Averaging with B-series

Ander Murua Joint work with P. Chartier and J.M. Sanz-Serna

Euskal Herriko Unibertsitatea / Universidad del Pais Vasco

Genève, June 2009

伺 ト イヨ ト イヨト

Example (Fermi-Pasta-Ulam problem)

Hamiltonian system with Hamiltonian function

$$H(p_1, p_2, q_1, q_2) = \frac{1}{2} p_1^T p_1 + \frac{1}{2} (p_2^T p_2 + \omega^2 q_2^T q_2) + U(q_1, q_2),$$

where $p_1, p_2, q_1, q_2 \in \mathbb{R}^m$ and

$$egin{array}{rcl} U(q_1,q_2) &=& rac{1}{4} \left((q_{1,1}-q_{2,1})^4 + (q_{1,m}+q_{2,m})^4
ight) \ && + rac{1}{4} \sum_{j=1}^{m-1} (q_{1,j+1}-q_{2,j+1}-q_{1,j}-q_{2,j})^4 . \end{array}$$

Consider the *t*-flow $\varphi_t : \mathbb{R}^{2d} \to \mathbb{R}^{2d}$ of that Hamiltonian system.

In particular, take $\epsilon = 2\pi/\omega$, and consider φ_{ϵ} , that advances the solution in one period if the fast oscillations.

Example (Fermi-Pasta-Ulam problem (cont.))

Component $q_{2,2}(t)$ for m = 3, $\omega = 100$, and initial values

$$p_1(0) = p_2(0) = q_1(0) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \ q_2(0) = \begin{pmatrix} \omega^{-1} \\ 0 \\ 0 \end{pmatrix}$$

Example (Fermi-Pasta-Ulam problem (cont.))

Component $q_{2,2}(t)$ for m = 3, $\omega = 100$, and initial values

$$p_1(0) = p_2(0) = q_1(0) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \ q_2(0) = \begin{pmatrix} \omega^{-1} \\ 0 \\ 0 \end{pmatrix}$$

First rescale time by considering the dimensionless time $\tau = \omega t$, and then apply the (2π) -periodic τ -dependent change of variables

Change of variables

$$\hat{p}_1 = p_1, \quad \hat{p}_2 = \cos(\tau)p_2 + \omega\sin(\tau)q_2, \ \hat{q}_1 = q_1, \quad \hat{q}_2 = \cos(\tau)q_2 - \omega^{-1}\sin(\tau)p_2,$$

(note that at stroboscopic times $\tau_n = 2\pi n$, that change of variables reduces to the identity map.)

The transformed system is a time-dependent Hamiltonian system with Hamiltonian function

$$\omega^{-1}\left(rac{1}{2}\hat{p}_1^T\hat{p}_1+U(\hat{q}_1,\cos(au)\hat{q}_2+\omega^{-1}\sin(au)\hat{p}_2)
ight).$$

Clearly, such a system can be written in the form

$$\frac{d}{d\tau}y = \omega^{-1}f_1(y,\tau) + \omega^{-2}f_2(y,\tau) + \omega^{-3}f_3(y,\tau) + \cdots$$

Backward error analysis of highly oscillatory systems

We consider highly oscillatory systems with frequency ω that, after time rescaling $\tau = \omega t$ (and possibly a (2π) -periodic τ -dependent change of variables that is the identity map at stroboscopic times $\tau_n = 2\pi n$), can be written as

$$\frac{d}{d\tau}y = f(y,\tau;\omega) := \omega^{-1}f_1(y,\tau) + \omega^{-2}f_2(y,\tau) + \omega^{-3}f_3(y,\tau) + \cdots$$

where each $f_j(y, \tau)$ is smooth in y and 2π -periodic in τ .

Consider $\psi : \mathbb{R}^d \to \mathbb{R}^d$ such that $\psi(y(0)) = y(2\pi)$,

- The map ψ is as a smooth near-to-identity map,
- $f_j(\cdot, \tau)$ is (2π) -periodic $\Rightarrow y(\tau_n) = \psi^n(y(0))$ for $\tau_n = 2\pi n$,
- ψ is symplectic if f is Hamiltonian.

