Averaging with B-series

Ander Murua
Joint work with P. Chartier and J.M. Sanz-Serna

Euskal Herriko Unibertsitatea / Universidad del Pais Vasco
Genève, June 2009

Example (Fermi-Pasta-Ulam problem)

Hamiltonian system with Hamiltonian function

$$
H\left(p_{1}, p_{2}, q_{1}, q_{2}\right)=\frac{1}{2} p_{1}^{T} p_{1}+\frac{1}{2}\left(p_{2}^{T} p_{2}+\omega^{2} q_{2}^{T} q_{2}\right)+U\left(q_{1}, q_{2}\right)
$$

where $p_{1}, p_{2}, q_{1}, q_{2} \in \mathbb{R}^{m}$ and

$$
\begin{aligned}
U\left(q_{1}, q_{2}\right)= & \frac{1}{4}\left(\left(q_{1,1}-q_{2,1}\right)^{4}+\left(q_{1, m}+q_{2, m}\right)^{4}\right) \\
& +\frac{1}{4} \sum_{j=1}^{m-1}\left(q_{1, j+1}-q_{2, j+1}-q_{1, j}-q_{2, j}\right)^{4}
\end{aligned}
$$

Consider the t-flow $\varphi_{t}: \mathbb{R}^{2 d} \rightarrow \mathbb{R}^{2 d}$ of that Hamiltonian system.
In particular, take $\epsilon=2 \pi / \omega$, and consider φ_{ϵ}, that advances the solution in one period if the fast oscillations.

Example (Fermi-Pasta-Ulam problem (cont.))

Component $q_{2,2}(t)$ for $m=3, \omega=100$, and initial values

$$
p_{1}(0)=p_{2}(0)=q_{1}(0)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), q_{2}(0)=\left(\begin{array}{c}
\omega^{-1} \\
0 \\
0
\end{array}\right) .
$$

Example (Fermi-Pasta-Ulam problem (cont.))

Component $q_{2,2}(t)$ for $m=3, \omega=100$, and initial values

$$
p_{1}(0)=p_{2}(0)=q_{1}(0)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), q_{2}(0)=\left(\begin{array}{c}
\omega^{-1} \\
0 \\
0
\end{array}\right) .
$$

First rescale time by considering the dimensionless time $\tau=\omega t$, and then apply the (2π)-periodic τ-dependent change of variables

Change of variables

$$
\begin{gathered}
\hat{p}_{1}=p_{1}, \quad \hat{p}_{2}=\cos (\tau) p_{2}+\omega \sin (\tau) q_{2} \\
\hat{q}_{1}=q_{1}, \quad \hat{q}_{2}=\cos (\tau) q_{2}-\omega^{-1} \sin (\tau) p_{2}
\end{gathered}
$$

(note that at stroboscopic times $\tau_{n}=2 \pi n$, that change of variables reduces to the identity map.)
The transformed system is a time-dependent Hamiltonian system with Hamiltonian function

$$
\omega^{-1}\left(\frac{1}{2} \hat{p}_{1}^{T} \hat{p}_{1}+U\left(\hat{q}_{1}, \cos (\tau) \hat{q}_{2}+\omega^{-1} \sin (\tau) \hat{p}_{2}\right)\right) .
$$

Clearly, such a system can be written in the form

$$
\frac{d}{d \tau} y=\omega^{-1} f_{1}(y, \tau)+\omega^{-2} f_{2}(y, \tau)+\omega^{-3} f_{3}(y, \tau)+\cdots
$$

Backward error analysis of highly oscillatory systems

We consider highly oscillatory systems with frequency ω that, after time rescaling $\tau=\omega t$ (and possibly a (2π)-periodic τ-dependent change of variables that is the identity map at stroboscopic times $\tau_{n}=2 \pi n$), can be written as

$$
\frac{d}{d \tau} y=f(y, \tau ; \omega):=\omega^{-1} f_{1}(y, \tau)+\omega^{-2} f_{2}(y, \tau)+\omega^{-3} f_{3}(y, \tau)+\cdots
$$ where each $f_{j}(y, \tau)$ is smooth in y and 2π-periodic in τ.

