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Example (Fermi-Pasta-Ulam problem)
Hamiltonian system with Hamiltonian function

1 1
H(p1, p2, g1, 42) = §p1Tp1 + E(pngz +w?q] @) + U(qu, g2),

where p1, p2,q1,92 € R™ and

1
U(gr, q2) = 7 ((q11 — q21)* + (qu,m + 2,,,)")
m—1
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+Z (qrj+1 — @2j+1 — 91 — G2,5) "
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Consider the t-flow ¢; : R?? — R29 of that Hamiltonian system.

In particular, take € = 27 /w, and consider ¢, that advances the
solution in one period if the fast oscillations.
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Example (Fermi-Pasta-Ulam problem (cont.))

Component g »(t) for m = 3, w = 100, and initial values
p1(0) = p2(0) = 1 (0) = ( é ) - a(0) = ( wg_l ) .
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First rescale time by considering the dimensionless time 7 = wt,
and then apply the (27)-periodic 7-dependent change of variables

Change of variables

p1=p1, P2 = cos(T)p2 + wsin(T)q2,
& =qi, & =cos(1)q2 —w *sin(7)p2,

(note that at stroboscopic times 7, = 27n, that change of
variables reduces to the identity map.)

The transformed system is a time-dependent Hamiltonian system
with Hamiltonian function

(1.7 N N —il ¢ o
wt <2p1Tp1 + U(G1,cos(7)g2 +w 1sm(r)pg)> .
Clearly, such a system can be written in the form
@
dTy

= w_lfl(y’ T) + w_2f2(y77_) + w_3f3(y77—) +oee



Backward error analysis of highly oscillatory systems

We consider highly oscillatory systems with frequency w that, after
time rescaling 7 = wt (and possibly a (27)-periodic 7-dependent
change of variables that is the identity map at stroboscopic times
T, = 2mn), can be written as

d

E.y = f(y,T;(,U) = w_lfl(va)+w_2f2(y77_)+w_3fé(y77—)+“'

where each f;(y, 7) is smooth in y and 27-periodic in 7.
Consider ¢ : RY — R 9 such that 1(y(0)) = y(27),

@ The map 1 is as a smooth near-to-identity map,

o fi(-,7) is (2m)-periodic = y(7,) = ¥"(y(0)) for 7, = 27n,

@ 1) is symplectic if f is Hamiltonian.



Backward error analysis for the near-to-identity map v

Given

d - _ _
Ty o= w Yaly,7) +w h(y,7) + w3 Ry, T) + -

there exists

d_ e e
7 =w A7) +w k() + w3 h(7) + -

such that formally, y(27n) = y(2mn) for the solutions y(7) and
y(7) of (1) and (2) with y(0) = y(0).




Backward error analysis for the near-to-identity map v

Given

d - _ _
Ty o= w Yaly,7) +w h(y,7) + w3 Ry, T) + -

there exists

d_ e e
7 =w A7) +w k() + w3 h(7) + -

such that formally, y(27n) = y(2mn) for the solutions y(7) and
y(7) of (1) and (2) with y(0) = y(0).

If (1) is Hamiltonian, then (2) is Hamiltonian with

H(y) = cfl:‘:h(y) + OJ72/:/2(y) + w’3l:l3(y) dbooo



In averaging theory [Sanders, Verhulst, Murdock 2007], obtaining

Ly R + ) 0 TRG 4 ()

from the original HOS system is called stroboscopic averaging.

High order averaging

There exists a formal (2)-periodic change of variables
y = K(,7) that transforms the original system

d - _ _
Y = w Yy, 7) +w2h(y,7) + w3y, 7) + -

into the autonomous system (3).

The change of variables y = K (¥, ) is not unique. Typical choices
@ K(y,0) = y: Stroboscopic averaging,

2 _ _

Oﬂ K(y,7)dr =y.



B-series

We will be dealing with B-series-like expansions of the form

w7|u|

B(a,y) =gy + Y oy O Ful),
ueT
where 7 is a set of indices, and for each u € 7,
@ o, € R are the coefficients of the B-series,
o F, : RP = RP is the elementary differential,
o |u| € ZT is the degree (or order) of u,

@ o(u) is some normalization factor.




B-series

We will be dealing with B-series-like expansions of the form

w7|u|

B(a,y) =gy + Y oy O Ful),
ueT
where 7 is a set of indices, and for each u € 7,
@ o, € R are the coefficients of the B-series,
o F, : RP = RP is the elementary differential,
o |u| € ZT is the degree (or order) of u,

@ o(u) is some normalization factor.

In standard B-series (Hairer and Wanner 1974), 7 is the set of
rooted trees, and o(u) is the symmetry number of the tree wu.



B-series

We will be dealing with B-series-like expansions of the form

—|ul
w
Bla,y) =gy + Y —— au Fuly),
= o(u)
where 7 is a set of indices, and for each u € 7,
@ o, € R are the coefficients of the B-series,
o F, : RP = RP is the elementary differential,

o |u| € ZT is the degree (or order) of u,

@ o(u) is some normalization factor.

In standard B-series (Hairer and Wanner 1974), 7 is the set of
rooted trees, and o(u) is the symmetry number of the tree wu.

