High order averaging of a family of near-integrable systems

Ander Murua (UPV/EHU)
Joint work with P. Chartier and J.M. Sanz-Serna

FoCM 2011, Budapest

A class of higly oscillatory ODE systems

We consider systems of the form

$$
\frac{d}{d t} x=\frac{1}{\epsilon} A x+r(x)
$$

where A is diagonalizable with imaginary eigenvalues, $r: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is polynomial, and $\epsilon>0$ is a small parameter.

This implies that there exist a non-resonant vector of frequencies $\omega=\left(\omega_{1}, \ldots, \omega_{d}\right) \in \mathbb{R}^{d}, d \leq n$, and matrices A_{1}, \ldots, A_{d}, such that

$$
A=\sum_{j=1}^{d} \omega_{j} A_{j}
$$

$\left[A_{j}, A_{l}\right]=0$, and each $e^{t A_{j}}$ is (2π)-periodic in t. Hence, the solutions of the unperturbed system $(\epsilon=0)$ are quasi-periodic in t,

$$
\exp \left(\frac{t}{\epsilon} A\right)=\exp \left(t \frac{\omega_{1}}{\epsilon} A_{1}\right) \cdots \exp \left(t \frac{\omega_{d}}{\epsilon} A_{d}\right)
$$

In particular, we are interested in the

Hamiltonian case

$$
\frac{d}{d t} x=J^{-1} \nabla H(x), \quad H(x)=\sum_{j=1}^{d} \frac{\omega_{j}}{\epsilon} I_{j}(x)+R(x)
$$

where the quadratic polynomials $I_{j}(x)=\frac{1}{2} x^{T}(J A) x$ are

- in involution,
- first integrals of the unperturbed Hamiltonian system, and
- the t-flow of each $l_{j}(x)$ is (2π)-periodic in t.

Each $I_{j}(x)$ is approximatelly preserved along solutions of the perturbed Hamiltonian system. It is known that this is related to the existence of formal first integrals $\tilde{I}_{j}(x)=I_{j}(x)+\mathcal{O}(\epsilon)$ of the perturbed system.

Let $\sum_{\mathbf{k} \in \mathbb{Z}^{d}} R_{\mathbf{k}}(x) e^{i(\mathbf{k} \cdot \omega) \tau}$ be the Fourier series of $R\left(e^{\tau \sum \omega_{j} A_{j}} x\right)$.

Explicit formulae for formal first integrals

$$
\begin{aligned}
\tilde{I}_{j}(x)= & I_{j}(x)+\epsilon \sum_{\mathbf{k} \in \mathbb{Z}^{d} \backslash\{\mathbf{0}\}} \frac{\mathbf{k} \cdot e_{j}}{\mathbf{k} \cdot \omega} R_{\mathbf{k}}(x) \\
& +\sum_{r \geq 2} \epsilon^{r} \sum_{\mathbf{k}_{1}, \ldots, \mathbf{k}_{r} \in Z^{d}} \frac{\beta_{\mathbf{k}_{1} \cdots \mathbf{k}_{r}}^{[j]}}{r}\left\{\left\{\cdots\left\{\left\{R_{\mathbf{k}_{1}}, R_{\mathbf{k}_{2}}\right\}, R_{\mathbf{k}_{3}}\right\} \cdots\right\}, R_{\mathbf{k}_{r}}\right\}(x),
\end{aligned}
$$

Where, given $r \in \mathbb{Z}^{+}, \mathbf{k} \in \mathbb{Z}^{d} \backslash\{\mathbf{0}\}$, and $\mathbf{I}_{1}, \ldots, \mathbf{I}_{s} \in \mathbb{Z}^{d}$,

