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Main results

The transport equation approach

A class of higly oscillatory ODE systems

We consider systems of the form

where A is diagonalizable with imaginary eigenvalues, r : R” — R"
is polynomial, and € > 0 is a small parameter.

This implies that there exist a non-resonant vector of frequencies
w=(wi,...,wq) €RY d < n, and matrices Ay, ..., Ag, such that

d
A=) wiA,
j=1

[Aj, Al] =0, and each etV is (27)-periodic in t. Hence, the
solutions of the unperturbed system (e = 0) are quasi-periodic in t,

exp(£ A) = exp(t<2 Ap)---exp(t <2 Ay).
D
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In particular, we are interested in the

Hamiltonian case

d
d _ wj
G = HE ) =352 100 + R,
J:
where the quadratic polynomials /;(x) = 3x T (JA)x are
@ in involution,

o first integrals of the unperturbed Hamiltonian system, and

o the t-flow of each /;(x) is (2m)-periodic in t.

Each /;(x) is approximatelly preserved along solutions of the
perturbed Hamiltonian system. It is known that this is related to
the existence of formal first integrals I;(x) = I;(x) + O(e) of the
perturbed system.
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Let Z R (x e'K“)T he the Fourier series of R(eTijAjX)_
kezd

Explicit formulae for formal first integrals

B0) = b te Y IR

kez 9\ {0}

+Z Z ﬂdkl - .{{RkwRk2}7Rk3}'“}’Rk’}(X)7

r>2 ki,..., k,€eZ

Where, given r € Z+, k € Z9\{0}, and I4,...,l; € Z¢,

Li] _ %7 50] -0,
ﬁO’k = kwﬁof 1k
Bkll A, = kw(ﬂll A 5k]+|1)|2 |5)
ﬁO’kll»--ls = (ﬁO’ 1Kly -l ﬂ r(k+lp)l- |)




Main results
Main ingredients to obtain our explicit formal results

o Combinatorial-algebraic tools (B-series) developped for the
numerical analysis of non-stiff ODEs. We rewite the solutions
of the original highly oscillatory system as a (generalized)
B-series, with highly oscillatory coefficients, which correspond
to the solution of an ODE on the coefficient group (the
Butcher group).

o Expressing the solution x(t) of the original system as
x(t) = z(t/e,Tw/€), where z(7,0) is an appropriately chosen
solution of the transport equation

Orz+w-0gz = Az+er(z),
z(0,0) = x(0).
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Related ongoing work

@ Use of B-series approach to analyse numerical resonances of
existing integration schemes.

@ Rigorous estimates for formal first integrals and high order
averaging on the ODE case, by estimating the corresponding
B-series coefficients.

@ New numerical integrators based on the associated transport
equation.

@ Application to PDEs: Variants of Schrodinger, vawe equation,
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We go back to the general ODE case of the form

d
JoX= Ax+er(x), x(0)=x €R",

with real analytic r(x), and A diagonalizable with imaginary
eigenvalues. Guided with our work using B-series, we seek to
express formaly its solution as

x(1) = e xp + € Zi(7, 7w, x0) + €2 Zy(T,Tw, x0) + - - -
where for each j =1,2,...,

Z R xTYxR" — R"
(T’07X) = ZJ(T79?X)

is polynomial in 7 and real analytic in (6, x).



Main results
The transport equation approach
Theorem

Consider the transport equation associated to the original ODE,

Orz+w-0gz=Az+er(z), z(0,0)=xp.
If r(x) is real analytic and w € R 9 satisfies a Diophantine condition
vk € Z9/{0}, |k-w|> clk|7Y,
then, there is a unique formal solution
z(7,0) = eXifixg + € Zi(7,0,x0) + € Zo(7,0,x0) + - - -
such that for each j =1,2,...,

Z R xTYxR" — R"
(T’07X) = Z_I(7-79?X)

is polynomial in T and real-analytic in (6, x).
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Consider the family of formal maps ®,49: R"” — R",

O o(x) = eX0ifix 4 € Zy(7,0,x) + € Zo(7,0, %) + - - -

so that z(7,6) = ®, ¢(xp) is the polynomial in time solution of the
transport equation, and x(7) = ®,,,-(xo) is the solution of the
original ODE.