Backward error analysis for the near-to-identity map ψ

Given

$$\frac{d}{d\tau}y = \omega^{-1}f_1(y,\tau) + \omega^{-2}f_2(y,\tau) + \omega^{-3}f_3(y,\tau) + \cdots \quad (1)$$

there exists

$$\frac{d}{d\tau}\bar{y} = \omega^{-1}\bar{f}_1(\bar{y}) + \omega^{-2}\bar{f}_2(\bar{y}) + \omega^{-3}\bar{f}_3(\bar{y}) + \cdots$$
(2)

such that formally, $y(2\pi n) = \bar{y}(2\pi n)$ for the solutions $y(\tau)$ and $\bar{y}(\tau)$ of (1) and (2) with $\bar{y}(0) = y(0)$.

If (1) is Hamiltonian, then (2) is Hamiltonian with

 $\bar{H}(y) = \omega^{-1}\bar{H}_1(y) + \omega^{-2}\bar{H}_2(y) + \omega^{-3}\bar{H}_3(y) + \cdots$

Backward error analysis for the near-to-identity map ψ

Given

$$\frac{d}{d\tau}y = \omega^{-1}f_1(y,\tau) + \omega^{-2}f_2(y,\tau) + \omega^{-3}f_3(y,\tau) + \cdots \quad (1)$$

there exists

$$\frac{d}{d\tau}\bar{y} = \omega^{-1}\bar{f}_1(\bar{y}) + \omega^{-2}\bar{f}_2(\bar{y}) + \omega^{-3}\bar{f}_3(\bar{y}) + \cdots$$
(2)

such that formally, $y(2\pi n) = \bar{y}(2\pi n)$ for the solutions $y(\tau)$ and $\bar{y}(\tau)$ of (1) and (2) with $\bar{y}(0) = y(0)$.

If (1) is Hamiltonian, then (2) is Hamiltonian with

$$\bar{H}(y) = \omega^{-1}\bar{H}_1(y) + \omega^{-2}\bar{H}_2(y) + \omega^{-3}\bar{H}_3(y) + \cdots$$

In averaging theory [Sanders, Verhulst, Murdock 2007], obtaining

$$\frac{d}{d\tau}\bar{y} = \omega^{-1}\bar{f}_1(\bar{y}) + \omega^{-2}\bar{f}_2(\bar{y}) + \omega^{-3}\bar{f}_3(\bar{y}) + \cdots$$
(3)

from the original HOS system is called stroboscopic averaging.

High order averaging

There exists a formal (2 π)-periodic change of variables $y = K(\bar{y}, \tau)$ that transforms the original system

$$\frac{d}{d\tau}y = \omega^{-1}f_1(y,\tau) + \omega^{-2}f_2(y,\tau) + \omega^{-3}f_3(y,\tau) + \cdots$$

into the autonomous system (3).

The change of variables $y = K(\bar{y}, \tau)$ is not unique. Typical choices

• $K(\bar{y}, 0) = \bar{y}$: Stroboscopic averaging,

•
$$\int_0^{2\pi} K(\bar{y},\tau) d\tau = \bar{y}.$$

B-series

We will be dealing with B-series-like expansions of the form

$$B(\alpha, y) = \alpha_{\emptyset} y + \sum_{u \in \mathcal{T}} \frac{\omega^{-|u|}}{\sigma(u)} \alpha_u F_u(y),$$

where T is a set of indices, and for each $u \in T$,

- $\alpha_u \in \mathbb{R}$ are the coefficients of the B-series,
- $F_u : \mathbb{R}^D \to \mathbb{R}^D$ is the elementary differential,
- $|u| \in \mathbb{Z}^+$ is the degree (or order) of u,
- $\sigma(u)$ is some normalization factor.

