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Abstract

We present a new family of one-step symplectic integraticimemes
for Hamiltonian systems of the general fojm= J-'VH(y)?. Such a
class of methods contains as particular cases the methddesbach and
Pesch [13], and also the family of symplectic Runge-Kuttéahods. As in
the case of the methods introduced in [13], the new intemnatiethods are
constructed by defining a generating function, which autarally deter-
mines a symplectic map. The resulting methods are impéoit, require the
evaluation of the gradient of the Hamiltonian function adlae the Hessian
times a vector.

1 Introduction

We present a new class of one-step symplectic integrattoenses for Hamiltonian
systems of the general form

y=J'VH(y), J= < _OI é ) 6y

(we assume thall : ¢/ ¢ R?¢ — R is a smooth function defined in an open &et
of R2%). It is well known [2], [11], [7] that there exist explicit syplectic methods
for Hamiltonian systems (1) with Hamiltonian function oétform

H(p,q) =T(p) +V(q). 2

However, all known symplectic schemes that can be appliathyagyeneral Hamil-
tonian system of the form (1) are implicit. Even for systemthwiamiltonian of



the form (2), implicit methods will be required if a sympliectvariable time-step
strategy [9],[15] (see also [7]) is needed (for instancegmvintegrating numer-
ically the solution of an initial value problem for which thiene scale changes
significantly along the solution).

The integration schemes we present are implicit methodsatigasymplectic
when applied to a Hamiltonian system of the form (1), and caimberpreted as
a generalization of the implicit midpoint rule. Actualljze schemes we introduce
can be used to integrate numerically any system of ordingiigreintial equations
of the form

y=/fy), f:UCR?-R". ®3)

Integrating with our new schemes an ODE system (3) that iohtie form (1)
may be of particular interest if (3) has one or more quadiatiariants. In fact,
the family of integrators we introduce in the present wolikwvathin the class of
symplectic B-series methods, which can be characteriz8dsasies methods that
conserve all the quadratic invariants of the original syste

Our new family of methods contains as particular cases thpkctic Runge-
Kutta methods and the methods of Miesbach and Pesch [13]n sicase of
the methods introduced in [13], the new integration metherésconstructed for
the Hamiltonian system (1) by defining a generating fun¢tiamich automatically
determines a symplectic map. The resulting methods arédity@nd require the
evaluation of the gradient of the Hamiltonian function a$l &e the Hessian times
a vector. It is worth noting that, as it is standard in autemndifferentiation, the
computational effort needed to evaluate the gradiéAt(y) of a scalar function in
several variables together with the functifiiy) itself, is a small factor (depending
on the functionH, typically between one and two) times the cost of evaluating
H (y) alone. Similarly occurs with the evaluation W% H (y)v (v a given vector)
together withV H (y) (see [17]) (observe th&f? H (y)v actually is the gradient of
the scalar functio’’vV H (y)v with v a constant vector).

Consider a one-parameter family of functiofi§, ») : U, ¢ R?>? — R that
satisfies the Hamilton-Jacobi equation

S(z,h) =H (z + %J_IVS(Z, h)) 4)

with initial condition S(y, 0) = 0. Hereafter,S(z, h) denotes the partial derivative
of S(z, h) with respect tah, while VS(z, h) denotes the gradient &f(z, k) with
respect to:. Then, for any solutiony(¢) of (1), it holds that

y(t+h) =y(t) + J7VS(5(y(t) +y(t +h)), h).
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In other words,S(z, h) is a generating function of the (symplecticiflow of (1)
(denoted byS3(z, k) in [7]). In [13], a family of symplectic integrators is intro
duced by considering explicit approximations of the getegafunction S(z, h)
defined in terms of values of the Hamiltonian functiGhand its gradientV H.
A slight generalization of the family of generating functsothat they consider is
given as

i=1
where fori = 1,...,s,

Yi=z+hJ 'Y oy VH(Y)),
j=1

and the real parametebs, o;; are appropriately chosen so th#tz, ») is an ap-
proximate solution of the Hamilton-Jacobi equation (4).u3hone step* =
¥y (y) of the method is implicitly defined as

Yy =y+J'VS (3(y+y*),h). (6)

High order symplectic integrator based on generating fanstwere also consid-
ered in [5],[6], and [4], but in such case, derivatives of itaemiltonian functiond
of order higher than two are required.

It is interesting to note that any symplectic Runge-Kuttahrod can also be
written in a very similar form [2],[7], the only differencesing that the generating
function (5) must be replaced by

s h2 s
S(z,h) =hY_ bH(Y;) + 5 > biai; VH(Y;)T T VH(Y;), (7)
i=1 ij=1

where the parameters, o;; are such thab;a;; + bja;; = 0 for all 4,5 (with
a;j = oy; + b; /2, one gets the more familiar conditiohg;; + b;a;; — b;b; = 0,
i.e. the conditions for a Runge-Kutta method to be sympigcti

The generalization we propose consists on replacing thiiceats b;a;; in
(7) by arbitrary real parameters;.

