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Example (Fermi-Pasta-Ulam problem)

Hamiltonian system with Hamiltonian function

H(p1, p2, q1, q2) =
1

2
pT
1 p1 +

1

2
(pT

2 p2 + ω2qT
2 q2) + U(q1, q2),

where p1, p2, q1, q2 ∈ R m and

U(q1, q2) =
1

4

(
(q1,1 − q2,1)

4 + (q1,m + q2,m)4
)

+
1

4

m−1∑
j=1

(q1,j+1 − q2,j+1 − q1,j − q2,j)
4.

Consider the t-flow ϕt : R 2d → R 2d of that Hamiltonian system.

In particular, take ε = 2π/ω, and consider ϕε, that advances the
solution in one period if the fast oscillations.



Example (Fermi-Pasta-Ulam problem (cont.))

Component q2,2(t) for m = 3, ω = 100, and initial values

p1(0) = p2(0) = q1(0) =

(
1
0
0

)
, q2(0) =

(
ω−1

0
0

)
.
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First rescale time by considering the dimensionless time τ = ωt,
and then apply the (2π)-periodic τ -dependent change of variables

Change of variables

p̂1 = p1, p̂2 = cos(τ)p2 + ω sin(τ)q2,

q̂1 = q1, q̂2 = cos(τ)q2 − ω−1 sin(τ)p2,

(note that at stroboscopic times τn = 2πn, that change of
variables reduces to the identity map.)
The transformed system is a time-dependent Hamiltonian system
with Hamiltonian function

ω−1

(
1

2
p̂T
1 p̂1 + U(q̂1, cos(τ)q̂2 + ω−1 sin(τ)p̂2)

)
.

Clearly, such a system can be written in the form

d

dτ
y = ω−1f1(y , τ) + ω−2f2(y , τ) + ω−3f3(y , τ) + · · ·



Backward error analysis of highly oscillatory systems

We consider highly oscillatory systems with frequency ω that, after
time rescaling τ = ωt (and possibly a (2π)-periodic τ -dependent
change of variables that is the identity map at stroboscopic times
τn = 2πn), can be written as

d

dτ
y = f (y , τ ;ω) := ω−1f1(y , τ) + ω−2f2(y , τ) + ω−3f3(y , τ) + · · ·

where each fj(y , τ) is smooth in y and 2π-periodic in τ .

Consider ψ : R d → R d such that ψ(y(0)) = y(2π),

The map ψ is as a smooth near-to-identity map,

fj(·, τ) is (2π)-periodic ⇒ y(τn) = ψn(y(0)) for τn = 2πn,

ψ is symplectic if f is Hamiltonian.



Backward error analysis for the near-to-identity map ψ

Given

d

dτ
y = ω−1f1(y , τ) + ω−2f2(y , τ) + ω−3f3(y , τ) + · · · (1)

there exists

d

dτ
ȳ = ω−1f̄1(ȳ) + ω−2f̄2(ȳ) + ω−3 f̄3(ȳ) + · · · (2)

such that formally, y(2πn) = ȳ(2πn) for the solutions y(τ) and
ȳ(τ) of (1) and (2) with ȳ(0) = y(0).

If (1) is Hamiltonian, then (2) is Hamiltonian with

H̄(y) = ω−1H̄1(y) + ω−2H̄2(y) + ω−3H̄3(y) + · · ·
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In averaging theory [Sanders, Verhulst, Murdock 2007], obtaining

d

dτ
ȳ = ω−1f̄1(ȳ) + ω−2 f̄2(ȳ) + ω−3 f̄3(ȳ) + · · · . (3)

from the original HOS system is called stroboscopic averaging.

High order averaging

There exists a formal (2π)-periodic change of variables
y = K (ȳ , τ) that transforms the original system

d

dτ
y = ω−1f1(y , τ) + ω−2f2(y , τ) + ω−3f3(y , τ) + · · ·

into the autonomous system (3).

The change of variables y = K (ȳ , τ) is not unique. Typical choices

K (ȳ , 0) = ȳ : Stroboscopic averaging,∫ 2π
0 K (ȳ , τ) dτ = ȳ .



B-series

We will be dealing with B-series-like expansions of the form

B(α, y) = α∅ y +
∑
u∈T

ω−|u|

σ(u)
αu Fu(y),

where T is a set of indices, and for each u ∈ T ,

αu ∈ R are the coefficients of the B-series,

Fu : R D → R D is the elementary differential,

|u| ∈ Z + is the degree (or order) of u,

σ(u) is some normalization factor.

In standard B-series (Hairer and Wanner 1974), T is the set of
rooted trees, and σ(u) is the symmetry number of the tree u.

We denote Tj = {u ∈ T : |u| = j}, so that

B(α, y) = α∅ y +
∑
j≥1

ω−j
∑
u∈Tj

αu

σ(u)
Fu(y).
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Assumption

For each pair (u, v) ∈ Tj × Tk , there exist w1, . . . ,wm ∈ Tj+k and
λ1, . . . , λm ∈ R such that(

∂

∂y
Fu(y)

)
Fv (y) =

m∑
j=1

λj Fwj (y).

Let us denote F = {∅} ∪ {u1 · · · um : u1, . . . , um ∈ T }.

Let R F be the set of real functions F → R . Consider also

g = {β ∈ R F : β∅ = 0, βuv = 0 if u, v ∈ F/{∅}}.
G = {α ∈ R F : α∅ = 1, αuv = αuαv if u, v ∈ F}.



