High order averaging of a family of near-integrable systems

Ander Murua (UPV/EHU) Joint work with P. Chartier and J.M. Sanz-Serna

FoCM 2011, Budapest

A (1) > A (2) > A

A class of higly oscillatory ODE systems

We consider systems of the form

$$\frac{d}{dt}x = \frac{1}{\epsilon}Ax + r(x),$$

where A is diagonalizable with imaginary eigenvalues, $r : \mathbb{R}^n \to \mathbb{R}^n$ is polynomial, and $\epsilon > 0$ is a small parameter.

This implies that there exist a non-resonant vector of frequencies $\omega = (\omega_1, \ldots, \omega_d) \in \mathbb{R}^d$, $d \leq n$, and matrices A_1, \ldots, A_d , such that

$$A = \sum_{j=1}^d \omega_j A_j,$$

 $[A_j, A_l] = 0$, and each e^{tA_j} is (2π) -periodic in t. Hence, the solutions of the unperturbed system ($\epsilon = 0$) are quasi-periodic in t,

$$\exp(\frac{t}{\epsilon}A) = \exp(t\frac{\omega_1}{\epsilon}A_1)\cdots\exp(t\frac{\omega_d}{\epsilon}A_d).$$

In particular, we are interested in the

Hamiltonian case

$$rac{d}{dt}x = J^{-1}
abla H(x), \quad H(x) = \sum_{j=1}^d rac{\omega_j}{\epsilon} I_j(x) + R(x),$$

where the quadratic polynomials $I_j(x) = \frac{1}{2}x^T(JA)x$ are

- in involution,
- first integrals of the unperturbed Hamiltonian system, and
- the *t*-flow of each $I_j(x)$ is (2π) -periodic in *t*.

Each $I_j(x)$ is approximatelly preserved along solutions of the perturbed Hamiltonian system. It is known that this is related to the existence of formal first integrals $\tilde{I}_j(x) = I_j(x) + \mathcal{O}(\epsilon)$ of the perturbed system.

Main results The transport equation approach

Let
$$\sum_{\mathbf{k}\in\mathbb{Z}^d} R_{\mathbf{k}}(x)e^{i(\mathbf{k}\cdot\omega)\tau}$$
 be the Fourier series of $R(e^{\tau\sum\omega_j A_j}x)$.

Explicit formulae for formal first integrals

$$\begin{split} \tilde{l}_{j}(x) &= l_{j}(x) + \epsilon \sum_{\mathbf{k} \in \mathbb{Z}^{d} \setminus \{\mathbf{0}\}} \frac{\mathbf{k} \cdot e_{j}}{\mathbf{k} \cdot \omega} R_{\mathbf{k}}(x) \\ &+ \sum_{r \geq 2} \epsilon^{r} \sum_{\mathbf{k}_{1}, \dots, \mathbf{k}_{r} \in \mathbb{Z}^{d}} \frac{\beta_{\mathbf{k}_{1} \cdots \mathbf{k}_{r}}^{[j]}}{r} \{ \{ \cdots \{ \{R_{\mathbf{k}_{1}}, R_{\mathbf{k}_{2}}\}, R_{\mathbf{k}_{3}} \} \cdots \}, R_{\mathbf{k}_{r}} \}(x), \end{split}$$

Where, given $r \in \mathbb{Z}^+$, $\mathbf{k} \in \mathbb{Z}^d \setminus \{\mathbf{0}\}$, and $\mathbf{I}_1, \dots, \mathbf{I}_s \in \mathbb{Z}^d$,

Main results The transport equation approach

Main ingredients to obtain our explicit formal results

- Combinatorial-algebraic tools (B-series) developped for the numerical analysis of non-stiff ODEs. We rewite the solutions of the original highly oscillatory system as a (generalized) B-series, with highly oscillatory coefficients, which correspond to the solution of an ODE on the coefficient group (the Butcher group).
- Expressing the solution x(t) of the original system as $x(t) = z(t/\epsilon, \tau \omega/\epsilon)$, where $z(\tau, \theta)$ is an appropriately chosen solution of the transport equation

$$\partial_{\tau} z + \omega \cdot \partial_{\theta} z = A z + \epsilon r(z),$$

 $z(0, \mathbf{0}) = x(\mathbf{0}).$

Related ongoing work

. . .