The main purpose of this paper is to introduce a new familyyofigectic
integration methods based on generating functions intttmsolve numerically
Hamiltonian systems of the form (1). The definition of the hoels is given in
Section 2, and we show how to compute efficiently the gradiésitz, 1) of the
generating functior$(z, h) required in (6). In addition, we generalize the methods
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to general (non-necessarily Hamiltonian) ODE systemsedtien 3 we apply the
theory of B-series to derive the order conditions of our namify of methods
and we use them in Section 4 to construct a time-symmetrio@tar method of
explicit type (i.e., with a explicitly defined generatingittion.S(z, h)) with s = 4.
Finally, we summarize the conclusions in Section 5.

2 The new family of methods

2.1 Definition of the methods

Given a positive integes and real numberg; (1 <7 < s), a;; andg;; (1 <i,j <
s) such thatd;; = —3;; for all 4, j, one step* = 1, (y) of the method is implicitly
defined by (6), where the generating functis(x, /) is defined as

S 92 S
S(z,h) = thiH(Y;)Jr% > By VH(Y,)TJ'VH(Y;) (8)
i=1 i,j=1
s s 1—1
= hY bHY)+h> Y B VHY) T I'VH(Y)),
i=1 i=1 j=1

where fori = 1,...,s,

Yi=z+hJ 'Y o VH(Y)). (9)
j=1

Notice that considering a matrid;;); ;,_, that is not skew-symmetric would not
give more generality to the method: Sinde! is skew-symmetric3;; can be
replaced by(3;; — (3;:)/2 in the definition ofS(z, k) in (8).

Clearly, if the matrix(cv;;); ;_; is strictly lower triangular, thei$(z, ) is ex-
plicitly given in (8)—(9) as a function of andz. In such case, (we will say that
the method is of explicit type,) the method (6) with the gatieg functionS(z, h)
given by (8)—(9) is only implicit iny*.

We will be mainly interested in time-symmetric (or self-gidt) methods, that
is, methods satisfying thadz,:1 = 1_p, which is easily seen to be equivalent to
S(z,—h) = —S(z, h) for one-step methodg* = v, (y) defined as (6). It is not
difficult to check that, if there exists a permutatioof the set of indiceg1, . .., s}
such thatr—1 = 7, and

beii) = bis  Qn(i)r(j) = — Qg Br)xl) = —Bi (10)

foralli,j = 1,...,s, thenS(z,—h) = —S(z, h), and thus the method is time-
symmetric.



2.2 Efficient computation of the gradient of the generating @inction
In order to implement the integration scheme (6) with theegating function de-
fined by (8)—(9), the gradient &f(z, ) need to be computed. Let us denote

k; = hVH(Y;),

then we have that

s

a aY; Ok
TY "1 T 7—1Y")

= ik J ,
E'_lbk + EJ 1ﬁj o

where foreach = 1,...,s,

oY, i~ Ok; Ok 2 Y;
o =1+J ;O‘”az’ 5, = WV2H(Yi)5

However, computing the Jacobian matrld%}gs and 5 in order to evaluate the

gradient ofS(z, k) is in general highly inefficient. It is standard in automatit:

ferentiation theory that the gradient of a scalar functibseveral variables is more
efficiently evaluated by applying the chain rule in reversgea In our case, the
computation of the expensive Jacobian matri%é‘s and %"; can be avoided as

follows. Given arbitrary column vectofs, v; € R2? (1 < i < s), we have that

aS ZkaaY—i_iﬁ”kTJ 1 Ok;

5,j=1

ok; OY;
T 1
+§ Y, (I+J § aij L = Z)
aY; Ok
2 )
—l—Zv <hV )5t - az>’

and reordering terms we obtain

05(z,h)  _ Z Yi+ Z (bik! =¥+ hol VH(Y)) 5

0z
i=1 i=1

—|—Z (Z (ﬁjik‘fjfl + Oéjif/jTJ71> — ’UZT> 8812

i=1 \j=1



Now, we define the vectors; andv; (1 < i < s) as
Y, = bk +hV2H( i)vi,

v = TZﬁﬂk + oY) =—J 1Zﬁﬂk + a;iYj),

Jj=1 Jj=1

S0 thatas =) _ y°s V. We thus have that

JIVS(z,h) = O(z,h), (11)
where
O(z,h) =h > _ (bif (Vi) + f'(Yi)vi) (12)
=1

f(z)=J'VH(z)andf'(z) = J-'V?H(z), and

Y, = z-l—hZaijf(Yj), i=1,...,s, (13)

Vi = hZ('YZJf( ang( )v]) i=s,...,1, (14)
=1

Whel’e’yij = ﬁij — bjOéjZ‘ for all 1, 7.
It is worth noting that the definition of one stgp = v, (y) implicitly defined
by

v =y+0(5y+y*)h) (15)

where©(z, h) is given by (12)-(14) also makes sense in the general case of a
system of autonomous (non-necessarily Hamiltonian) ODfEsvhere f/(Y;) in
(12)-(14) denotes the Jacobian matrixfogvaluated at’;.