Consider $\psi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ such that $\psi(y(0))=y(2 \pi)$,

- The map ψ is as a smooth near-to-identity map,
- $f_{j}(\cdot, \tau)$ is (2π)-periodic $\Rightarrow y\left(\tau_{n}\right)=\psi^{n}(y(0))$ for $\tau_{n}=2 \pi n$,
- ψ is symplectic if f is Hamiltonian.

Backward error analysis for the near-to-identity map ψ

Given

$$
\begin{equation*}
\frac{d}{d \tau} y=\omega^{-1} f_{1}(y, \tau)+\omega^{-2} f_{2}(y, \tau)+\omega^{-3} f_{3}(y, \tau)+\cdots \tag{1}
\end{equation*}
$$

there exists

$$
\begin{equation*}
\frac{d}{d \tau} \bar{y}=\omega^{-1} \bar{f}_{1}(\bar{y})+\omega^{-2} \bar{f}_{2}(\bar{y})+\omega^{-3} \bar{f}_{3}(\bar{y})+\cdots \tag{2}
\end{equation*}
$$

such that formally, $y(2 \pi n)=\bar{y}(2 \pi n)$ for the solutions $y(\tau)$ and $\bar{y}(\tau)$ of (1) and (2) with $\bar{y}(0)=y(0)$.

If (1) is Hamiltonian, then (2) is Hamiltonian with
$\bar{H}(y)=\omega^{-1} \bar{H}_{1}(y)+\omega^{-2} \bar{H}_{2}(y)+\omega^{-3} \bar{H}_{3}(y)$

Backward error analysis for the near-to-identity map ψ

Given

$$
\begin{equation*}
\frac{d}{d \tau} y=\omega^{-1} f_{1}(y, \tau)+\omega^{-2} f_{2}(y, \tau)+\omega^{-3} f_{3}(y, \tau)+\cdots \tag{1}
\end{equation*}
$$

there exists

$$
\begin{equation*}
\frac{d}{d \tau} \bar{y}=\omega^{-1} \bar{f}_{1}(\bar{y})+\omega^{-2} \bar{f}_{2}(\bar{y})+\omega^{-3} \bar{f}_{3}(\bar{y})+\cdots \tag{2}
\end{equation*}
$$

such that formally, $y(2 \pi n)=\bar{y}(2 \pi n)$ for the solutions $y(\tau)$ and $\bar{y}(\tau)$ of (1) and (2) with $\bar{y}(0)=y(0)$.

If (1) is Hamiltonian, then (2) is Hamiltonian with

$$
\bar{H}(y)=\omega^{-1} \bar{H}_{1}(y)+\omega^{-2} \bar{H}_{2}(y)+\omega^{-3} \bar{H}_{3}(y)+\cdots
$$

In averaging theory [Sanders, Verhulst, Murdock 2007], obtaining

$$
\begin{equation*}
\frac{d}{d \tau} \bar{y}=\omega^{-1} \bar{f}_{1}(\bar{y})+\omega^{-2} \bar{f}_{2}(\bar{y})+\omega^{-3} \bar{f}_{3}(\bar{y})+\cdots . \tag{3}
\end{equation*}
$$

from the original HOS system is called stroboscopic averaging.

High order averaging

There exists a formal (2π)-periodic change of variables $y=K(\bar{y}, \tau)$ that transforms the original system

$$
\frac{d}{d \tau} y=\omega^{-1} f_{1}(y, \tau)+\omega^{-2} f_{2}(y, \tau)+\omega^{-3} f_{3}(y, \tau)+\cdots
$$

into the autonomous system (3).
The change of variables $y=K(\bar{y}, \tau)$ is not unique. Typical choices

- $K(\bar{y}, 0)=\bar{y}$: Stroboscopic averaging,
- $\int_{0}^{2 \pi} K(\bar{y}, \tau) d \tau=\bar{y}$.