- Use of B-series approach to analyse numerical resonances of existing integration schemes.
- Rigorous estimates for formal first integrals and high order averaging on the ODE case, by estimating the corresponding B-series coefficients.
- New numerical integrators based on the associated transport equation.
- Application to PDEs: Variants of Schrödinger, vawe equation,

A (1) > A (2) > A

We go back to the general ODE case of the form

$$\frac{d}{d\tau}x = Ax + \epsilon r(x), \quad x(0) = x_0 \in \mathbb{R}^n,$$

with real analytic r(x), and A diagonalizable with imaginary eigenvalues. Guided with our work using B-series, we seek to express formaly its solution as

$$x(\tau) = e^{\tau A} x_0 + \epsilon Z_1(\tau, \tau \omega, x_0) + \epsilon^2 Z_2(\tau, \tau \omega, x_0) + \cdots$$

where for each $j=1,2,\ldots$,

< ロ > < 同 > < 三 > < 三 >

is polynomial in τ and real analytic in (θ, x) .

Theorem

Consider the transport equation associated to the original ODE,

$$\partial_{\tau} z + \omega \cdot \partial_{\theta} z = A z + \epsilon r(z), \quad z(0, \mathbf{0}) = x_0.$$

If r(x) is real analytic and $\omega \in \mathbb{R}^{d}$ satisfies a Diophantine condition $\forall \mathbf{k} \in \mathbb{Z}^{d} / \{\mathbf{0}\}, \quad |\mathbf{k} \cdot \omega| \ge c |\mathbf{k}|^{-\nu},$

then, there is a unique formal solution

$$z(\tau,\theta) = e^{\sum \theta_j A_j} x_0 + \epsilon Z_1(\tau,\theta,x_0) + \epsilon^2 Z_2(\tau,\theta,x_0) + \cdots$$

such that for each $j = 1, 2, \ldots$,

$$egin{array}{rcl} Z_j: \mathbb{R} \ imes \mathbb{T}^d imes \mathbb{R}^n & \longrightarrow & \mathbb{R}^n \ & (au, heta, x) & \mapsto & Z_j(au, heta, x) \end{array}$$

is polynomial in τ and real-analytic in (θ, x) .

Consider the family of formal maps $\Phi_{\tau,\theta} : \mathbb{R}^n \to \mathbb{R}^n$,

$$\Phi_{\tau,\theta}(x) := e^{\sum \theta_j A_j} x + \epsilon Z_1(\tau,\theta,x) + \epsilon^2 Z_2(\tau,\theta,x) + \cdots$$

so that $z(\tau, \theta) = \Phi_{\tau, \theta}(x_0)$ is the polynomial in time solution of the transport equation, and $x(\tau) = \Phi_{\tau, \omega \tau}(x_0)$ is the solution of the original ODE.

The uniqueness result on the polynomial in time solution of the transport equation can be used to prove:

Theorem

$$egin{aligned} &orall(au, heta),(au', heta')\in\mathbb{R}\, imes\mathbb{T}^d \ & \Phi_{ au', heta'}\circ\Phi_{ au, heta}=\Phi_{ au+ au', heta+ heta'}. \end{aligned}$$

We thus have that

$$\Phi_{\tau,\theta} = \Phi_{0,\theta_1 e_1} \circ \cdots \circ \Phi_{0,\theta_d e_d} \circ \Phi_{\tau,\mathbf{0}},$$

where e_j is the *j*th unit vector in \mathbb{R}^d .

Each Φ^[j]_τ := Φ_{0,τej} is (2π)-periodic in τ, and (since Φ^[j]_τ ∘ Φ^[j]_{τ'} = Φ^[j]_{τ+τ'},) it is the τ-flow of an autonomous ODE.
 Φ_{τ,0} is the τ-flow of the averaged ODE,

$$rac{d}{d au}X=\epsilon ilde{r}(X), \quad ext{where} \quad \epsilon ilde{r}(X):= \left.rac{d}{d au} \Phi_{ au, \mathbf{0}}(X)
ight|_{ au=0}.$$

The time-dependent change of variables

$$x = \Phi^{[1]}_{\tau\omega_1} \circ \cdots \circ \Phi^{[d]}_{\tau\omega_d}(X)$$

transforms the original ODE into the averaged one (X(0) = x(0)).

