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Overview of the talk

• Integration schemes over the set R of smooth vector fields.

– Definitions related to general integration schemed over R

– Characterization of order conditions

– Conservation of first integrals, with results for B-series methods.

– Conjugate methods and modified first integrals

• Extension to integration schemes over a more general reference set R.

– Definitions and extension of previous results.

– Characterization of conservation of first integrals

– Conservation of first integrals and backward error analysis



Integrators

Definition 1 Given an open set U ⊂ R
d, an integrator ψf on U is a map

ψf : V ⊂ R
d+1 → U

(h, y) → ψf,h(y)

such that V is an open neighbourhood of {0} × U and ψf,0(y) ≡ y.

The purpose of such integrators is to compute approximations y(tn) = yn,

n = 1, 2, . . . of the solution y(t) of initial value problems of the form

ẏ = f(y), y(t0) = y0, (1)

by means of yn = ψf,hn
(yn−1), where hn = tn − tn−1.



Definition 2 An integration scheme over

R =
⋃

d≥1

{f : Uf ⊂ R
d → R

d : f smooth}

is a map ψ that associates a smooth integrator ψf : Vf ⊂ R
d+1 → Uf to each

f ∈ R. We write ψf (h, y) as ψf,h(y) for each (h, y) ∈ Uf .

Example 1 An ERK scheme with parameters bi, aij ∈ R gives an integrator

ψf,h(y) = y + h

s∑

i=1

bif(Yi),

Yi = y + h

i−1∑

j=1

aijf(Yj), j = 1, . . . , s,

to each f ∈ R.

Definition 3 The exact integration scheme φ over R is such that

φf,h(y(t)) = y(t+ h) for every solution y(t) of ẏ = f(y).



Definition 4 Given two integration schemes ψ and ψ̂ over R, ψ
(n)
≡ ψ̂ if

ψf,h(y) = ψ̂f,h(y) + O(hn+1) as h→ 0 for all f ∈ R.

The integration scheme ψ is consistent if ψ
(1)
≡ φ, and ψ is of order n if ψ

(n)
≡ φ.

Definition 5 Given a set G of integration schemes over R, the closure G of G

is the set of integration schemes over R

G = {ψ : ∀n ≥ 1, ∃ψ ∈ G such that ψ
(n)
≡ ψ}.

Assumption 1 G is a set of integration schemes over R satisfying that

1. G is closed under composition.

2. If ψ ∈ G, λ ∈ R, then ψ[λ] ∈ G, where ψ
[λ]
f,h(y) := ψf,λh(y).

3. For each ψ ∈ G, n ≥ 1, there exists ψ̂ ∈ G such that ψψ̂
(n)
≡ id and ψ̂ψ

(n)
≡ id.

Under such conditions, if there exists ψ ∈ G such that ψ
(1)
≡ φ, then φ ∈ G

(technique of Suzuki, Yoshida).



Theorem 1 Under Assumption 1, there exists a family of disjoint sets

{Tn : n ≥ 1} of functions u : G → R satisfying the following:

1. Let F = ∪n≥0Fn be the set of functions on G defined by

Fn = {u1 · · ·um : m ≥ 1, ui ∈ Tni
, i = 1, . . . ,m, n1 + · · · + nm = n− 1},

For each f ∈ R, there exists a family of linear operators {Xf (u) : u ∈ F}

acting on C∞(Uf ) such that, for arbitrary ψ ∈ G,

g(ψf,h(y)) = g(y) +
∑

n≥1

hn
∑

u∈Fn

u(ψ)Xf (u)[g](y), ∀g ∈ C∞(Uf ), ∀y ∈ Uf .

2. For an arbitrary finite subset T ′ ⊂ T and a map α : T ′ → R, there exists

ψ ∈ G such that u(ψ) = α(u) for each u ∈ T ′.

First statement implies that, given arbitrary ψ, ψ̂ ∈ G, n ≥ 1,

ψ
(n)
≡ ψ̂ ⇐⇒ u(ψ) = u(ψ̂) ∀u ∈ ∪n

k=1Tk. (2)

Second statement implies that such conditions are independent



Example: Let G be the set of ERK schemes over R. Then, its closure G

includes: implicit RK, multi-derivative RK, Rossembrock, elementary

differential RK, and any ψ that can be expanded as a B-series. Theorem 1

holds with a set T = ∪n≥1Tn of functions on G identified with the set of rooted

trees.