B-series
We will be dealing with B-series-like expansions of the form

$$
B(\alpha, y)=\alpha_{\emptyset} y+\sum_{u \in \mathcal{T}} \frac{\omega^{-|u|}}{\sigma(u)} \alpha_{u} F_{u}(y)
$$

where \mathcal{T} is a set of indices, and for each $u \in \mathcal{T}$,

- $\alpha_{u} \in \mathbb{R}$ are the coefficients of the B-series,
- $F_{u}: \mathbb{R}^{D} \rightarrow \mathbb{R}^{D}$ is the elementary differential,
- $|u| \in \mathbb{Z}^{+}$is the degree (or order) of u,
- $\sigma(u)$ is some normalization factor.

In standard B-series (Hairer and Wanner 1974), \mathcal{T} is the set of rooted trees, and $\sigma(u)$ is the symmetry number of the tree u. We denote $\mathcal{T}_{i}=\{u \in \mathcal{T}:|u|=j\}$, so that

B-series

We will be dealing with B-series-like expansions of the form

$$
B(\alpha, y)=\alpha_{\emptyset} y+\sum_{u \in \mathcal{T}} \frac{\omega^{-|u|}}{\sigma(u)} \alpha_{u} F_{u}(y)
$$

where \mathcal{T} is a set of indices, and for each $u \in \mathcal{T}$,

- $\alpha_{u} \in \mathbb{R}$ are the coefficients of the B-series,
- $F_{u}: \mathbb{R}^{D} \rightarrow \mathbb{R}^{D}$ is the elementary differential,
- $|u| \in \mathbb{Z}^{+}$is the degree (or order) of u,
- $\sigma(u)$ is some normalization factor.

In standard B-series (Hairer and Wanner 1974), \mathcal{T} is the set of rooted trees, and $\sigma(u)$ is the symmetry number of the tree u. We denote $\mathcal{T}_{j}=\{u \in \mathcal{T}:|u|=j\}$, so that

B-series

We will be dealing with B-series-like expansions of the form

$$
B(\alpha, y)=\alpha_{\emptyset} y+\sum_{u \in \mathcal{T}} \frac{\omega^{-|u|}}{\sigma(u)} \alpha_{u} F_{u}(y)
$$

where \mathcal{T} is a set of indices, and for each $u \in \mathcal{T}$,

- $\alpha_{u} \in \mathbb{R}$ are the coefficients of the B-series,
- $F_{u}: \mathbb{R}^{D} \rightarrow \mathbb{R}^{D}$ is the elementary differential,
- $|u| \in \mathbb{Z}^{+}$is the degree (or order) of u,
- $\sigma(u)$ is some normalization factor.

In standard B-series (Hairer and Wanner 1974), \mathcal{T} is the set of rooted trees, and $\sigma(u)$ is the symmetry number of the tree u. We denote $\mathcal{T}_{j}=\{u \in \mathcal{T}:|u|=j\}$, so that

$$
B(\alpha, y)=\alpha_{\emptyset} y+\sum_{j \geq 1} \omega^{-j} \sum_{u \in \mathcal{T}_{j}} \frac{\alpha_{u}}{\sigma(u)} F_{u}(y)
$$

Assumption

For each pair $(u, v) \in \mathcal{T}_{j} \times \mathcal{T}_{k}$, there exist $w_{1}, \ldots, w_{m} \in \mathcal{T}_{j+k}$ and $\lambda_{1}, \ldots, \lambda_{m} \in \mathbb{R}$ such that

$$
\left(\frac{\partial}{\partial y} F_{u}(y)\right) F_{v}(y)=\sum_{j=1}^{m} \lambda_{j} F_{w_{j}}(y)
$$

Let us denote $\mathcal{F}=\{\emptyset\} \cup\left\{u_{1} \cdots u_{m}: u_{1}, \ldots, u_{m} \in \mathcal{T}\right\}$.
Let $\mathbb{R}^{\mathcal{F}}$ be the set of real functions $\mathcal{F} \rightarrow \mathbb{R}$. Consider also

- $\mathfrak{g}=\left\{\beta \in \mathbb{R}^{\mathcal{F}}: \beta_{\emptyset}=0, \beta_{u v}=0\right.$ if $\left.u, v \in \mathcal{F} /\{\emptyset\}\right\}$.
- $\mathcal{G}=\left\{\alpha \in \mathbb{R}^{\mathcal{F}}: \alpha_{\emptyset}=1, \alpha_{u v}=\alpha_{u} \alpha_{v}\right.$ if $\left.u, v \in \mathcal{F}\right\}$.

