A new class of symplectic integration schemes based on generating functions

Ander Murua

Castelló, September 2006

Symplectic methods for general Hamiltonian systems

Although there are explicit symplectic methods for Hamiltonian systems with separable Hamiltonian function

$$
H(p, q)=T(p)+V(q)
$$

integration schemes that are symplectic for all Hamiltonian systems

$$
y^{\prime}=J^{-1} \nabla H(y)^{T}, \quad J=\left(\begin{array}{cc}
0 & l \\
-I & 0
\end{array}\right)
$$

with arbitrary Hamiltonian function $H(y)$, need to be implicit.

Hamilton-Jacobi equation

If $S_{t}: \mathbb{R}^{2 d} \rightarrow \mathbb{R}$ is a one-parameter family of functions (the generating functions) such that

$$
\frac{\partial}{\partial t} S_{t}(y)=H\left(y+\frac{1}{2} J^{-1} \nabla S_{t}(y)\right)
$$

then, for any solution $y(t)$ of $y^{\prime}=J^{-1} \nabla H(y)^{T}$, it holds that

$$
y(t+h)=y(t)+J^{-1} \nabla S_{h}\left(\frac{1}{2}(y(t)+y(t+h))\right) .
$$

Our aim is to explore symplectic methods based on some explicit approximation of $S_{h}(y)$.

Example: Implicit midpoint rule, $S_{h}(y) \approx h H(y)$.

The methods of Miesbach and Persch

One step $y^{*}=\psi_{h}(y)$ of the method is implicitly defined by

$$
y^{*}=y+J^{-1} \nabla S_{h}\left(\frac{1}{2}\left(y+y^{*}\right)\right)
$$

with the generating function $S_{h}(z)$ given as

$$
S_{h}(z)=h \sum_{i=1}^{s} b_{i} H\left(Y_{i}\right)
$$

where for $i=1, \ldots, s$,

$$
Y_{i}=z+h J^{-1} \sum_{j=1}^{s} \alpha_{i j} \nabla H\left(Y_{i}\right)^{T}
$$

with appropriately chosen $b_{i}, \alpha_{i j} \in \mathbb{R}$.

Symplectic RK methods

One step $y^{*}=\psi_{h}(y)$ of the method can be written as

$$
y^{*}=y+J^{-1} \nabla S_{h}\left(\frac{1}{2}\left(y+y^{*}\right)\right)
$$

with the generating function $S_{h}(z)$ given as

$$
S_{h}(z)=h \sum_{i=1}^{s} b_{i} H\left(Y_{i}\right)+\frac{h^{2}}{2} \sum_{i, j=1}^{s} b_{i} \alpha_{i j} \nabla H\left(Y_{i}\right) J^{-1} \nabla H\left(Y_{j}\right)^{T},
$$

where for $i=1, \ldots, s$,

$$
Y_{i}=z+h J^{-1} \sum_{j=1}^{s} \alpha_{i j} \nabla H\left(Y_{i}\right)^{T}
$$

and $b_{i} \alpha_{i j}+b_{j} \alpha_{j i}=0$ for all $i, j \quad\left(a_{i j}=\alpha_{i j}+b_{j} / 2\right)$.

The new family of symplectic integrators

One step $y^{*}=\psi_{h}(y)$ of the method is implicitly defined by

$$
y^{*}=y+J^{-1} \nabla S_{h}\left(\frac{1}{2}\left(y+y^{*}\right)\right)
$$

with the generating function $S_{h}(z)$ given as

$$
S_{h}(z)=h \sum_{i=1}^{s} b_{i} H\left(Y_{i}\right)+\frac{h^{2}}{2} \sum_{i, j=1}^{s} \beta_{i j} \nabla H\left(Y_{i}\right) J^{-1} \nabla H\left(Y_{j}\right)^{T},
$$

where for $i=1, \ldots, s$,

$$
Y_{i}=z+h J^{-1} \sum_{j=1}^{s} \alpha_{i j} \nabla H\left(Y_{i}\right)^{T}
$$

We assume without loss of generality that $\beta_{i j}=-\beta_{j i}$ for all i, j.