Theorem

If in addition to previous assumptions, there exist skew-symmetric $S \in \mathbb{R}^{n \times n}$ and real analytic $R : \mathbb{R}^n \to \mathbb{R}$ such that SA is symmetric and $r(x) = S \nabla R(x)$, so that

$$rac{d}{d au}x = S
abla H(x), \quad H(x) = \sum_{j=1}^d \omega_j \, I_j(x) + \epsilon R(x),$$

with $I_j(x) = \frac{1}{2}x^T(SA)x$, then

- $(\partial_x \Phi_{\tau,\theta}(x))^T S (\partial_x \Phi_{\tau,\theta}(x)) \equiv S.$
- each $\Phi_{\tau}^{[j]}$ is the au-flow of a Hamiltonian $\tilde{l}_j(x) = l_j(x) + \mathcal{O}(\epsilon)$,
- $H(x), \tilde{l}_1(x), \ldots, \tilde{l}_d(x)$ are in involution.

Example (A Fermi-Pasta-Ulam type problem (from HLW))

A Hamiltonian system with $n=10~(x=(
ho,q)\in\mathbb{R}^{10})$,

$$egin{aligned} \mathcal{H}(p,q) &=& \sum_{j=2}^5 \left(rac{1}{2} p_j^2 + rac{\lambda_j^2}{2} q_j^2
ight) + \epsilon \, \left(rac{1}{2} p_1^2 + rac{1}{2} q_1^2 + \epsilon \, U(q)
ight), \ &U(q) &=& rac{1}{8} q_1^2 q_2^2 + \epsilon \, \left(rac{\sqrt{70}}{20} + q_2 + q_3 + rac{5}{2} q_4 + q_5
ight)^4, \end{aligned}$$

where $\lambda_2 = \lambda_3 = 1$, $\lambda_4 = 2$, $\lambda_5 = \sqrt{2}$. The quadratic part is the sum of the energies

$$J_1 = rac{\epsilon}{2}(p_1^2 + q_1^2), \qquad J_j = rac{1}{2}p_j^2 + rac{\lambda_j^2}{2}q_j^2, \quad j = 2, \dots, 5.$$

of five uncoupled harmonic oscillators with frequencies $\lambda = \epsilon$, $\lambda_2 = \lambda_3 = 1$, $\lambda_4 = 2$, $\lambda_5 = \sqrt{2}$.

Example (cont.)

As in [HLW], we take $\epsilon = 1/70$, $p(0) = (-0.2, 0.6\delta, 0.7\delta, -0.9\delta, 0.8\delta)^T$, $q(0) = (1, 0.3\delta, 0.8\delta, -1.1\delta, 0.7\delta)^T$ ($\delta = \sqrt{\epsilon}$), and plot (versus τ) the evolution of J_i , i = 1, ..., 5, and $J_2 + J_3 + J_4$, for $0 \le \tau \le 500/\epsilon^2$.

We get formal first integrals $\tilde{l}_1(x)$ and $\tilde{l}_2(x)$ corresponding to $\omega = (1, \sqrt{2}), \ l_1(x) = J_2(x) + J_3(x) + J_4(x), \ l_2(x) = \frac{\sqrt{2}}{2}J_5(x),$ $R(x) = \frac{1}{2}(p_1^2 + q_1^2) + \epsilon U(q).$ Moreover, the averaged Hamiltonian is of the form

$$\tilde{R}(x) = \frac{1}{2}(p_1^2 + q_1^2) + \epsilon K(x),$$

which gives an additional formal first integral $\tilde{l}_3(x) = \frac{1}{2}(p_1^2 + q_1^2) + \mathcal{O}(\epsilon)$.

Example (cont.)

We compute the second order truncation of $\tilde{l}_1(x)$,

Example (cont.)

 $|\tilde{l}_2(x(\tau)) - \tilde{l}_2(x(0))|/\epsilon^7$ and $|\tilde{l}_3(x(\tau)) - \tilde{l}_3(x(0))|/\epsilon^5$

versus au for $\epsilon=1/70$, $\epsilon=1/140$.