T1 = { } , T2 = { } , T3 =
{

,
}
, T4 =

{
, , ,

}
, . . .

For each ψ ∈ G,

(ψ) =

s∑

i

bi, (ψ) =
∑

i,j

biaij ,

(ψ) =
∑

i,j,k

biaijajk, (ψ) =
∑

i,j,k

biaijaik,



For each ψ ∈ G,

(ψ) =

s∑

i

bi, (ψ) =
∑

i,j

biaij ,

(ψ) =
∑

i,j,k

biaijajk, (ψ) =
∑

i,j,k

biaijaik,

And for f ∈ R, g ∈ C∞(Uf ),

g ◦ ψf,h = g +
∑

n≥1

hn
∑

u∈Fn

u(ψ)Xf (u)[g]

= g + h{ (ψ)} g′f + h2

(
{ (ψ)} g′f ′f + { (ψ)}2 1

2
g′′(f, f)

)

+h3

(
{ (ψ)} g′f ′f ′f + { (ψ)}

1

2
g′f ′′(f, f)

+ { (ψ)}{ (ψ)} g′′(f, f ′f) + { (ψ)}3 1

6
g′′′(f, f, f)

)
+ · · ·



For each ψ ∈ G,

(ψ) =

s∑

i

bi, (ψ) =
∑

i,j

biaij −
1

2

(
s∑

i

bi

)2

,

(ψ) =
∑

i,j,k

biaijajk −
1

6

(
s∑

i

bi

)3

, (ψ) =
∑

i,j,k

biaijaik −
1

3

(
s∑

i

bi

)3

,

And for f ∈ R, g ∈ C∞(Uf ),

g ◦ ψf,h = g +
∑

n≥1

hn
∑

u∈Fn

u(ψ)Xf (u)[g]

= g + h{ (ψ)}Lf [g] + h2

(
{ (ψ)} g′f ′f + { (ψ)}2 1

2
L2

f [g]

)

+h3

(
{ (ψ)} g′f ′f ′f + { (ψ)}

1

2
g′f ′′(f, f)

+ { (ψ)}{ (ψ)} g′′(f, f ′f) + { (ψ)}3 1

6
L3

f [g]

)
+ · · ·

where Lf [g] := g′f .



Proposition 1 There exists a unique graded algebra H =
⊕

n≥0 Hn of

functions on G satisfying that, Theorem 1 holds for {Tn : n ≥ 1} if and only if

Tn ⊂ Hn (n ≥ 1) and the algebra H is freely generated by T = ∪n≥1Tn.

Theorem 2 If in addition to Assumption 1, each Hn is finite dimensional,

1. Given an arbitrary integration scheme ψ over R, if ∃α : F → R such that,

for each f ∈ R, each g ∈ C∞(Uf ), and each y ∈ Uf ,

g(ψf,h(y)) = g(y) +
∑

h≥1

hn
∑

u∈Fn

α(u)Xf (u)[g](y),

then ψ ∈ G.

2. For each g1, g2 ∈ C∞(Uf ),

Xf (u)[g1g2] =
∑

vw=u

Xf (v)[g1]X(w)[g2]. (3)

according to (3) Xf (u), u ∈ T , are first order differential operators.



Characterization of conservation of first integrals up to order n

Given S ⊂ {(f, I) : f ∈ R, I ∈ C∞(Uf ), I ′(y)f(y) ≡ 0}, there exists a unique

graded ideal I =
⊕

n≥1 In of H such that, given ψ ∈ G,

I(ψf,h(y)) = I(y) + O(hn+1) as h→ 0 (4)

for all (f, I) ∈ S if and only if, u(ψ) = 0 for all u ∈
⊕n

k=1 Ik .

Let Ĝ = {ψ ∈ G : u(ψ) = 0 ∀u ∈ I}, then Ĝ satisfies Assumption 1,
¯̂
G = Ĝ and

Ĥ ' H/I for the algebra Ĥ given by Proposition 1 for Ĝ ( thus, H ' Ĥ ⊕ I).