$$
\begin{aligned}
\beta_{\mathbf{k}}^{[j]} & =\frac{\mathbf{k} \cdot \boldsymbol{e}_{j}}{\mathbf{k} \cdot \omega}, \quad \beta_{0^{r}}^{[j]}=0, \\
\beta_{0^{\prime} \mathbf{k}}^{[j]} & =\frac{i}{\mathbf{k} \cdot \omega} \beta_{0^{r-1}}^{[j]}, \\
\beta_{\mathbf{k} \mathbf{l}_{1} \cdots \mathbf{I}_{s}}^{[j]} & =\frac{i}{\mathbf{k} \cdot \omega}\left(\beta_{\mathbf{l}_{1} \cdots \mathbf{I}_{s}}^{[j]}-\beta_{\left(\mathbf{k}+\mathbf{l}_{1}\right) \mathbf{l}_{2} \cdots \mathbf{I}_{s}}^{[j]}\right) \\
\beta_{0^{\prime} \mathbf{k} \mathbf{l}_{1} \cdots \mathbf{I}_{s}}^{[j]} & =\frac{i}{\mathbf{k} \cdot \omega}\left(\beta_{\mathbf{0}^{r-1} \mathbf{k} \mathbf{k}_{1} \cdots \mathbf{I}_{s}}^{[j]}-\beta_{0^{r}\left(\mathbf{k}+\mathbf{l}_{1}\right) \mathbf{l}_{2} \cdots \mathbf{I}_{s}}^{[j]}\right),
\end{aligned}
$$

Main ingredients to obtain our explicit formal results

- Combinatorial-algebraic tools (B-series) developped for the numerical analysis of non-stiff ODEs. We rewite the solutions of the original highly oscillatory system as a (generalized) B-series, with highly oscillatory coefficients, which correspond to the solution of an ODE on the coefficient group (the Butcher group).
- Expressing the solution $x(t)$ of the original system as $x(t)=z(t / \epsilon, \tau \omega / \epsilon)$, where $z(\tau, \theta)$ is an appropriately chosen solution of the transport equation

$$
\begin{aligned}
\partial_{\tau} z+\omega \cdot \partial_{\theta} z & =A z+\epsilon r(z) \\
z(0, \mathbf{0}) & =x(0)
\end{aligned}
$$

Related ongoing work

- Use of B-series approach to analyse numerical resonances of existing integration schemes.
- Rigorous estimates for formal first integrals and high order averaging on the ODE case, by estimating the corresponding B-series coefficients.
- New numerical integrators based on the associated transport equation.
- Application to PDEs: Variants of Schrödinger, vawe equation,

We go back to the general ODE case of the form

$$
\frac{d}{d \tau} x=A x+\epsilon r(x), \quad x(0)=x_{0} \in \mathbb{R}^{n}
$$

with real analytic $r(x)$, and A diagonalizable with imaginary eigenvalues. Guided with our work using B-series, we seek to express formaly its solution as

$$
x(\tau)=e^{\tau A} x_{0}+\epsilon Z_{1}\left(\tau, \tau \omega, x_{0}\right)+\epsilon^{2} Z_{2}\left(\tau, \tau \omega, x_{0}\right)+\cdots
$$

where for each $j=1,2, \ldots$,

$$
\begin{aligned}
Z_{j}: \mathbb{R} \times \mathbb{T}^{d} \times \mathbb{R}^{n} & \longrightarrow \mathbb{R}^{n} \\
(\tau, \theta, x) & \mapsto Z_{j}(\tau, \theta, x)
\end{aligned}
$$

is polynomial in τ and real analytic in (θ, x).

Theorem

Consider the transport equation associated to the original ODE,

$$
\partial_{\tau} z+\omega \cdot \partial_{\theta} z=A z+\epsilon r(z), \quad z(0, \mathbf{0})=x_{0} .
$$

If $r(x)$ is real analytic and $\omega \in \mathbb{R}^{d}$ satisfies a Diophantine condition

$$
\forall \mathbf{k} \in \mathbb{Z}^{d} /\{\mathbf{0}\}, \quad|\mathbf{k} \cdot \omega| \geq c|\mathbf{k}|^{-\nu}
$$

then, there is a unique formal solution

$$
z(\tau, \theta)=e^{\sum \theta_{j} A_{j}} x_{0}+\epsilon Z_{1}\left(\tau, \theta, x_{0}\right)+\epsilon^{2} Z_{2}\left(\tau, \theta, x_{0}\right)+\cdots
$$

such that for each $j=1,2, \ldots$,

$$
\begin{aligned}
Z_{j}: \mathbb{R} \times \mathbb{T}^{d} \times \mathbb{R}^{n} & \longrightarrow \mathbb{R}^{n} \\
(\tau, \theta, x) & \mapsto Z_{j}(\tau, \theta, x)
\end{aligned}
$$

is polynomial in τ and real-analytic in (θ, x).