Theorem
Under the assumption above, there exists a binary operation

$$
\begin{aligned}
\mathbb{R}^{\mathcal{F}} \times \mathbb{R}^{\mathcal{F}} & \rightarrow \mathbb{R}^{\mathcal{F}} \\
(\alpha, \beta) & \mapsto \alpha \beta
\end{aligned}
$$

where for each $u \in \mathcal{F}, \exists v_{j}, w_{j} \in \mathcal{F} /\{\emptyset\}$ such that

$$
(\alpha \beta)_{u}=\beta_{\emptyset} \alpha_{u}+\alpha_{\emptyset} \beta_{u}+\sum_{j=1}^{m} \alpha_{v_{j}} \beta_{w_{j}}
$$

with $\left|v_{j}\right|+\left|w_{j}\right|=|u|$ satisfying that

- $B(\beta, B(\alpha, y))=B(\alpha \beta, y)$ if $\alpha \in \mathcal{G}$
- $\frac{\partial}{\partial y} B(\alpha, y) \cdot B(\beta, y)=B(\beta \alpha, y)$ if $\beta \in \mathfrak{g}$.
- \mathcal{G} has with that binary operation a group structure, and - \mathfrak{g} has a pre-Lie algebra structure, and also a Lie algebra

Theorem
Under the assumption above, there exists a binary operation

$$
\begin{aligned}
\mathbb{R}^{\mathcal{F}} \times \mathbb{R}^{\mathcal{F}} & \rightarrow \mathbb{R}^{\mathcal{F}} \\
(\alpha, \beta) & \mapsto \alpha \beta
\end{aligned}
$$

where for each $u \in \mathcal{F}, \exists v_{j}, w_{j} \in \mathcal{F} /\{\emptyset\}$ such that

$$
(\alpha \beta)_{u}=\beta_{\emptyset} \alpha_{u}+\alpha_{\emptyset} \beta_{u}+\sum_{j=1}^{m} \alpha_{v_{j}} \beta_{w_{j}}
$$

with $\left|v_{j}\right|+\left|w_{j}\right|=|u|$ satisfying that

- $B(\beta, B(\alpha, y))=B(\alpha \beta, y)$ if $\alpha \in \mathcal{G}$
- $\frac{\partial}{\partial y} B(\alpha, y) \cdot B(\beta, y)=B(\beta \alpha, y)$ if $\beta \in \mathfrak{g}$.
- \mathcal{G} has with that binary operation a group structure, and structure with $[\alpha, \beta]:=\alpha \beta-\beta \alpha$.

Theorem
Under the assumption above, there exists a binary operation

$$
\begin{aligned}
\mathbb{R}^{\mathcal{F}} \times \mathbb{R}^{\mathcal{F}} & \rightarrow \mathbb{R}^{\mathcal{F}} \\
(\alpha, \beta) & \mapsto \alpha \beta
\end{aligned}
$$

where for each $u \in \mathcal{F}, \exists v_{j}, w_{j} \in \mathcal{F} /\{\emptyset\}$ such that

$$
(\alpha \beta)_{u}=\beta_{\emptyset} \alpha_{u}+\alpha_{\emptyset} \beta_{u}+\sum_{j=1}^{m} \alpha_{v_{j}} \beta_{w_{j}}
$$

with $\left|v_{j}\right|+\left|w_{j}\right|=|u|$ satisfying that

- $B(\beta, B(\alpha, y))=B(\alpha \beta, y)$ if $\alpha \in \mathcal{G}$
- $\frac{\partial}{\partial y} B(\alpha, y) \cdot B(\beta, y)=B(\beta \alpha, y)$ if $\beta \in \mathfrak{g}$.
- \mathcal{G} has with that binary operation a group structure, and
- \mathfrak{g} has a pre-Lie algebra structure, and also a Lie algebra structure with $[\alpha, \beta]:=\alpha \beta-\beta \alpha$.