We denote 7; = {u € 7 : |u| =}, so that
iy vy
j>1 u€T;



Assumption

For each pair (u,v) € T; x Ty, there exist wi, ..., wn € Tj1\ and
Al,.--s Am € R such that

8 m
(@Fu(y)) =)= Z A Fug ()

Let us denote F = {0} U{v1--um : v1,...,um €T}

Let R7 be the set of real functions F — R . Consider also
0o g={BeR¥ : By=0, By =0if u,veF/{0}}
0o G={aeR? : ay=1, ap = e, if u,v € F}.



Theorem

Under the assumption above, there exists a binary operation
R xRY — R
(,8) — ap
where for each u € F, Jv;, w; € F/{0} such that
m
(aB)u = Bpau + apfBu + Z a\/jﬁVVj’
j=1

with |vj| + |wj| = |u| satisfying that
° B(8,B(a,y)) = B(ap,y) ifa € g
o 5 B(a,y)-B(B,y) = B(Ba,y) if B € g.
y
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° B(S,B(a,y)) = B(af,y) ifa € G
o ZB(a,y)-B(S,y) = B(Sa,y) if B € g.

@ G has with that binary operation a group structure, and



Theorem

Under the assumption above, there exists a binary operation
R xRY — R
(,8) — ap
where for each u € F, Jv;, w; € F/{0} such that
m
(aﬁ)u — /B(Z)au aF a@ﬂu aF Z avjﬁWja
j=1

with |vj| + |wj| = |u| satisfying that
° B(S,B(a,y)) = B(af,y) ifa € G
o ZB(a,y)-B(S,y) = B(Sa,y) if B € g.

@ G has with that binary operation a group structure, and
@ g has a pre-Lie algebra structure, and also a Lie algebra
structure with [a, 8] :== a8 — SBa.
D



Averaging in terms of B-series

Consider a nonautonomous (27)-periodic ODE written in the form

di’T y = B(B(r),y), where B(r)€ g and B(r+27) = ().

Its solutions y(7) can be expanded as y(7) = B(«(7), y(0)) with
a(1) € G, where

diTB(Oé(T),y(O)) = B(3(7), B(a(7),¥(0))),  B((0),y(0)) = y(0).
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VueT, alrhu=(a(r)fr)y a0y =0,



Averaging in terms of B-series

Consider a nonautonomous (27)-periodic ODE written in the form
L
dr’ =
Its solutions y(7) can be expanded as y(7) = B(«(7), y(0)) with
a(1) € G, where

B(5(7),y), where (7)€ gand B(1 +2m) = 5(7).

diTB(Oé(T),y(O)) = B(3(7), B(a(7),¥(0))),  B((0),y(0)) = y(0).

That certainly holds if
d
VueT, ——a(r)u=(ar)B(7)), o(0)u=0,

or more compactly,
d
EQ(T) =a(7)8(7), «a(0)=1,

which uniquely determines a(7) € G in terms of (1) € g.



Averaging in terms of B-series coefficients

Given a (21)-periodic 3(7) € g, there exist 3 € g, a(7) € G, and a
(2)-periodic k(1) € G such that
a(r) = 3(r)n(r), -a(r)=a(r)B, &(0)=1.
Furthermore, it holds that
4 _
2 k() = K(r)B — B(r)n(r)
-




Averaging in terms of B-series coefficients

Given a (21)-periodic 3(7) € g, there exist 3 € g, a(7) € G, and a
(2)-periodic k(1) € G such that

T

d

= w(r) = K(r)B = BT)(r).

/%ﬁ dT—Z/% )y Bu; — B(T)y; K(T)w;)dT,

$)a = 7Bu— /0 ﬂ(U)ud0+; /0 (5(0 )y, By — B0}y () ;)
e’



Alternative algorithm

Given (1) € g,
e Find a(7) € G such that

d
7)) = a(1)B(7),  a(0) =1

@ For each u € 7, obtain &(7), as the polynomial of degree |u|
that interpolates (1), for 7 =27n, n € Z,

e Obtain j as

ﬁu:

Last two steps of the algorithm are equivalent to applying
numerical differentiation formulae with data a(7), for 7 = 27n,
nez.



Applications (work in progress)

@ Practical computation of several terms of the higher order
averaged equations (possible application beyond numerical
analysis)

@ Numerical methods that accurately approximate averaged
solutions (oscillatory solution can always be recovered locally):

© Integration of averaged equations obtained by combining
microintegration and numerical differentiation

@ B-series methods designed to fit the B-series expansion of the
solution of the averaged equations (splitting methods, RK-like
methods: - - )



Example (Fermi-Pasta-Ulam problem)

Variation H(y(t)) — H(y(0)) of the averaged Hamiltonian

Hi(y) +w 2Hs(y) + w *Hs(y).
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Example (Fermi-Pasta-Ulam problem)

Variation H(y(t)) — H(y(0)) of the averaged Hamiltonian

Hi(y) +w 2Hs(y) + w *Hs(y).
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Actually, it can be proven that formally, {H, H} = 0, so that H is a
formal invariant of the original problem. Hence,

I(p1, P2, q1, q2) := H(p1, p2, 91, 92) — H(p1, P2, 91, 92)

is a formal invariant of the original system.



