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Symplectic methods for general Hamiltonian systems

Although there are explicit symplectic methods for Hamiltonian
systems with separable Hamiltonian function

H(p, q) = T (p) + V (q),

integration schemes that are symplectic for all Hamiltonian systems

y ′ = J−1∇H(y)T , J =

(
0 I
−I 0

)
with arbitrary Hamiltonian function H(y), need to be implicit.



Hamilton-Jacobi equation

If St : R2d → R is a one-parameter family of functions (the
generating functions) such that

∂

∂t
St(y) = H

(
y +

1

2
J−1∇St(y)

)
then, for any solution y(t) of y ′ = J−1∇H(y)T , it holds that

y(t + h) = y(t) + J−1∇Sh

(
1

2
(y(t) + y(t + h))

)
.

Our aim is to explore symplectic methods based on some explicit
approximation of Sh(y).

Example: Implicit midpoint rule, Sh(y) ≈ hH(y).



The methods of Miesbach and Persch

One step y∗ = ψh(y) of the method is implicitly defined by

y∗ = y + J−1∇Sh(
1
2(y + y∗)),

with the generating function Sh(z) given as

Sh(z) = h
s∑

i=1

biH(Yi ),

where for i = 1, . . . , s,

Yi = z + hJ−1
s∑

j=1

αij∇H(Yi )
T ,

with appropriately chosen bi , αij ∈ R.



Symplectic RK methods

One step y∗ = ψh(y) of the method can be written as

y∗ = y + J−1∇Sh(
1
2(y + y∗)),

with the generating function Sh(z) given as

Sh(z) = h
s∑

i=1

biH(Yi ) +
h2

2

s∑
i ,j=1

biαij∇H(Yi )J
−1∇H(Yj)

T ,

where for i = 1, . . . , s,

Yi = z + hJ−1
s∑

j=1

αij∇H(Yi )
T ,

and biαij + bjαji = 0 for all i , j (aij = αij + bj/2).



The new family of symplectic integrators

One step y∗ = ψh(y) of the method is implicitly defined by

y∗ = y + J−1∇Sh(
1
2(y + y∗)),

with the generating function Sh(z) given as

Sh(z) = h
s∑

i=1

biH(Yi ) +
h2

2

s∑
i ,j=1

βij ∇H(Yi )J
−1∇H(Yj)

T ,

where for i = 1, . . . , s,

Yi = z + hJ−1
s∑

j=1

αij∇H(Yi )
T .

We assume without loss of generality that βij = −βji for all i , j .



Methods of explicit type

If the matrix (αij) is lower triangular, then Sh(z) is explicitly
defined, and the definition of one step y∗ = ψh(y) of the method

y∗ = y + J−1∇Sh(
1
2(y + y∗)), (1)

is only implicit in y∗. The Jacobian of that system is

I − 1

2
J−1∇2Sh(y) = I − h

2
J−1∇2H(y) +O(h3)

(if the method is at least of order 2), and its inverse(
I − 1

2
J−1∇2Sh(y)

)−1

= I +
h

2
J−1∇2H(y) +

h2

4
(J−1∇2H(y))2

+O(h3).

This allows to solve (??) very efficiently, provided that a good
initial guess for y∗ is available.



Efficient computation of the gradient of the generating
function for methods of explicit type

∇Sh(z) = h
s∑

i=1

(
bi∇H(Yi )− h∇2H(Yi )vi

)
,

For i = 1, . . . , s,

Yi = z + hJ−1
∑
j<i

αij∇H(Yj),

For i = s . . . , 1,

vi = J−1
s∑

j=1

γij∇H(Yj)− hJ−1
∑
j>i

αji∇2H(Yj)vj ,

where γij = βij + bjαji for all i , j .



It is required to compute

∇2H(y) · v in addition to ∇H(y), for different y , v ∈ R2d

Observation (from the theory of AD):

Cost(∇H(y),∇2H(y) · v) ≈ k Cost(∇H(y))

with small k > 1 (often k = 1 + ε with small ε > 0).



Linear stability function

The method applied to the linear test equation y ′ = λy gives
y∗ = R(hλ)y , where R(z) (the linear stability function) is

R(z) =
2 + Q(z)

2− Q(z)
,

where

Q(z) = z
(
bT − zeT (I + zAT )−1Γ

)
(I − zA)−1e,

with eT = (1, . . . , 1) and

bT = (b1, . . . , bs), A = (αij), Γ = (γij) = (βij + bjαji )



Linear stability function for methods of explicit type

If the method is of order r , then

R(z) =
2 + Q(z)

2− Q(z)
= ez +O(z r+1) as z → 0,

or equivalently,

Q(z) = 2 tanh(z/2) +O(z r+1) as z → 0.

Order barriers for methods of explicit type:

For methods of explicit type, Q(z) is a polynomial of degree
d ≤ 2s. Whence the method has order r ≤ 2s.

For symmetric methods of explicit type, Q(z) is an even
polynomial of degree d ≤ (4s + 2)/3, and thus the method is
of order r ≤ (4s + 2)/3.



Symmetric methods

A method is symmetric (or self-adjoint) if

ψ−1
h = ψ−h.

Symmetry is equivalent to

S−h(z) ≡ −Sh(z).

If there exists a permutation π of the set of indices {1, . . . , s} such
that π−1 = π, and

bπ(i) = bi , απ(i),π(j) = −αi ,j βπ(i),π(j) = −βi ,j ,

for all i , j = 1, . . . , s, then the method is symmetric.



The order conditions

One order condition per non-superfluous free tree, linear in bi , βij .
For order r ≥ 3,

s∑
i=1

bi = 1,
s∑

i=1

(
bi c

2
i − 2cidi

)
=

1

3
,

where for each i = 1, . . . , s,

ci =
1

2
+

s∑
j=1

αij , di =
s∑

j=1

(βij + bjαji ),

It is of order r ≥ 4 if in addition
s∑

i=1

(
bi c

3
i − 3c2

i di

)
=

1

4

(automatically fulfilled for symmetric methods of order r ≥ 3).



The order conditions

The method is of order 5, if in addition,

s∑
i=1

(
bi c

4
i − 4c3

i di

)
=

1

5
,

s∑
i=1

(
bi c

2
i ei − c2

i fi − 2cieidi

)
=

1

10
,

s∑
i=1

(
bi e

2
i − 2ei fi

)
=

1

20
,

where for each i = 1, . . . , s,

ei =
1

4
+

s∑
j=1

αij cj , fi =
s∑

j=1

(βij + bjαji )cj −
s∑

j=1

αji dj .

For symmetric methods, these conditions guarantee order r ≥ 6.



A family of symmetric sixth order methods of explicit type

We have constructed a two-parameter family of symmetric
methods of explicit type with s = 4, such that

It is of order six,

A initial guess ỹ∗ for y∗ = ψh(y) can be computed from the
preceding step such that

ỹ∗ − y∗ = O(h5),

A initial guess ỹ∗ for y∗ = ψh(y) can be computed from the
preceding two steps such that

ỹ∗ − y∗ = O(h6).



Work in progress

Fix some criteria to choose values for the two free parameters
of our family of 6th order symmetric methods of explicit type,
and find the optimal values.

Construct other optimized 6th and 8th order symmetric
methods of explicit type with higher number of stages (s > 4).

Compare the efficiency of our schemes with respect to

Gauss methods,
Composition methods based on the implicit midpoint rule.