Averaging in terms of B-series

Consider a nonautonomous (2π)-periodic ODE written in the form $\frac{d}{d \tau} y=B(\beta(\tau), y), \quad$ where $\quad \beta(\tau) \in \mathfrak{g}$ and $\beta(\tau+2 \pi)=\beta(\tau)$. Its solutions $y(\tau)$ can be expanded as $y(\tau)=B(\alpha(\tau), y(0))$ with $\alpha(\tau) \in \mathcal{G}$, where $\frac{d}{d \tau} B(\alpha(\tau), y(0))=B(\beta(\tau), B(\alpha(\tau), y(0))), \quad B(\alpha(0), y(0))=y(0)$. That certainly holds if

Averaging in terms of B-series

Consider a nonautonomous (2π)-periodic ODE written in the form $\frac{d}{d \tau} y=B(\beta(\tau), y), \quad$ where $\quad \beta(\tau) \in \mathfrak{g}$ and $\beta(\tau+2 \pi)=\beta(\tau)$. Its solutions $y(\tau)$ can be expanded as $y(\tau)=B(\alpha(\tau), y(0))$ with $\alpha(\tau) \in \mathcal{G}$, where

$$
\frac{d}{d \tau} B(\alpha(\tau), y(0))=B(\beta(\tau), B(\alpha(\tau), y(0))), \quad B(\alpha(0), y(0))=y(0)
$$

That certainly holds if

$$
\forall u \in \mathcal{T}, \quad \frac{d}{d \tau} \alpha(\tau)_{u}=(\alpha(\tau) \beta(\tau))_{u}, \quad \alpha(0)_{u}=0
$$

or more compactly,

Averaging in terms of B-series

Consider a nonautonomous (2π)-periodic ODE written in the form

$$
\frac{d}{d \tau} y=B(\beta(\tau), y), \quad \text { where } \quad \beta(\tau) \in \mathfrak{g} \text { and } \beta(\tau+2 \pi)=\beta(\tau)
$$

Its solutions $y(\tau)$ can be expanded as $y(\tau)=B(\alpha(\tau), y(0))$ with $\alpha(\tau) \in \mathcal{G}$, where

$$
\frac{d}{d \tau} B(\alpha(\tau), y(0))=B(\beta(\tau), B(\alpha(\tau), y(0))), \quad B(\alpha(0), y(0))=y(0)
$$

That certainly holds if

$$
\forall u \in \mathcal{T}, \quad \frac{d}{d \tau} \alpha(\tau)_{u}=(\alpha(\tau) \beta(\tau))_{u}, \quad \alpha(0)_{u}=0
$$

or more compactly,

$$
\frac{d}{d \tau} \alpha(\tau)=\alpha(\tau) \beta(\tau), \quad \alpha(0)=1
$$

which uniquely determines $\alpha(\tau) \in \mathcal{G}$ in terms of $\beta(\tau) \in \mathfrak{g}$.

Averaging in terms of B-series coefficients

Theorem

Given a (2π)-periodic $\beta(\tau) \in \mathfrak{g}$, there exist $\bar{\beta} \in \mathfrak{g}, \bar{\alpha}(\tau) \in \mathcal{G}$, and a (2π)-periodic $\kappa(\tau) \in \mathcal{G}$ such that

$$
\alpha(\tau)=\bar{\alpha}(\tau) \kappa(\tau), \quad \frac{d}{d \tau} \bar{\alpha}(\tau)=\bar{\alpha}(\tau) \bar{\beta}, \quad \bar{\alpha}(0)=1 .
$$

Furthermore, it holds that

$$
\frac{d}{d \tau} \kappa(\tau)=\kappa(\tau) \bar{\beta}-\beta(\tau) \kappa(\tau)
$$

Averaging in terms of B-series coefficients

Theorem

Given a (2π)-periodic $\beta(\tau) \in \mathfrak{g}$, there exist $\bar{\beta} \in \mathfrak{g}, \bar{\alpha}(\tau) \in \mathcal{G}$, and a (2π)-periodic $\kappa(\tau) \in \mathcal{G}$ such that

$$
\alpha(\tau)=\bar{\alpha}(\tau) \kappa(\tau), \quad \frac{d}{d \tau} \bar{\alpha}(\tau)=\bar{\alpha}(\tau) \bar{\beta}, \quad \bar{\alpha}(0)=l
$$