Methods of explicit type

If the matrix $\left(\alpha_{i j}\right)$ is lower triangular, then $S_{h}(z)$ is explicitly defined, and the definition of one step $y^{*}=\psi_{h}(y)$ of the method

$$
\begin{equation*}
y^{*}=y+J^{-1} \nabla S_{h}\left(\frac{1}{2}\left(y+y^{*}\right)\right) \tag{1}
\end{equation*}
$$

is only implicit in y^{*}. The Jacobian of that system is

$$
I-\frac{1}{2} J^{-1} \nabla^{2} S_{h}(y)=I-\frac{h}{2} J^{-1} \nabla^{2} H(y)+\mathcal{O}\left(h^{3}\right)
$$

(if the method is at least of order 2), and its inverse

$$
\begin{aligned}
\left(I-\frac{1}{2} J^{-1} \nabla^{2} S_{h}(y)\right)^{-1}= & I+\frac{h}{2} J^{-1} \nabla^{2} H(y)+\frac{h^{2}}{4}\left(J^{-1} \nabla^{2} H(y)\right)^{2} \\
& +\mathcal{O}\left(h^{3}\right)
\end{aligned}
$$

This allows to solve (??) very efficiently, provided that a good initial guess for y^{*} is available.

Efficient computation of the gradient of the generating function for methods of explicit type

$$
\nabla S_{h}(z)=h \sum_{i=1}^{s}\left(b_{i} \nabla H\left(Y_{i}\right)-h \nabla^{2} H\left(Y_{i}\right) v_{i}\right)
$$

For $i=1, \ldots, s$,

$$
Y_{i}=z+h J^{-1} \sum_{j<i} \alpha_{i j} \nabla H\left(Y_{j}\right)
$$

For $i=s \ldots, 1$,

$$
v_{i}=J^{-1} \sum_{j=1}^{s} \gamma_{i j} \nabla H\left(Y_{j}\right)-h J^{-1} \sum_{j>i} \alpha_{j i} \nabla^{2} H\left(Y_{j}\right) v_{j}
$$

where $\gamma_{i j}=\beta_{i j}+b_{j} \alpha_{j i}$ for all i, j.

It is required to compute

$$
\nabla^{2} H(y) \cdot v \text { in addition to } \nabla H(y) \text {, for different } y, v \in \mathbb{R}^{2 d}
$$

Observation (from the theory of AD):

$$
\operatorname{Cost}\left(\nabla H(y), \nabla^{2} H(y) \cdot v\right) \approx k \operatorname{Cost}(\nabla H(y))
$$

with small $k>1$ (often $k=1+\varepsilon$ with small $\varepsilon>0$).

Linear stability function

The method applied to the linear test equation $y^{\prime}=\lambda y$ gives $y^{*}=R(h \lambda) y$, where $R(z)$ (the linear stability function) is

$$
R(z)=\frac{2+Q(z)}{2-Q(z)}
$$

where

$$
Q(z)=z\left(b^{T}-z e^{T}\left(I+z A^{T}\right)^{-1} \Gamma\right)(I-z A)^{-1} e
$$

with $e^{T}=(1, \ldots, 1)$ and

$$
b^{T}=\left(b_{1}, \ldots, b_{s}\right), \quad A=\left(\alpha_{i j}\right), \quad \Gamma=\left(\gamma_{i j}\right)=\left(\beta_{i j}+b_{j} \alpha_{j i}\right)
$$

Linear stability function for methods of explicit type

If the method is of order r, then

$$
R(z)=\frac{2+Q(z)}{2-Q(z)}=e^{z}+\mathcal{O}\left(z^{r+1}\right) \quad \text { as } z \rightarrow 0
$$

or equivalently,

$$
Q(z)=2 \tanh (z / 2)+\mathcal{O}\left(z^{r+1}\right) \quad \text { as } z \rightarrow 0 .
$$

Order barriers for methods of explicit type:

- For methods of explicit type, $Q(z)$ is a polynomial of degree $d \leq 2 s$. Whence the method has order $r \leq 2 s$.
- For symmetric methods of explicit type, $Q(z)$ is an even polynomial of degree $d \leq(4 s+2) / 3$, and thus the method is of order $r \leq(4 s+2) / 3$.