Consider the family of formal maps $\Phi_{\tau, \theta}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$,

$$
\Phi_{\tau, \theta}(x):=e^{\sum \theta_{j} A_{j}}+\epsilon Z_{1}(\tau, \theta, x)+\epsilon^{2} Z_{2}(\tau, \theta, x)+\cdots
$$

so that $z(\tau, \theta)=\Phi_{\tau, \theta}\left(x_{0}\right)$ is the polynomial in time solution of the transport equation, and $x(\tau)=\Phi_{\tau, \omega \tau}\left(x_{0}\right)$ is the solution of the original ODE.
The uniqueness result on the polynomial in time solution of the transport equation can be used to prove:

Theorem

$$
\begin{aligned}
& \forall(\tau, \theta),\left(\tau^{\prime}, \theta^{\prime}\right) \in \mathbb{R} \times \mathbb{T}^{d} \\
& \qquad \Phi_{\tau^{\prime}, \theta^{\prime}} \circ \Phi_{\tau, \theta}=\Phi_{\tau+\tau^{\prime}, \theta+\theta^{\prime}} .
\end{aligned}
$$

We thus have that

$$
\Phi_{\tau, \theta}=\Phi_{0, \theta_{1} e_{1}} \circ \cdots \circ \Phi_{0, \theta_{d} e_{d}} \circ \Phi_{\tau, \mathbf{0}}
$$

where e_{j} is the j th unit vector in \mathbb{R}^{d}.

- Each $\Phi_{\tau}^{[j]}:=\Phi_{0, \tau e_{j}}$ is (2π)-periodic in τ, and (since $\left.\Phi_{\tau}^{[j]} \circ \Phi_{\tau^{\prime}}^{[j]}=\Phi_{\tau+\tau^{\prime}}^{[j]}\right)$ it is the τ-flow of an autonomous ODE.
- $\Phi_{\tau, 0}$ is the τ-flow of the averaged ODE,

$$
\frac{d}{d \tau} X=\epsilon \tilde{r}(X), \quad \text { where } \quad \epsilon \tilde{r}(X):=\left.\frac{d}{d \tau} \Phi_{\tau, \mathbf{0}}(X)\right|_{\tau=0}
$$

The time-dependent change of variables

$$
x=\Phi_{\tau \omega_{1}}^{[1]} \circ \cdots \circ \Phi_{\tau \omega_{d}}^{[d]}(X)
$$

transforms the original ODE into the averaged one $(X(0)=x(0))$.

Theorem

If in addition to previous assumptions, there exist skew-symmetric $S \in \mathbb{R}^{n \times n}$ and real analytic $R: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $S A$ is symmetric and $r(x)=S \nabla R(x)$, so that

$$
\frac{d}{d \tau} x=S \nabla H(x), \quad H(x)=\sum_{j=1}^{d} \omega_{j} l_{j}(x)+\epsilon R(x)
$$

with $I_{j}(x)=\frac{1}{2} x^{\top}(S A) x$, then

- $\left(\partial_{x} \Phi_{\tau, \theta}(x)\right)^{T} S\left(\partial_{x} \Phi_{\tau, \theta}(x)\right) \equiv S$.
- each $\Phi_{\tau}^{[j]}$ is the τ-flow of a Hamiltonian $\tilde{I}_{j}(x)=I_{j}(x)+\mathcal{O}(\epsilon)$,
- $H(x), \tilde{I}_{1}(x), \ldots, \tilde{I}_{d}(x)$ are in involution.