Furthermore, it holds that

$$
\frac{d}{d \tau} \kappa(\tau)=\kappa(\tau) \bar{\beta}-\beta(\tau) \kappa(\tau)
$$

$$
\bar{\beta}_{u}=\int_{0}^{2 \pi} \beta(\tau)_{u} d \tau-\sum_{j=1}^{m} \int_{0}^{2 \pi}\left(\kappa(\tau)_{v_{j}} \bar{\beta}_{w_{j}}-\beta(\tau)_{v_{j}} \kappa(\tau)_{w_{j}}\right) d \tau
$$

$$
\kappa(\tau)_{u}=\tau \bar{\beta}_{u}-\int_{0}^{\tau} \beta(\sigma)_{u} d \sigma+\sum_{j=1}^{m} \int_{0}^{\tau}\left(\kappa(\sigma)_{v_{j}} \bar{\beta}_{w_{j}}-\beta(\sigma)_{v_{j}} \kappa(\sigma)_{w_{j}}\right) d \sigma
$$

Alternative algorithm

Given $\beta(\tau) \in \mathfrak{g}$,

- Find $\alpha(\tau) \in \mathcal{G}$ such that

$$
\frac{d}{d \tau} \alpha(\tau)=\alpha(\tau) \beta(\tau), \quad \alpha(0)=I
$$

- For each $u \in \mathcal{T}$, obtain $\bar{\alpha}(\tau)_{u}$ as the polynomial of degree $|u|$ that interpolates $\alpha(\tau)_{u}$ for $\tau=2 \pi n, n \in \mathbb{Z}$,
- Obtain $\bar{\beta}$ as

$$
\bar{\beta}_{u}=\left.\frac{d}{d \tau} \bar{\alpha}(\tau)_{u}\right|_{\tau=0}
$$

Last two steps of the algorithm are equivalent to applying numerical differentiation formulae with data $\alpha(\tau)_{u}$ for $\tau=2 \pi n$, $n \in \mathbb{Z}$.

Applications (work in progress)

- Practical computation of several terms of the higher order averaged equations (possible application beyond numerical analysis)
- Numerical methods that accurately approximate averaged solutions (oscillatory solution can always be recovered locally):
(1) Integration of averaged equations obtained by combining microintegration and numerical differentiation
(2) B-series methods designed to fit the B-series expansion of the solution of the averaged equations (splitting methods, RK-like methods...)

Example (Fermi-Pasta-Ulam problem)

Variation $\bar{H}(y(t))-\bar{H}(y(0))$ of the averaged Hamiltonian

$$
\bar{H}_{1}(y)+\omega^{-2} \bar{H}_{3}(y)+\omega^{-4} \bar{H}_{5}(y) .
$$

Actually, it can be proven that formally, $\{H, \bar{H}\}=0$, so that \bar{H} is a formal invariant of the original problem. Hence,

$$
\tilde{l}\left(p_{1}, p_{2}, q_{1}, q_{2}\right):=H\left(p_{1}, p_{2}, q_{1}, q_{2}\right)-\bar{H}\left(p_{1}, p_{2}, q_{1}, q_{2}\right)
$$

Example (Fermi-Pasta-Ulam problem)

Variation $\bar{H}(y(t))-\bar{H}(y(0))$ of the averaged Hamiltonian

$$
\bar{H}_{1}(y)+\omega^{-2} \bar{H}_{3}(y)+\omega^{-4} \bar{H}_{5}(y)
$$

Actually, it can be proven that formally, $\{H, \bar{H}\}=0$, so that \bar{H} is a formal invariant of the original problem. Hence,

$$
\tilde{I}\left(p_{1}, p_{2}, q_{1}, q_{2}\right):=H\left(p_{1}, p_{2}, q_{1}, q_{2}\right)-\bar{H}\left(p_{1}, p_{2}, q_{1}, q_{2}\right)
$$

is a formal invariant of the original system.