Symmetric methods

A method is symmetric (or self-adjoint) if

$$
\psi_{h}^{-1}=\psi_{-h}
$$

Symmetry is equivalent to

$$
S_{-h}(z) \equiv-S_{h}(z)
$$

If there exists a permutation π of the set of indices $\{1, \ldots, s\}$ such that $\pi^{-1}=\pi$, and

$$
b_{\pi(i)}=b_{i}, \quad \alpha_{\pi(i), \pi(j)}=-\alpha_{i, j} \quad \beta_{\pi(i), \pi(j)}=-\beta_{i, j}
$$

for all $i, j=1, \ldots, s$, then the method is symmetric.

The order conditions
One order condition per non-superfluous free tree, linear in $b_{i}, \beta_{i j}$. For order $r \geq 3$,

$$
\sum_{i=1}^{s} b_{i}=1, \quad \sum_{i=1}^{s}\left(b_{i} c_{i}^{2}-2 c_{i} d_{i}\right)=\frac{1}{3}
$$

where for each $i=1, \ldots, s$,

$$
c_{i}=\frac{1}{2}+\sum_{j=1}^{s} \alpha_{i j}, \quad d_{i}=\sum_{j=1}^{s}\left(\beta_{i j}+b_{j} \alpha_{j i}\right)
$$

It is of order $r \geq 4$ if in addition

$$
\sum_{i=1}^{s}\left(b_{i} c_{i}^{3}-3 c_{i}^{2} d_{i}\right)=\frac{1}{4}
$$

(automatically fulfilled for symmetric methods of order $r \geq 3$).

The order conditions
The method is of order 5 , if in addition,

$$
\begin{aligned}
\sum_{i=1}^{s}\left(b_{i} c_{i}^{4}-4 c_{i}^{3} d_{i}\right) & =\frac{1}{5} \\
\sum_{i=1}^{s}\left(b_{i} c_{i}^{2} e_{i}-c_{i}^{2} f_{i}-2 c_{i} e_{i} d_{i}\right) & =\frac{1}{10}, \\
\sum_{i=1}^{s}\left(b_{i} e_{i}^{2}-2 e_{i} f_{i}\right) & =\frac{1}{20},
\end{aligned}
$$

where for each $i=1, \ldots, s$,

$$
e_{i}=\frac{1}{4}+\sum_{j=1}^{s} \alpha_{i j} c_{j}, \quad f_{i}=\sum_{j=1}^{s}\left(\beta_{i j}+b_{j} \alpha_{j i}\right) c_{j}-\sum_{j=1}^{s} \alpha_{j i} d_{j} .
$$

For symmetric methods, these conditions guarantee order $r \geqq 6$.

A family of symmetric sixth order methods of explicit type

We have constructed a two-parameter family of symmetric methods of explicit type with $s=4$, such that

- It is of order six,
- A initial guess \widetilde{y}^{*} for $y^{*}=\psi_{h}(y)$ can be computed from the preceding step such that

$$
\widetilde{y}^{*}-y^{*}=\mathcal{O}\left(h^{5}\right)
$$

- A initial guess \widetilde{y}^{*} for $y^{*}=\psi_{h}(y)$ can be computed from the preceding two steps such that

$$
\widetilde{y}^{*}-y^{*}=\mathcal{O}\left(h^{6}\right)
$$

Work in progress

- Fix some criteria to choose values for the two free parameters of our family of 6th order symmetric methods of explicit type, and find the optimal values.
- Construct other optimized 6th and 8th order symmetric methods of explicit type with higher number of stages $(s>4)$.
- Compare the efficiency of our schemes with respect to
- Gauss methods,
- Composition methods based on the implicit midpoint rule.