The uniqueness result on the polynomial in time solution of the
transport equation can be used to prove:

Y(r,0),(7",0) e R x T¢

(DT’,H’ © ¢T,9 = ¢T+T’,6’+9’~
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We thus have that
¢T,9 = q>0,9161 ©---0 q)O,Gded © (DT,();

where ¢; is the jth unit vector in R 7.
o Each oY .= ®o,7¢; is (2)-periodic in 7, and (since

CDQ] o <DL’,] = ol ) it is the 7-flow of an autonomous ODE.

T+T7!"

@ &, ¢ is the T-flow of the averaged ODE,

d d
d—X = eF(X), where €F(X):= —®,0(X)
.

The time-dependent change of variables

x=oll o... ol (X)

TW1 TWd
transforms the original ODE into the averaged one (X(0) = x(0)).
D
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Theorem

If in addition to previous assumptions, there exist skew-symmetric
S € R"™" and real analytic R : R"™ — R such that SA is
symmetric and r(x) = SVR(x), so that

d
d
Sox=SVH(x), H(x)= ;wj l:(x) + eR(x),
with [;(x) = %XT(SA)X, then
0 (0x®r9(x))T S (0xP,9(x)) = S.
o each ®Y! is the r-flow of a Hamiltonian Ti(x) = li(x) + O(e),

o H(x),h(x),...,I4(x) are in involution.
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Example (A Fermi-Pasta-Ulam type problem (from HLW))

A Hamiltonian system with n =10 (x = (p, q) € R19),
5 2
1 Aj 1 1
Hip,q) = > < 2t qJ> +e <2pf+2q§+fU(q)> :
j=
1

4
V70 5
U(gq) = 8Q%q§+6<20+q2+CI3+2Q4+Q5 ;

where \o = A3 =1, \a =2, \s = V2. The quadratic part is the
sum of the energies

2
_¢/.2 2 1 2 s
h=5i+a), =5t 5q, i=2....5

of five uncoupled harmonic oscillators with frequencies A = ¢,
M=X=1 =2 ) =V2
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Example (cont.)

As in [HLW], we take € = 1/70, p(0) = (—0.2,0.65,0.75, —0.95,0.85)7,
q(0) = (1,0.35,0.85, —1.15,0.76) T (6 = /€), and plot (versus 7) the
evolution of J;, i =1,...,5, and J + J5 + Jy, for 0 < 7 < 500/¢2.
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We get formal first integrals 7;(x) and h(x) corresponding to

w = (1,v2), h(x) = Jo(x) + J3(x) + Ja(x), h(x) = §J5(x),

R(x) = 2(p? + ¢?) + €U(q). Moreover, the averaged Hamiltonian is of
the form

R(x) = 5(F +a2) + K (),

which gives an additional formal first integral 5(x) = 2(P?+ g?) + O(e).

v
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Example (cont.)

We compute the second order truncation of 1 (x),

h(x)=h(x)+ > B R+ Y B {Re Rid,

kezd ktezd

and plot | (x(7)) — 11(x(0))|/€> versus T for e = 1/70, e = 1/140.
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Example (cont.)

|L(x(7)) = B(x(0)|/¢" and [B(x(r)) — K(x(0))|/€®
versus 7 for e = 1/70, e = 1/140.
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The first two terms in the series defining ;(x) — /;(x):

> fj(Rk( )+ Rok(x)

o
e ZO 5 ({Ro. R = Roih(x) + {Re Roih(x))
+e ;2>0 B.B.(x BY, () + B, () + BY, () + O(e),
where
Bi() = (.+L).w(tlff D) ARG
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Properties of formal first integrals l

o H(x),h(x),...,Ty(x) are in involution,

o the t-flow CDQ] of each Jj(x) is (2)-periodic in t,

High order averaging

Any solution of the original system satisfies

x(t) = ol o 00l (x(1)),

where X(t) is the solution of the averaged system

d _ ~

X = WWR(X), X(0) = x(0),
d

RGO = 32 (50x) = Ti(0) + R(0).
j=1
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More explicitly, the averaged Hamitonian is

d
RGO = 3 (56) = 1)) + R(x)
j=1
= Ro(x)
+Z r—1 Z ﬁkl k(g A Rus Ro by R} -+ s Re, H(x),
r>2 ki,.. ,k,eZd

where
d _ . .
o Bk=1- ij- BE], and for r > 1, By,..k, = — Zﬁlz]mkr'
j=1 i=1

o first order averaged Hamiltonian Ry(x) is
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