y =

∑
k∈Z

e ikt/εfk(y).

can also be derived from backward error analysis applied to
the near-identity map ψ such that ψ(y(0)) = y(2πε) for any
solution y(t).
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We next focus on obtaining, using standard techniques in
numerical analysis (B-series, . . .), universal formulae for the
averaging of non-autonomous periodic HOS.

B-series expansion of solution of the HOS

For the solutions of ẏ =
∑

k e ikt/εfk(y),

y(t) = y(0) +
∑
u∈T

αu(t)

σu
Fu(y(0)),

T is the set of rooted trees labelled by k ∈ Z , and for each u ∈ T ,

the coefficients αu(τ) are linear combinations of t je ikt/ε,

The elementary differentials Fu : R d → R d are smooth,
(σu ∈ Z is a normalization factor.)

Elementary coefficients

αu(t) =

∫ t

0
e ikt′/εαu1(t ′) · · ·αum(t ′) dt ′, u = [u1 · · · um]k .
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Examples for rooted trees with less than 4 vertices

u Fu(y) αu(t)ik fk(y)
∫ t
0 e

ikt1
ε dt1

imik f ′m(y)fk(y)
∫ t
0

∫ t2
0 e

i(kt1+mt2)
ε dt1 dt2

ee

%%

ìim ik
f ′` (y)f ′m(y)fk(y)

∫ t
0

∫ t3
0

∫ t2
0 e

i(kt1+mt2+`t3)
ε dt1 dt2 dt3

ee %%

im ikì f ′′` (y)(fm(y), fk(y))
∫ t
0

∫ t2
0 e

i(kt1+mt1+`t2)
ε dt1 dt2

For each u ∈ T , αu(t) = αu(t, t/ε), with

αu(t, τ) =
∑
k∈Z

αk
u(t)e ikτ ,

where each αk
u(t) is a polynomial in t.
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Relation with modulated Fourier series

For any solution of ẏ =
∑

k e ikt/εfk(y),

y(t) = y(0) +
∑
u∈T

αu(t, t/ε)

σu
Fu(y(0)),

= y(0) +
∑
u∈T

∑
k∈Z

αk
u(t)

σu
e ikt/εFu(y(0)),

= y(0) +
∑
k∈Z

(∑
u∈T

αk
u(t)

σu
Fu(y(0))

)
e ikt/ε

= y0(t) +
∑

k∈Z \{0}

e ikt/εzk(t).



Modulated Fourier series versus B-series approach

In the case of exact solution of the Hamiltonian system with
H(y ; ε) = ε−1H0(y) + R(y):

Modulated Fourier approach [Hairer& Lubich 2000]: Expand
exact solution y(t) in the form

y(t) = y0(t) +
∑

k∈Z \{0}

e ikt/εzk(t)

by Taylor-expanding R(y) around y0(t).

Our approach: Expand ŷ(t) = ϕ−t/ε(y(t)) as a B-series in

terms of the Fourier modes Ĥk of

Ĥ(ŷ , τ) := R(ϕ0
τ (ŷ)) =

∑
k∈Z

e ikt/εĤk(ŷ).



Averaging with B-series

There exist β̄u, ᾱu(t), κu(τ), u ∈ T , (ᾱu(t) polynomial, κu(τ)
(2π)-periodic) such that for any solution y(t) of the HOS

y(t) = K (Y (t), t/ε),
d

dt
Y (t) = F (y(t)),

where

F (Y ) =
∑
u∈T

β̄u

σu
Fu(Y ),

Y (t) = Y (0) +
∑
u∈T

ᾱu(t)

σu
Fu(Y (0)),

K (Y , τ) = Y +
∑
u∈T

κu(τ)

σu
Fu(Y ),

Not unique (but uniquely determined for prescribed κu(0), u ∈ T ).

That is, α(t, τ) = ᾱ(t)κ(τ) with d
dt ᾱ(t) = ᾱ(t)β̄.
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That is, α(t, τ) = ᾱ(t)κ(τ) with d
dt ᾱ(t) = ᾱ(t)β̄.

Stroboscopic averaging: K (Y , 0) = Y

So that Y (2πnε) = y(2πnε). Thus, κ(0) = 11 which implies
ᾱ(0) = 11, and

ᾱu(t) = αu(t, 0), κu(τ) = αu(0, τ), β̄u =
d

dt
ᾱu(t)

∣∣∣∣
t=0

.