Example: Let S = {(f, I) : f ∈ R, I ′(y)f(y) ≡ 0, I(y) quadratic}, and G

the set of ERK schemes over R. then, I is the ideal of H generated by the set

of functions {u1 ◦ u2 + u2 ◦ u1 − u1u2 : u1, u2 ∈ T }. Here, Ĝ is the set of

symplectic B-series integration schemes. If T̂ = ∪n≥1T̂n freely generates Ĥ,

then #T̂n = number of free trees with n vertices.



Some results on conservation of first integrals of B-series methods

Consider the set G of ERK schemes (G are thus B-series integration schemes).

SQ = {(f, I) : f ∈ R, I ′(y)f(y) ≡ 0, I(y) quadratic} −→ IQ,

SC = {(f, I) : f ∈ R, I ′(y)f(y) ≡ 0, I(y) cubic} −→ IC ,

SA = {(f, I) : f ∈ R, I ′(y)f(y) ≡ 0, I(y) arbitrary} −→ IA,

SH = {(f,H) : f ∈ R, Hamiltonian f(y) = J−1∇H(y)} −→ IH .

Then it holds the following. Let H• be the subalgebra of H generated by the

consistency function ∈ T1.

• [Chartier, Faou, M. 2005]: IQ ⊕ IH ⊕H• = H. Thus, consistent ψ ∈ G

that preserve quadratic invariants and Hamiltonian functions up to order

n, are methods of order n.

• [Ch., F., M. 2005]+[M. 2003]: IC = IA, and IA ⊕H• = H. Consistency

and preservation of cubic invariants up to order n imply that ψ
(n)
≡ φ.



Conjugate schemes and modified first integrals

Assume that ψ, ψ̂, χ ∈ G are such that ψ ◦ χ = χ ◦ ψ̂ (ψ and ψ̂ are conjugate).

If for a f ∈ R, and I ∈ C∞(Uf ), I(ψ̂f,h(y)) ≡ I(y) + O(hn+1), then,

Ĩh(ψf,h(y)) ≡ Ĩh(y) + O(hn+1),

where

Ĩh(y) := I(χf,h(y)) =
∑

u∈F

h|u|u(χ)Xf (u)[I](y).

More generally: Given ψ ∈ G, ∃Ĩh(y) of the form

Ĩh(y) :=
∑

u∈F

h|u|α(u)Xf (u)[I](y)

such that Ĩh(ψf,h(y)) ≡ Ĩh(y) + O(hn+1)? If ψ is conjugate to a scheme ψ̂ ∈ G

such that I(ψ̂f,h(y)) ≡ I(y) + O(hn+1), yes. And otherwise? We have answered

that for some particular cases of interest.



Let R = {f : f : Uf ⊂ R
d → R

d smooth , d ≥ 1}, and let G be the set of ERK

schemes.

Theorem 3 [Faou, Chartier, M. 2005] Given ψ ∈ G, f ∈ R, I(y) quadratic

such that I ′(y)f(y) ≡ 0. Assume that ∃Ĩh(y) of the form

Ĩh(y) :=
∑

u∈F

h|u|α(u)Xf (u)[I](y)

such that Ĩh(ψf,h(y)) ≡ Ĩh(y) + O(hn+1). Then ψ is conjugate to a scheme

ψ̂ ∈ G such that I(ψ̂f,h(y)) ≡ I(y) + O(hn+1).

Theorem 4 [Faou, Chartier, M. 2005] Given ψ ∈ G, f ∈ R, f = J−1∇H

Hamiltonian. Assume that ∃H̃h(y) of the form

H̃h(y) :=
∑

u∈F

h|u|α(u)Xf (u)[H](y)

such that H̃h(ψf,h(y)) ≡ H̃h(y) + O(hn+1). Then ψ is conjugate to a scheme

ψ̂ ∈ G such that H(ψ̂f,h(y)) ≡ H(y) + O(hn+1).

Both are true also when G is the set of partitioned RK methods (G =P-series).