The first two terms in the series defining $\tilde{l}_j(x) - l_j(x)$:

$$\begin{split} &\epsilon \sum_{\mathbf{k}>\mathbf{0}} \frac{\mathbf{k} \cdot e_{j}}{\mathbf{k} \cdot \omega} \left(R_{\mathbf{k}}(x) + R_{-\mathbf{k}}(x) \right) \\ &+ \epsilon^{2} \sum_{\mathbf{k}>\mathbf{0}} i \frac{\mathbf{k} \cdot e_{j}}{(\mathbf{k} \cdot \omega)^{2}} \left(\{ R_{\mathbf{0}}, R_{\mathbf{k}} - R_{-\mathbf{k}} \}(x) + \{ R_{\mathbf{k}}, R_{-\mathbf{k}} \}(x) \right) \\ &+ \epsilon^{2} \sum_{\mathbf{l}>\mathbf{k}>\mathbf{0}} \left(B_{\mathbf{k},\mathbf{l}}^{[j]}(x) + B_{-\mathbf{k},\mathbf{l}}^{[j]}(x) + B_{\mathbf{k},-\mathbf{l}}^{[j]}(x) + B_{-\mathbf{k},-\mathbf{l}}^{[j]}(x) \right) + \mathcal{O}(\epsilon^{3}), \end{split}$$

where

$$B_{\mathbf{k},\mathbf{l}}^{[j]}(x) = \frac{i}{(\mathbf{l} + \mathbf{k}) \cdot \omega} \Big(\frac{\mathbf{k} \cdot e_j}{\mathbf{k} \cdot \omega} - \frac{\mathbf{l} \cdot e_j}{\mathbf{l} \cdot \omega} \Big) \{ R_{\mathbf{l}}, R_{\mathbf{k}} \}(x).$$

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > のへで

Properties of formal first integrals $\tilde{l}_j(x)$

- $H(x), \tilde{l}_1(x), \dots, \tilde{l}_d(x)$ are in involution,
- the *t*-flow $\Phi_t^{[j]}$ of each $\tilde{l}_j(x)$ is (2π) -periodic in *t*,

High order averaging

Any solution of the original system satisfies

$$\mathbf{x}(t) = \Phi^{[1]}_{rac{t}{\epsilon}\omega_1} \circ \cdots \circ \Phi^{[d]}_{rac{t}{\epsilon}\omega_d}(X(t)),$$

where X(t) is the solution of the averaged system

$$\frac{d}{dt}X = J^{-1}\nabla \tilde{R}(X), \quad X(0) = x(0),$$

$$\tilde{R}(x) = \sum_{j=1}^{d} \frac{\omega_j}{\epsilon} (I_j(x) - \tilde{I}_j(x)) + R(x).$$

Main results The transport equation approach

More explicitly, the averaged Hamitonian is

$$\begin{split} \tilde{R}(x) &= \sum_{j=1}^{d} \frac{\omega_j}{\epsilon} \left(l_j(x) - \tilde{l}_j(x) \right) + R(x) \\ &= R_{\mathbf{0}}(x) \\ &+ \sum_{r \ge 2} \epsilon^{r-1} \sum_{\mathbf{k}_1, \dots, \mathbf{k}_r \in \mathbb{Z}^d} \frac{\tilde{\beta}_{\mathbf{k}_1 \cdots \mathbf{k}_r}}{r} \{ \{ \cdots \{ \{ R_{\mathbf{k}_1}, R_{\mathbf{k}_2} \}, R_{\mathbf{k}_3} \} \cdots \}, R_{\mathbf{k}_r} \}(x), \end{split}$$

where

•
$$\tilde{\beta}_{\mathbf{k}} = 1 - \sum_{j=1}^{d} \omega_j \, \beta_{\mathbf{k}}^{[j]}$$
, and for $r > 1$, $\tilde{\beta}_{\mathbf{k}_1 \cdots \mathbf{k}_r} = -\sum_{j=1}^{d} \beta_{\mathbf{k}_1 \cdots \mathbf{k}_r}^{[j]}$,

• first order averaged Hamiltonian $R_0(x)$ is

$$R_{\mathbf{0}}(x) = \lim_{t\to 0} \frac{1}{t} \int_0^t R(e^{\tau A}x) d\tau.$$

(日) (四) (E) (E) (E)