’Classical’ averaging: 1
2π

∫ 2π
0 K (Y , τ)dτ = Y

Y (2πnε) 6= y(2πnε). We have 1
2π

∫ 2π
0 κ(τ)dτ = 11, and thus

ᾱu(t) = 1/(2π)

∫ 2π

0
αu(t, τ)dτ, κu(τ) = (ᾱ(0)−1α(0, τ))u,

β̄u =
d

dt
ᾱ(t)

∣∣∣∣
t=0

.
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Given ω ∈ R d non-resonant and θ(t) = θ0 + ωt,

d

dt
y := f (y , θ(t)) =

∑
k∈Z d

e i(k·θ(t))fk(y), , y(0) = y0,

Expansion of solutions of quasi-periodic vector fields

y(t) = y0 +
∑
w∈W

αw (t, θ(t)) fw (y0),

where W is the set of ’words’ w = k1 · · · kr on the alphabet Z d ,

αk1···kr (t) =

∫ t

0

∫ tr

0
· · ·
∫ t2

0
e iω·(k1t1+···+kr tr ) dt1 · · · dtr ,

fk1···kr (y) =
∂

∂y
fk2···kr (y)fk1(y),

In particular, fmk = f ′k fm, f`mk = f ′′k (fm, f`) + f ′k f ′mf`.
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Indeed, consider for each k ∈ Z d , the Lie operator associated to fk ,

Ek =
d ′∑

i=1

f i
k

∂

∂y i
, so that fk1···kr = Ek1 · · ·Ekr [id],

Let Φt be such that Φt [g ](y0) = g(y(t)) for smooth g(y)

d

dt
Φt [g ](y0) =

d

dt
g(y(t)) =

∂

∂y
g(y(t))f (y(t), θ(t))

=
∑

k∈Z d

e ik·θ(t)Ek [g ](y(t)) =
∑

k∈Z d

e ik·θ(t)ΦtEk [g ](y0).

Linear non-autonomous quasi-periodic differential equation

d

dt
Φt = Φt

∑
k∈Z d

e ik·θ(t)Ek , Φ0 = I .

Φt = I +
∑

k1···kr∈W
αk1···kr (t) Ek1 · · ·Ekr (by Picard iteration)
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Each αw (t) can be written as a linear combination of terms of the
form t je i(k·θ(t)). Actually, αw (t) = αw (t, θ(t)), where

∂

∂t
αwk(t, θ) + ω · ∇θ αwk(t, θ) = e ik·θαw (t, θ), αw (0, θ0) = 0.

Recursive formulae for αw (t, θ)

If r ∈ Z +, k ∈ Z d − {0}, l ∈ Z d , and w ∈ W ∪ {∅},

αk(t, θ) =
i

k · ω
(e i(k·θ0) − e i(k·θ)),

α0r (t, θ) =
tr

r !
,

α0rk(t, θ) =
i

k · ω
(α0r−1k(t, θ)− α0r (t, θ)e i(k·θ)),

αklw (t, θ) =
i

k · ω
(αlw (t, θ)− α(k+l)w (t, θ)),

α0rklw (t, θ) =
i

k · ω
(α0r−1klw (t, θ)− α0r (k+l)w (t, θ)).
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Formal high order averaging: Find a factorization

I +
∑
w∈W

αw (t, θ)Ew =
(
I +

∑
w∈W

ᾱw (t) Ew

)(
I +

∑
w∈W

κw (θ) Ew

)
d

dt

(
I +

∑
w∈W

ᾱw (t) Ew

)
=
(
I +

∑
w∈W

ᾱw (t) Ew

)( ∑
w∈W

β̄w Ew

)
.

Or more compactly,

α(t, θ) = ᾱ(t)κ(θ),
d

dt
ᾱ(t) = ᾱ(t)β̄.

Pseudo-stroboscopic averaging: κ(θ0) = 11

ᾱw (t) = αw (t, θ0), κw (θ) = αw (0, θ), β̄w =
d

dt
ᾱw (t)

∣∣∣∣
t=0

.
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ᾱw (t) Ew

)( ∑
w∈W

β̄w Ew

)
.

Or more compactly,

α(t, θ) = ᾱ(t)κ(θ),
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Pseudo-stroboscopic averaging for quasi-periodic problems

We get y(t) = K (Y (t), θ(t)), (θ(t) = θ0 + ωt,) where

d

dt
Y = F (Y ), Y (0) = y0,

with

K (Y , θ) = Y +
∑
w∈W

κw (θ) fw (Y ),

F (Y ) =
∑
w∈W

β̄w fw (Y ),

Y (t) = y0 +
∑
w∈W

ᾱw (t) fw (y0).