In standard B-series (Hairer and Wanner 1974), \mathcal{T} is the set of rooted trees, and $\sigma(u)$ is the symmetry number of the tree u. We denote $\mathcal{T}_j = \{u \in \mathcal{T} : |u| = j\}$, so that

$$B(\alpha, y) = \alpha_{\emptyset} y + \sum_{j \ge 1} \omega^{-j} \sum_{u \in \mathcal{I}_j} \frac{\alpha_u}{\sigma(u)} F_u(y).$$

B-series

We will be dealing with B-series-like expansions of the form

$$B(\alpha, y) = \alpha_{\emptyset} y + \sum_{u \in \mathcal{T}} \frac{\omega^{-|u|}}{\sigma(u)} \alpha_u F_u(y),$$

where \mathcal{T} is a set of indices, and for each $u \in \mathcal{T}$,

- $\alpha_u \in \mathbb{R}$ are the coefficients of the B-series,
- $F_u : \mathbb{R}^D \to \mathbb{R}^D$ is the elementary differential,
- $|u| \in \mathbb{Z}^+$ is the degree (or order) of u,
- $\sigma(u)$ is some normalization factor.

In standard B-series (Hairer and Wanner 1974), T is the set of rooted trees, and $\sigma(u)$ is the symmetry number of the tree u.

We denote $\mathcal{T}_j = \{ u \in \mathcal{T} : |u| = j \}$, so that

$$B(\alpha, y) = \alpha_{\emptyset} y + \sum_{j \ge 1} \omega^{-j} \sum_{u \in T_j} \frac{\alpha_u}{\sigma(u)} F_u(y).$$

B-series

We will be dealing with B-series-like expansions of the form

$$B(\alpha, y) = \alpha_{\emptyset} y + \sum_{u \in \mathcal{T}} \frac{\omega^{-|u|}}{\sigma(u)} \alpha_u F_u(y),$$

where T is a set of indices, and for each $u \in T$,

- $\alpha_u \in \mathbb{R}$ are the coefficients of the B-series,
- $F_u : \mathbb{R}^D \to \mathbb{R}^D$ is the elementary differential,
- $|u| \in \mathbb{Z}^+$ is the degree (or order) of u,
- $\sigma(u)$ is some normalization factor.

In standard B-series (Hairer and Wanner 1974), \mathcal{T} is the set of rooted trees, and $\sigma(u)$ is the symmetry number of the tree u. We denote $\mathcal{T}_j = \{u \in \mathcal{T} : |u| = j\}$, so that

$$B(\alpha, y) = \alpha_{\emptyset} y + \sum_{j \ge 1} \omega^{-j} \sum_{u \in \mathcal{T}_j} \frac{\alpha_u}{\sigma(u)} F_u(y).$$

Assumption

For each pair $(u, v) \in T_j \times T_k$, there exist $w_1, \ldots, w_m \in T_{j+k}$ and $\lambda_1, \ldots, \lambda_m \in \mathbb{R}$ such that

$$\left(\frac{\partial}{\partial y}F_u(y)\right)F_v(y)=\sum_{j=1}^m\lambda_j F_{w_j}(y).$$

Let us denote $\mathcal{F} = \{\emptyset\} \cup \{u_1 \cdots u_m : u_1, \dots, u_m \in \mathcal{T}\}.$

Let $\mathbb{R}^{\mathcal{F}}$ be the set of real functions $\mathcal{F} \to \mathbb{R}$. Consider also • $\mathfrak{g} = \{\beta \in \mathbb{R}^{\mathcal{F}} : \beta_{\emptyset} = 0, \beta_{uv} = 0 \text{ if } u, v \in \mathcal{F}/\{\emptyset\}\}.$ • $\mathcal{G} = \{\alpha \in \mathbb{R}^{\mathcal{F}} : \alpha_{\emptyset} = 1, \alpha_{uv} = \alpha_u \alpha_v \text{ if } u, v \in \mathcal{F}\}.$

★ 圖 ▶ ★ 国 ▶ ★ 国 ▶ → 国

Theorem

Under the assumption above, there exists a binary operation

$$\mathbb{R}^{\mathcal{F}} \times \mathbb{R}^{\mathcal{F}} \to \mathbb{R}^{\mathcal{F}} (\alpha, \beta) \mapsto \alpha \beta$$

where for each $u \in \mathcal{F}$, $\exists v_j, w_j \in \mathcal{F}/\{\emptyset\}$ such that

$$(\alpha\beta)_u = \beta_{\emptyset}\alpha_u + \alpha_{\emptyset}\beta_u + \sum_{j=1}^m \alpha_{v_j}\beta_{w_j},$$

with $|v_j| + |w_j| = |u|$ satisfying that

- $B(\beta, B(\alpha, y)) = B(\alpha\beta, y)$ if $\alpha \in \mathcal{G}$
- $\frac{\partial}{\partial y}B(\alpha, y) \cdot B(\beta, y) = B(\beta \alpha, y)$ if $\beta \in \mathfrak{g}$.
- ullet $\mathcal G$ has with that binary operation a group structure, and
- g has a pre-Lie algebra structure, and also a Lie algebra structure with [α, β] := αβ − βα.