A more general setting

Assume that we want to integrate numerically

ẏ = f1(y) + f2(y), y(t0) = y0, (5)

with smooth maps f [i] : U ⊂ R
d → R

d (i = 1, 2). It then seems reasonable to

modify Definition 2 by considering the reference set R as a subset

R ⊂ {f = (f1, f2) : fi : Uf ⊂ R
d → R

d smooth (i = 1, 2), d ≥ 1}.

Definition 6 An integration scheme over R is a map ψ that associates a

smooth integrator ψf : Vf ⊂ R
d+1 → Uf to each f ∈ R.

Previous definitions make sense in this more general setting: Exact integration

scheme φ (giving exact solution of (5)), ψ
(n)
≡ ψ̂, closure G of a set G of

integration schemes over R, and under Assumption 1, the graded algebra

H =
⊕

n≥0 Hn. Theorems 1 and 2 and Proposition 1 still hold. Actually, they

also hold for an arbitrary reference set R of objects such that, each f ∈ R has

assigned an open set Uf ⊂ R
d.



Definition 7 Given α ∈ H∗ (i.e. a linear form α : H → R, determined by the

values α(u) for u ∈ F , where F is a basis of H), we consider for each f ∈ R

Sf (α) =
∑

u∈F

h|u|α(u)Xf (u).

where, given u ∈ H, we denote |u| = n if u ∈ Hn.

For each ψ ∈ G, consider Ψ ∈ H∗ given by Ψ(u) := u(ψ). Then, the

composition g ◦ ψf,h can be expanded as Sf (Ψ)[g].

Theorem 5 For each u ∈ H, there exist v1, . . . , vk, w1, . . . , wk ∈ H such that

|vi| + |wi| = |u| for all i, and

u(ψ ◦ ψ̂) =
k∑

i=1

vi(ψ̂)wi(ψ), ∀ψ, ψ̂ ∈ G.

Furthermore, given α, β ∈ H∗, for each f ∈ R

Sf (α)Sf (β) = Sf (αβ), where αβ(u) =

k∑

i=1

α(vi)β(wi).

This gives an algebra structure to H∗



Characterization of conservation of first integrals up to order n

Theorem 6 Let G be a set of integration schemes over an arbitrary reference

set R, which satisfies the assumptions of Theorem 2. Given

S ⊂ {(f, I) : f ∈ R, I ∈ C∞(Uf ), I(ψf,h(y)) ≡ I(y) + O(h2) ∀ψ ∈ G},

there exists a unique graded ideal I =
⊕

n≥1 In of H such that, given ψ ∈ G,

I(ψf,h(y)) = I(y) + O(hn+1) as h→ 0 (6)

for all (f, I) ∈ S if and only if, u(ψ) = 0 for all u ∈
⊕n

k=1 Ik .

How to construct I? Consider

J = {α ∈
⊕

n≥0

H∗
n : Sf (α)[I] = 0 ∀(f, I) ∈ S}

(J is a left-sided ideal of the algebra H∗), and

J⊥ = {u ∈ H : α(u) = 0 ∀α ∈ J },

then I is the ideal generated by J ⊥.



Let R = {f = (f1, f2) : fi : Uf ⊂ R
d → R

d smooth (i = 1, 2), d ≥ 1}, and G

the set of additive RK schemes (essentially PRK), so that T can be identified

with the set of rooted trees with vertices in two colours.

SC = {(f, I) : I ′(y)fi(y) ≡ 0, i = 1, 2, I(y) cubic} −→ IC ,

SA = {(f, I) : I ′(y)fi(y) ≡ 0, i = 1, 2, I(y) arbitrary} −→ IA,

In [Chartier, M. 2005, in preparation], we identify the graded ideals IC and IA.

Such ideals already appear in the results in [M. 2003] which imply that

IC = IA and

Theorem 7 [Chartier, M. 2005] Given ψ ∈ G, if for all (f, I) ∈ SC we have

that I(ψf,h(y)) = I(y) + O(hn+1), then, there exists a1, . . . , am, b1, . . . , bm ∈ R

such that

ψf,h = φf2,bmh ◦ φf1,amh ◦ · · · ◦ φf2,b1h ◦ φf1,a1h + O(hn+1).