Theorem

Under the assumption above, there exists a binary operation

R F × R F → R F

(α, β) 7→ αβ

where for each u ∈ F , ∃vj ,wj ∈ F/{∅} such that

(αβ)u = β∅αu + α∅βu +
m∑

j=1

αvjβwj ,

with |vj |+ |wj | = |u| satisfying that

B(β,B(α, y)) = B(αβ, y) if α ∈ G
∂
∂y B(α, y) · B(β, y) = B(βα, y) if β ∈ g.

G has with that binary operation a group structure, and
g has a pre-Lie algebra structure, and also a Lie algebra
structure with [α, β] := αβ − βα.
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Averaging in terms of B-series

Consider a nonautonomous (2π)-periodic ODE written in the form

d

dτ
y = B(β(τ), y), where β(τ) ∈ g and β(τ + 2π) = β(τ).

Its solutions y(τ) can be expanded as y(τ) = B(α(τ), y(0)) with
α(τ) ∈ G, where

d

dτ
B(α(τ), y(0)) = B(β(τ),B(α(τ), y(0))), B(α(0), y(0)) = y(0).

That certainly holds if

∀u ∈ T , d

dτ
α(τ)u = (α(τ)β(τ))u, α(0)u = 0,

or more compactly,

d

dτ
α(τ) = α(τ)β(τ), α(0) = I ,

which uniquely determines α(τ) ∈ G in terms of β(τ) ∈ g.



Averaging in terms of B-series

Consider a nonautonomous (2π)-periodic ODE written in the form

d

dτ
y = B(β(τ), y), where β(τ) ∈ g and β(τ + 2π) = β(τ).

Its solutions y(τ) can be expanded as y(τ) = B(α(τ), y(0)) with
α(τ) ∈ G, where

d

dτ
B(α(τ), y(0)) = B(β(τ),B(α(τ), y(0))), B(α(0), y(0)) = y(0).

That certainly holds if

∀u ∈ T , d

dτ
α(τ)u = (α(τ)β(τ))u, α(0)u = 0,

or more compactly,

d

dτ
α(τ) = α(τ)β(τ), α(0) = I ,

which uniquely determines α(τ) ∈ G in terms of β(τ) ∈ g.



Averaging in terms of B-series

Consider a nonautonomous (2π)-periodic ODE written in the form

d

dτ
y = B(β(τ), y), where β(τ) ∈ g and β(τ + 2π) = β(τ).

Its solutions y(τ) can be expanded as y(τ) = B(α(τ), y(0)) with
α(τ) ∈ G, where

d

dτ
B(α(τ), y(0)) = B(β(τ),B(α(τ), y(0))), B(α(0), y(0)) = y(0).

That certainly holds if

∀u ∈ T , d

dτ
α(τ)u = (α(τ)β(τ))u, α(0)u = 0,

or more compactly,

d

dτ
α(τ) = α(τ)β(τ), α(0) = I ,

which uniquely determines α(τ) ∈ G in terms of β(τ) ∈ g.



Averaging in terms of B-series coefficients

Theorem

Given a (2π)-periodic β(τ) ∈ g, there exist β̄ ∈ g, ᾱ(τ) ∈ G, and a
(2π)-periodic κ(τ) ∈ G such that

α(τ) = ᾱ(τ)κ(τ),
d

dτ
ᾱ(τ) = ᾱ(τ)β̄, ᾱ(0) = I .

Furthermore, it holds that

d

dτ
κ(τ) = κ(τ)β̄ − β(τ)κ(τ).

β̄u =

∫ 2π

0
β(τ)u dτ −

m∑
j=1

∫ 2π

0
(κ(τ)vj β̄wj − β(τ)vj κ(τ)wj )dτ,

κ(τ)u = τ β̄u −
∫ τ

0
β(σ)udσ +

m∑
j=1

∫ τ

0
(κ(σ)vj β̄wj − β(σ)vjκ(σ)wj )dσ.
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Alternative algorithm

Given β(τ) ∈ g,

Find α(τ) ∈ G such that

d

dτ
α(τ) = α(τ)β(τ), α(0) = I .

For each u ∈ T , obtain ᾱ(τ)u as the polynomial of degree |u|
that interpolates α(τ)u for τ = 2πn, n ∈ Z ,

Obtain β̄ as

β̄u =
d

dτ
ᾱ(τ)u

∣∣∣∣
τ=0

.

Last two steps of the algorithm are equivalent to applying
numerical differentiation formulae with data α(τ)u for τ = 2πn,
n ∈ Z .



Applications (work in progress)

Practical computation of several terms of the higher order
averaged equations (possible application beyond numerical
analysis)

Numerical methods that accurately approximate averaged
solutions (oscillatory solution can always be recovered locally):

1 Integration of averaged equations obtained by combining
microintegration and numerical differentiation

2 B-series methods designed to fit the B-series expansion of the
solution of the averaged equations (splitting methods, RK-like
methods· · · )



Example (Fermi-Pasta-Ulam problem)

Variation H̄(y(t))− H̄(y(0)) of the averaged Hamiltonian

H̄1(y) + ω−2H̄3(y) + ω−4H̄5(y).
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t

-2. ´ 10-9
-1.5 ´ 10-9

-1. ´ 10-9
-5. ´ 10-10

5. ´ 10-10
1. ´ 10-9

Actually, it can be proven that formally, {H, H̄} = 0, so that H̄ is a
formal invariant of the original problem. Hence,

Ĩ (p1, p2, q1, q2) := H(p1, p2, q1, q2)− H̄(p1, p2, q1, q2)

is a formal invariant of the original system.
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