Example (A Fermi-Pasta-Ulam type problem (from HLW))

A Hamiltonian system with $n=10\left(x=(p, q) \in \mathbb{R}^{10}\right)$,

$$
\begin{aligned}
H(p, q) & =\sum_{j=2}^{5}\left(\frac{1}{2} p_{j}^{2}+\frac{\lambda_{j}^{2}}{2} q_{j}^{2}\right)+\epsilon\left(\frac{1}{2} p_{1}^{2}+\frac{1}{2} q_{1}^{2}+\epsilon U(q)\right) \\
U(q) & =\frac{1}{8} q_{1}^{2} q_{2}^{2}+\epsilon\left(\frac{\sqrt{70}}{20}+q_{2}+q_{3}+\frac{5}{2} q_{4}+q_{5}\right)^{4}
\end{aligned}
$$

where $\lambda_{2}=\lambda_{3}=1, \lambda_{4}=2, \lambda_{5}=\sqrt{2}$. The quadratic part is the sum of the energies

$$
J_{1}=\frac{\epsilon}{2}\left(p_{1}^{2}+q_{1}^{2}\right), \quad J_{j}=\frac{1}{2} p_{j}^{2}+\frac{\lambda_{j}^{2}}{2} q_{j}^{2}, \quad j=2, \ldots, 5 .
$$

of five uncoupled harmonic oscillators with frequencies $\lambda=\epsilon$, $\lambda_{2}=\lambda_{3}=1, \lambda_{4}=2, \lambda_{5}=\sqrt{2}$.

Example (cont.)

As in [HLW], we take $\epsilon=1 / 70, p(0)=(-0.2,0.6 \delta, 0.7 \delta,-0.9 \delta, 0.8 \delta)^{T}$, $q(0)=(1,0.3 \delta, 0.8 \delta,-1.1 \delta, 0.7 \delta)^{T}(\delta=\sqrt{\epsilon})$, and plot (versus $\left.\tau\right)$ the evolution of $J_{i}, i=1, \ldots, 5$, and $J_{2}+J_{3}+J_{4}$, for $0 \leq \tau \leq 500 / \epsilon^{2}$.

We get formal first integrals $\tilde{I}_{1}(x)$ and $\tilde{I}_{2}(x)$ corresponding to $\omega=(1, \sqrt{2}), I_{1}(x)=J_{2}(x)+J_{3}(x)+J_{4}(x), I_{2}(x)=\frac{\sqrt{2}}{2} J_{5}(x)$, $R(x)=\frac{1}{2}\left(p_{1}^{2}+q_{1}^{2}\right)+\epsilon U(q)$. Moreover, the averaged Hamiltonian is of the form

$$
\tilde{R}(x)=\frac{1}{2}\left(p_{1}^{2}+q_{1}^{2}\right)+\epsilon K(x),
$$

which gives an additional formal first integral $\tilde{I}_{3}(x)=\frac{1}{2}\left(p_{1}^{2}+q_{1}^{2}\right)+\mathcal{O}(\epsilon)$.

Example (cont.)

We compute the second order truncation of $\tilde{I}_{1}(x)$,

$$
\tilde{I}_{1}(x)=I_{1}(x)+\sum_{k \in \mathbb{Z}^{d}} \beta_{k}^{[1]} R_{k}+\sum_{k, \ell \in \mathbb{Z}^{d}} \beta_{k \ell}^{[1]}\left\{R_{\ell}, R_{k}\right\}
$$

and plot $\left|\tilde{I}_{1}(x(\tau))-\tilde{I}_{1}(x(0))\right| / \epsilon^{5}$ versus τ for $\epsilon=1 / 70, \epsilon=1 / 140$.

Example (cont.)

$$
\left|\tilde{I}_{2}(x(\tau))-\tilde{I}_{2}(x(0))\right| / \epsilon^{7} \quad \text { and } \quad\left|\tilde{I}_{3}(x(\tau))-\tilde{I}_{3}(x(0))\right| / \epsilon^{5}
$$

versus τ for $\epsilon=1 / 70, \epsilon=1 / 140$.