Theorem

Under the assumption above, there exists a binary operation

$$\mathbb{R}^{\mathcal{F}} \times \mathbb{R}^{\mathcal{F}} \to \mathbb{R}^{\mathcal{F}} (\alpha, \beta) \mapsto \alpha \beta$$

where for each $u \in \mathcal{F}$, $\exists v_j, w_j \in \mathcal{F}/\{\emptyset\}$ such that

$$(\alpha\beta)_u = \beta_{\emptyset}\alpha_u + \alpha_{\emptyset}\beta_u + \sum_{j=1}^m \alpha_{v_j}\beta_{w_j},$$

with $|v_j| + |w_j| = |u|$ satisfying that

- $B(\beta, B(\alpha, y)) = B(\alpha\beta, y)$ if $\alpha \in \mathcal{G}$
- $\frac{\partial}{\partial y}B(\alpha, y) \cdot B(\beta, y) = B(\beta \alpha, y)$ if $\beta \in \mathfrak{g}$.
- ${\mathcal{G}}$ has with that binary operation a group structure, and
- g has a pre-Lie algebra structure, and also a Lie algebra structure with $[\alpha, \beta] := \alpha\beta \beta\alpha$.

Theorem

Under the assumption above, there exists a binary operation

$$\mathbb{R}^{\mathcal{F}} \times \mathbb{R}^{\mathcal{F}} \to \mathbb{R}^{\mathcal{F}} (\alpha, \beta) \mapsto \alpha \beta$$

where for each $u \in \mathcal{F}$, $\exists v_j, w_j \in \mathcal{F}/\{\emptyset\}$ such that

$$(\alpha\beta)_u = \beta_{\emptyset}\alpha_u + \alpha_{\emptyset}\beta_u + \sum_{j=1}^m \alpha_{v_j}\beta_{w_j},$$

with $|v_j| + |w_j| = |u|$ satisfying that

- $B(\beta, B(\alpha, y)) = B(\alpha\beta, y)$ if $\alpha \in \mathcal{G}$
- $\frac{\partial}{\partial y}B(\alpha, y) \cdot B(\beta, y) = B(\beta \alpha, y)$ if $\beta \in \mathfrak{g}$.
- ${\cal G}$ has with that binary operation a group structure, and
- g has a pre-Lie algebra structure, and also a Lie algebra structure with [α, β] := αβ − βα.

Averaging in terms of B-series

Consider a nonautonomous (2π) -periodic ODE written in the form

$$rac{d}{d au}y=B(eta(au),y), \hspace{0.3cm} ext{where} \hspace{0.3cm} eta(au)\in \mathfrak{g} \hspace{0.3cm} ext{and} \hspace{0.3cm} eta(au+2\pi)=eta(au).$$

Its solutions $y(\tau)$ can be expanded as $y(\tau) = B(\alpha(\tau), y(0))$ with $\alpha(\tau) \in \mathcal{G}$, where

$$\frac{d}{d\tau}B(\alpha(\tau), y(0)) = B(\beta(\tau), B(\alpha(\tau), y(0))), \quad B(\alpha(0), y(0)) = y(0).$$

That certainly holds if

$$\forall u \in \mathcal{T}, \quad \frac{d}{d\tau} \alpha(\tau)_u = (\alpha(\tau)\beta(\tau))_u, \quad \alpha(0)_u = 0,$$

or more compactly,

$$\frac{d}{d\tau}\alpha(\tau) = \alpha(\tau)\beta(\tau), \quad \alpha(0) = I,$$

which uniquely determines $\alpha(\tau) \in \mathcal{G}$ in terms of $\beta(\sigma) \in \mathfrak{G}$, $\mathfrak{g} \in \mathfrak{G}$