Recursion for coefficients of averaged equation

β̄k = 0, β̄0 = 1, β̄0r+1 = 0,

β̄0rk =
i

k · ω
(β̄0r−1k − β̄0r e i(k·θ0)),

β̄klw =
i

k · ω
(β̄lw − β̄(k+l)w ),

β̄0rklw =
i

k · ω
(β̄0r−1klw − β̄0r (k+l)w ),

Similar recusions for ᾱ(t) and κ(θ) from those of α(t, θ).
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But does the factorization

α(t, θ) = ᾱ(t)κ(θ),
d

dt
ᾱ(t) = ᾱ(t)β̄, κ(θ0) = 11

of α(t, θ) exist? First observe that

( ∂∂t + ω · ∇θ)α(t, θ) = α(t, θ)β(θ), α(0, 0) = 11,

where βk(θ) = e ik·θ and βw (θ) = 0 for w = k1 · · · kr with r > 1.

If α(t, θ) = ᾱ(t)κ(θ), then

0 = ᾱ(t)−1( ∂∂t + ω · ∇θ)(α(t, θ)− ᾱ(t)κ(θ))

= κ(θ)β(θ)− β̄ κ(θ)− ω · ∇θκ(θ).
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= κ(θ)β(θ)− β̄ κ(θ)− ω · ∇θκ(θ).



Sketch of proof: We first show that ∃κ(θ), β̄ such that

ω · ∇θ κ(θ) = κ(θ)β(θ)− β̄ κ(θ), κ(θ0) = 11.

Determine ᾱ(t) from

d

dt
ᾱ(t) = ᾱ(t)β̄, ᾱ(0) = 11,

whence

( ∂∂t + ω · ∇θ)ᾱ(t)κ(θ) = ᾱ(t)κ(θ)β(θ).

Finally, α(t, θ) := ᾱ(t)κ(θ), and α(t) := α(t, θ(t)), for which

( ∂∂t + ω · ∇θ)α(t, θ) = α(t, θ)β(θ), α(0, 0) = 11,

and thus d
dtα(t) = α(t)β(θ(t)), α(0) = 11.
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Finally, α(t, θ) := ᾱ(t)κ(θ), and α(t) := α(t, θ(t)), for which

( ∂∂t + ω · ∇θ)α(t, θ) = α(t, θ)β(θ), α(0, 0) = 11,

and thus d
dtα(t) = α(t)β(θ(t)), α(0) = 11.



Sketch of proof: We first show that ∃κ(θ), β̄ such that

ω · ∇θ κ(θ) = κ(θ)β(θ)− β̄ κ(θ), κ(θ0) = 11.

Determine ᾱ(t) from
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B-series expansion of exact solution of quasi-periodic ODEs

y(t) = B(α(t), y0), where αu(t) = αu(t, θ(t)) =
∑

w∈Wu

αw (t, θ(t)).

Averaging formulae in B-series form

Y (t) = B(ᾱ(t), y0), Ẏ = B(β̄,Y ), Y (t) = B(κ(θ(t)),Y (t)),

Quasi-stroboscopic averaging:

ᾱ(t) = α(t, θ0), β̄ =
d

dt
ᾱ(t)

∣∣∣∣
t=0

, κ(θ) = α(0, θ).

Classical averaging:

ᾱ(t) =

∫
T d

α(t, θ) dθ, β̄ =
d

dt
ᾱ(t)

∣∣∣∣
t=0

,

κ(θ) = ᾱ(0)−1α(0, θ).



Future work

Prove rigorous results (bound independently the coefficients
and the smooth y -dependent maps),

Study approximate preservarion of formal invariants of HOS,

Analyze existing numerical methods for highly oscillatory
systems

Desing and analyze new numerical methods. In particular,
heterogenous multiscale methods based on

microintegration+
numerical evaluation of averaged equations+
macrointegration



Algebraic/geometric properties of exact solution

For u1, u2, u3 ∈ T
αu1◦u2 + αu2◦u1 = αu1αu2 , → symplectic for each fixed t, τ .

In addition

αu1◦u2u3 + αu2◦u1u3 + αu3◦u1u2 = αu1αu2αu3 .

Hence, for each fixed t, τ , it represents the 1-flow of a vector
field in the Lie algebra generated by the fk .

Classical averaging does not preserve the properties of α(t, τ):

1/(2π)
∫ 2π
0 (αu1◦u2(t, τ) + αu2◦u1(t, τ)) dτ

6= 1/(2π)2
(∫ 2π

0 αu1(t, τ)dτ
)(∫ 2π

0 αu2(t, τ)dτ
)

Stroboscopic averaging: Properties inherited by ᾱ(t) = α(t, 0)
(and β̄). Stroboscopic averaging is well defined for periodic
vector fields on manifolds.
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