Characterization of conservation of first integrals and BEA

Proposition 2 Let G be a set of integration schemes over an arbitrary

reference set R, which satisfies the assumptions of Theorem 2, and let

S ⊂ {(f, I) : f ∈ R, I ∈ C∞(Uf ), I(ψf,h(y)) ≡ I(y) + O(h2) ∀ψ ∈ G}.

Given ψ ∈ G, f ∈ R, ψf,h is formally the h-flow of the modified ODE

ẏ =
∑

u∈T

h|u|−1β(u)Ff (u)(y), (7)

where Ff (u) = Xf (u)[idUf
] for all u ∈ T , and β(u) = log Ψ(u) (Ψ(u) = u(ψ)),

for all u ∈ H, and it holds that β(u) = 0 ∀u ∈ F\T .

Furthermore, let I =
⊕

n≥0 In be given by Theorem 6,

u(ψ) = 0 ∀u ∈

n⊕

k=1

Ik ⇐⇒ β(u) = 0 ∀u ∈

n⊕

k=1

Ik. (8)



Some results on conservation of first integrals of B-series methods

Consider the set G of ERK schemes (G are thus B-series integration schemes).

SQ = {(f, I) : f ∈ R, I ′(y)f(y) ≡ 0, I(y) quadratic} −→ IQ,

SC = {(f, I) : f ∈ R, I ′(y)f(y) ≡ 0, I(y) cubic} −→ IC ,

SA = {(f, I) : f ∈ R, I ′(y)f(y) ≡ 0, I(y) arbitrary} −→ IA,

SH = {(f,H) : f ∈ R, Hamiltonian f(y) = J−1∇H(y)} −→ IH .

Then it holds the following. Let H• be the subalgebra of H generated by the

consistency function ∈ T1.

• [Chartier, Faou, M. 2005]: IQ ⊕ IH ⊕H• = H. Thus, consistent ψ ∈ G

that preserve quadratic invariants and Hamiltonian functions up to order

n, are methods of order n.

• [Ch., F., M. 2005]+[M. 2003]: IC = IA, and IA ⊕H• = H. Consistency

and preservation of cubic invariants up to order n imply that ψ
(n)
≡ φ.



Related result:

Theorem 8 [Iserles,Quispel,Tse (2005)] Given a consistent ψ ∈ G,

det

(
∂

∂y
ψf,h(y)

)
≡ 1 + O(hn+1) as h→ 0 (9)

for arbitrary divergence free f ∈ R, if and only if ψ
(n)
≡ φ.

Alternative proof [Chartier & M. 2005]: We show that (9) implies that

u(ψ) = 0 ∀u ∈

n⊕

k=1

IC
k .



Let R = {f = (f1, f2) : fi : Uf ⊂ R
d → R

d smooth (i = 1, 2), d ≥ 1}, and G

the set of additive RK schemes (essentially PRK), so that T can be identified

with the set of rooted trees with vertices in two colours.

SC = {(f, I) : I ′(y)fi(y) ≡ 0, i = 1, 2, I(y) cubic} −→ IC ,

SA = {(f, I) : I ′(y)fi(y) ≡ 0, i = 1, 2, I(y) arbitrary} −→ IA,

In [Chartier, M. 2005, in preparation], we identify the graded ideals IC and IA.

Such ideals already appear in the results in [M. 2003] which imply that

IC = IA and

Theorem 9 [Chartier, M. 2005] Given ψ ∈ G, if for all (f, I) ∈ SC we have

that I(ψf,h(y)) = I(y) + O(hn+1), then, there exists a1, . . . , am, b1, . . . , bm ∈ R

such that

ψf,h = φf2,bmh ◦ φf1,amh ◦ · · · ◦ φf2,b1h ◦ φf1,a1h + O(hn+1).



Related result:

Theorem 10 [Chartier, M. 2005] Given ψ ∈ G, if for all f = (f1, f2) such that

f1 and f2 are divergence-free, we have that

det

(
∂

∂y
ψf,h(y)

)
= 1 + O(hn+1),

then, there exists a1, . . . , am, b1, . . . , bm ∈ R such that

ψf,h = φf2,bmh ◦ φf1,amh ◦ · · · ◦ φf2,b1h ◦ φf1,a1h + O(hn+1).