Averaging in terms of B-series

Consider a nonautonomous (2π) -periodic ODE written in the form

$$rac{d}{d au}y=B(eta(au),y), \hspace{0.3cm} ext{where} \hspace{0.3cm} eta(au)\in \mathfrak{g} \hspace{0.3cm} ext{and} \hspace{0.3cm} eta(au+2\pi)=eta(au).$$

Its solutions $y(\tau)$ can be expanded as $y(\tau) = B(\alpha(\tau), y(0))$ with $\alpha(\tau) \in \mathcal{G}$, where

$$\frac{d}{d\tau}B(\alpha(\tau), y(0)) = B(\beta(\tau), B(\alpha(\tau), y(0))), \quad B(\alpha(0), y(0)) = y(0).$$

That certainly holds if

$$\forall u \in \mathcal{T}, \quad \frac{d}{d\tau} \alpha(\tau)_u = (\alpha(\tau)\beta(\tau))_u, \quad \alpha(0)_u = 0,$$

or more compactly,

$$\frac{d}{d\tau}\alpha(\tau) = \alpha(\tau)\beta(\tau), \quad \alpha(0) = I,$$

which uniquely determines $\alpha(\tau) \in \mathcal{G}$ in terms of $\beta(\tau) \in \mathfrak{g}$

Averaging in terms of B-series

Consider a nonautonomous (2π) -periodic ODE written in the form

$$rac{d}{d au}y=B(eta(au),y), \hspace{0.3cm} ext{where} \hspace{0.3cm} eta(au)\in \mathfrak{g} \hspace{0.3cm} ext{and} \hspace{0.3cm} eta(au+2\pi)=eta(au).$$

Its solutions $y(\tau)$ can be expanded as $y(\tau) = B(\alpha(\tau), y(0))$ with $\alpha(\tau) \in \mathcal{G}$, where

$$\frac{d}{d\tau}B(\alpha(\tau), y(0)) = B(\beta(\tau), B(\alpha(\tau), y(0))), \quad B(\alpha(0), y(0)) = y(0).$$

That certainly holds if

$$\forall u \in \mathcal{T}, \quad \frac{d}{d\tau} \alpha(\tau)_u = (\alpha(\tau)\beta(\tau))_u, \quad \alpha(0)_u = 0,$$

or more compactly,

$$rac{d}{d au}lpha(au)=lpha(au)eta(au),\quad lpha(0)=I,$$

which uniquely determines $\alpha(\tau) \in \mathcal{G}$ in terms of $\beta(\tau) \in \mathfrak{g}$.

Averaging in terms of B-series coefficients

Theorem

Given a (2π) -periodic $\beta(\tau) \in \mathfrak{g}$, there exist $\overline{\beta} \in \mathfrak{g}$, $\overline{\alpha}(\tau) \in \mathcal{G}$, and a (2π) -periodic $\kappa(\tau) \in \mathcal{G}$ such that

$$\alpha(\tau) = \bar{\alpha}(\tau)\kappa(\tau), \quad \frac{d}{d\tau}\bar{\alpha}(\tau) = \bar{\alpha}(\tau)\bar{\beta}, \quad \bar{\alpha}(0) = I.$$

Furthermore, it holds that

$$rac{d}{d au}\kappa(au)=\kappa(au)ar{eta}-eta(au)\kappa(au).$$

$$\bar{\beta}_{u} = \int_{0}^{2\pi} \beta(\tau)_{u} d\tau - \sum_{j=1}^{m} \int_{0}^{2\pi} (\kappa(\tau)_{v_{j}} \bar{\beta}_{w_{j}} - \beta(\tau)_{v_{j}} \kappa(\tau)_{w_{j}}) d\tau,$$

$$\kappa(\tau)_{u} = \tau \bar{\beta}_{u} - \int_{0}^{\tau} \beta(\sigma)_{u} d\sigma + \sum_{j=1}^{m} \int_{0}^{\tau} (\kappa(\sigma)_{v_{j}} \bar{\beta}_{w_{j}} - \beta(\sigma)_{v_{j}} \kappa(\sigma)_{w_{j}}) d\sigma.$$