The first two terms in the series defining $\tilde{\jmath}_{j}(x)-l_{j}(x)$:

$$
\begin{aligned}
& \epsilon \sum_{\mathbf{k}>\mathbf{0}} \frac{\mathbf{k} \cdot e_{j}}{\mathbf{k} \cdot \omega}\left(R_{\mathbf{k}}(x)+R_{-\mathbf{k}}(x)\right) \\
& +\epsilon^{2} \sum_{\mathbf{k}>\mathbf{0}} i \frac{\mathbf{k} \cdot e_{j}}{(\mathbf{k} \cdot \omega)^{2}}\left(\left\{R_{\mathbf{0}}, R_{\mathbf{k}}-R_{-\mathbf{k}}\right\}(x)+\left\{R_{\mathbf{k}}, R_{-\mathbf{k}}\right\}(x)\right) \\
& +\epsilon^{2} \sum_{\mathbf{l}>\mathbf{k}>\mathbf{0}}\left(B_{\mathbf{k}, \mathbf{l}}^{[j]}(x)+B_{-\mathbf{k}, \mathbf{1}}^{[j]}(x)+B_{\mathbf{k},-\mathbf{l}}^{[j]}(x)+B_{-\mathbf{k},-\mathbf{l}}^{[j]}(x)\right)+\mathcal{O}\left(\epsilon^{3}\right),
\end{aligned}
$$

where

$$
B_{\mathbf{k}, \mathbf{l}}^{[j]}(x)=\frac{i}{(\mathbf{I}+\mathbf{k}) \cdot \omega}\left(\frac{\mathbf{k} \cdot e_{j}}{\mathbf{k} \cdot \omega}-\frac{\mathbf{I} \cdot e_{j}}{\mathbf{I} \cdot \omega}\right)\left\{R_{\mathbf{l}}, R_{\mathbf{k}}\right\}(x) .
$$

Properties of formal first integrals $\tilde{I}_{j}(x)$

- $H(x), \tilde{I}_{1}(x), \ldots, \tilde{I}_{d}(x)$ are in involution,
- the t-flow $\Phi_{t}^{[j]}$ of each $\tilde{I}_{j}(x)$ is (2π)-periodic in t,

High order averaging

Any solution of the original system satisfies

$$
x(t)=\Phi_{\frac{t}{\epsilon} \omega_{1}}^{[1]} \circ \cdots \circ \Phi_{\frac{t}{\epsilon} \omega_{d}}^{[d]}(X(t))
$$

where $X(t)$ is the solution of the averaged system

$$
\begin{aligned}
& \frac{d}{d t} X=J^{-1} \nabla \tilde{R}(X), \quad X(0)=x(0) \\
& \tilde{R}(x)=\sum_{j=1}^{d} \frac{\omega_{j}}{\epsilon}\left(I_{j}(x)-\tilde{I}_{j}(x)\right)+R(x)
\end{aligned}
$$

More explicitly, the averaged Hamitonian is

$$
\begin{aligned}
\tilde{R}(x)= & \sum_{j=1}^{d} \frac{\omega_{j}}{\epsilon}\left(I_{j}(x)-\tilde{l}_{j}(x)\right)+R(x) \\
= & R_{\mathbf{0}}(x) \\
& +\sum_{r \geq 2} \epsilon^{r-1} \sum_{\mathbf{k}_{1}, \ldots, \mathbf{k}_{r} \in Z^{d}} \frac{\tilde{\beta}_{\mathbf{k}_{1} \cdots \mathbf{k}_{r}}^{r}}{r}\left\{\left\{\cdots\left\{\left\{R_{\mathbf{k}_{1}}, R_{\mathbf{k}_{2}}\right\}, R_{\mathbf{k}_{3}}\right\} \cdots\right\}, R_{\mathbf{k}_{r}}\right\}(x),
\end{aligned}
$$

where

- $\tilde{\beta}_{\mathbf{k}}=1-\sum_{j=1}^{d} \omega_{j} \beta_{\mathbf{k}}^{[j]}$, and for $r>1, \tilde{\beta}_{\mathbf{k}_{1} \cdots \mathbf{k}_{r}}=-\sum_{j=1}^{d} \beta_{\mathbf{k}_{1} \cdots \mathbf{k}_{r}}^{[j]}$,
- first order averaged Hamiltonian $R_{\mathbf{0}}(x)$ is

$$
R_{0}(x)=\lim _{t \rightarrow 0} \frac{1}{t} \int_{0}^{t} R\left(e^{\tau A_{x}}\right) d \tau
$$