Averaging in terms of B-series coefficients

Theorem

Given a (2π) -periodic $\beta(\tau) \in \mathfrak{g}$, there exist $\overline{\beta} \in \mathfrak{g}$, $\overline{\alpha}(\tau) \in \mathcal{G}$, and a (2π) -periodic $\kappa(\tau) \in \mathcal{G}$ such that

$$\alpha(\tau) = \bar{\alpha}(\tau)\kappa(\tau), \quad \frac{d}{d\tau}\bar{\alpha}(\tau) = \bar{\alpha}(\tau)\bar{\beta}, \quad \bar{\alpha}(0) = I.$$

Furthermore, it holds that

$$rac{d}{d au}\kappa(au)=\kappa(au)areta-eta(au)\kappa(au).$$

$$\bar{\beta}_{u} = \int_{0}^{2\pi} \beta(\tau)_{u} d\tau - \sum_{j=1}^{m} \int_{0}^{2\pi} (\kappa(\tau)_{v_{j}} \bar{\beta}_{w_{j}} - \beta(\tau)_{v_{j}} \kappa(\tau)_{w_{j}}) d\tau,$$

$$\kappa(\tau)_{u} = \tau \bar{\beta}_{u} - \int_{0}^{\tau} \beta(\sigma)_{u} d\sigma + \sum_{j=1}^{m} \int_{0}^{\tau} (\kappa(\sigma)_{v_{j}} \bar{\beta}_{w_{j}} - \beta(\sigma)_{v_{j}} \kappa(\sigma)_{w_{j}}) d\sigma.$$

Alternative algorithm

Given $\beta(au) \in \mathfrak{g}$,

• Find $\alpha(au) \in \mathcal{G}$ such that

$$rac{d}{d au}lpha(au)=lpha(au)eta(au),\quad lpha(0)=I.$$

- For each $u \in \mathcal{T}$, obtain $\bar{\alpha}(\tau)_u$ as the polynomial of degree |u| that interpolates $\alpha(\tau)_u$ for $\tau = 2\pi n$, $n \in \mathbb{Z}$,
- $\bullet~{\rm Obtain}~\bar\beta$ as

$$\bar{\beta}_u = \left. \frac{d}{d\tau} \bar{\alpha}(\tau)_u \right|_{\tau=0}$$

Last two steps of the algorithm are equivalent to applying numerical differentiation formulae with data $\alpha(\tau)_u$ for $\tau = 2\pi n$, $n \in \mathbb{Z}$.

- Practical computation of several terms of the higher order averaged equations (possible application beyond numerical analysis)
- Numerical methods that accurately approximate averaged solutions (oscillatory solution can always be recovered locally):
 - Integration of averaged equations obtained by combining microintegration and numerical differentiation
 - B-series methods designed to fit the B-series expansion of the solution of the averaged equations (splitting methods, RK-like methods...)

Example (Fermi-Pasta-Ulam problem)

Variation $\overline{H}(y(t)) - \overline{H}(y(0))$ of the averaged Hamiltonian

$$\bar{H}_1(y) + \omega^{-2}\bar{H}_3(y) + \omega^{-4}\bar{H}_5(y).$$

Actually, it can be proven that formally, $\{H, H\} = 0$, so that H is a formal invariant of the original problem. Hence, $\tilde{I}(p_1, p_2, q_1, q_2) := H(p_1, p_2, q_1, q_2) - \bar{H}(p_1, p_2, q_1, q_2)$ is a formal invariant of the original system.

Example (Fermi-Pasta-Ulam problem)

Variation $\overline{H}(y(t)) - \overline{H}(y(0))$ of the averaged Hamiltonian

$$\bar{H}_1(y) + \omega^{-2}\bar{H}_3(y) + \omega^{-4}\bar{H}_5(y).$$

Actually, it can be proven that formally, $\{H, \bar{H}\} = 0$, so that \bar{H} is a formal invariant of the original problem. Hence,

$$\tilde{l}(p_1, p_2, q_1, q_2) := H(p_1, p_2, q_1, q_2) - \bar{H}(p_1, p_2, q_1, q_2)$$

is a formal invariant of the original system.