Obviously,O(z, h) is explicitly defined when the matriéaij) is strictly lower
triangular, and the definition of one step = 1 (y) of the method (6) is only
implicit in y*. For an arbitrary matriXc;;), the method is fully implicit, and it
makes more sense expressing one step of the method as

(y) = y+ hZ (bif (V) + f'(Yo)vi) (16)



whereY;, v; (1 = 1,...,s) are implicitly defined by

Yo = yhd (e f () + 55/ (G)), 17
7j=1
v = hz (vig F(Y5) = i f' (Yy)vj) (18)
=1
where
b; -
aij = ouj + 55 % = Bij — bjeyi Vi, j. (19)

Observe that in the particular case where
1 .
ﬁij = bjOéjZ‘ = bjaji — ibibj for all 1, (20)

(henceb;a;; + bja;; = b;bj since3;; = —f;;), we have thaty;; = 0, and thus
v; = 0 for all 4, and the scheme (16)-(18) is just a symplectic Runge-Katiarse.

We want to stress that the computational complexity of theste (16)-(18)
is not reduced if one take$;; = 0 for all 7, j, and thus our generalization to the
methods introduced in [13] increases the number of paramefdhe method for
free.

2.3 Order barriers

The method (16)—(19) when applied to the equatjor- y givesy* = R(h)y,
where

R = 5o (21)
where@(h) is in general a rational function given by
Q(h) = h(e"B—he' (I+hA")7'T) (I —hA) e,
= (I +hAT)"Y(hB + h2C)(I — hA) Le.
where we use the notatidd = diag (b, ..., bs), e’ = (1,...,1), A = ()7 =1,

C = (Bij)i jo1, andl’ = (v;5); ;=1 = C + AT B (wherediag(v) with a vectorv
stands for a square diagonal matrix witin the main diagonal).

In the particular case of methods of explicit typ@(h) is a polynomial of
degreed < 2s.



A method of ordemp necessarily has to satisfy thR(h) — e = O(hP*!) as
h — 0, which by virtue of (21) is equivalent to

Q(h) = 2tanh(h/2) + O(RP™!) ash — 0.

This gives an order barrier @&fs for methods of explicit type, since in that case,
Q(h) is a polynomial of degreg 2s — 1. In the particular case of time-symmetric
methods of explicit type, the degree@fh) can be seen to be at madts + 2)/3.

3 The order conditions

The order conditions of the method (16)—(19) applied to yfstesn of autonomous
(non-necessarily Hamiltonian) ODEs (3) can be obtainedkpgedingy™ = 1 (y)
as a B-serie3(c,y), and then comparing it with the B-series expansion of the
exact solution. This is the standard procedure to obtairotber conditions for
B-series methods [8],[7] which gives rise to one order coowliper rooted tree.
As v, is by construction symplectic, the B-seriBgc, y) will necessarily satisfy
the symplecticity conditions [3, 7], which introduce cémtdependencies among
the set of order conditions.

The coefficients:(u) of the B-series expansioB(c,y) of ¢ (y) can be ob-
tained with standard techniques by applying the result dukldirer and Wan-
ner [10] (see also [7]) for the B-series expansiomg{ B(a,y)), and the result
given by Ngrsett and Wolfbrandt [14] férf’(B(a,y))B(b, y), whereB(a,y) and
B(b,y) are B-series (withu()) = 1 andb(0) = 0).

The scheme (16)—(19) is of ordeif

e(u) = —— (22)

for all rooted trees withu| < p wherev(u) (sometimes referred to as thensity
of the rooted tree) is given in [8] . Since by construction BiseriesB(c) is a
symplectic (or canonical) B-series, such conditions areimdependent [3] (see
also [7]).

Such a dependency is related to a equivalence relation 7, where two
rooted trees are equivalent if they only differ in the looatbf the root, that is, if
they have the same underlying free tree (obtained from ibteddree by forgetting
the location of the root). In particulat,o v ~ vou for arbitraryu,v € 7. Thus,
each equivalence class of rooted trees can be identifiecaviide tree. A free tree
is said to be superfluous if it can be represented by a roctedofrthe formu o u
with v € 7. In [3] it is shown that, given a positive integgr if for each non-
superfluous free tree with < p vertices, the order condition (22) of one rooted
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u e N g
w| |1 3 4 5 5
3 4

)
y(u) | 1 20 10 5

Table 1: Values ofu| and~(u) for rooted trees representing non-superfluous free
trees with up to 5 vertices

treew in the equivalence class associated to that free tree iddd|fthen the order
conditions for all rooted trees with < p vertices hold (and thus the method is at
least of ordep).

Let befp C 7 a set of canonical representatives of the equivalenceedass
of rooted trees associated to non-superfluous free tre@smwit p vertices. In
Table 1, the subs@ of rooted trees, corresponding each one to a different equiv
alence class of non-superfluous free trees witk 5 vertices is displayed. A set
of independent condition for our scheme to be of opgdean then be obtained by
considering the condition (22) for eache 7.

We thus have that the method is of order at I8agtnd only if

c()=1, (%) =7 (23
If in addition
()= (24

then the method is of order at least 4. If the method satisfyagsumptions (10),
so that it is time-symmetric, then (24) automatically hafdee conditions (23) for
order three are fulfilled. The method is of order at l€gi$tand only if, in addition
to (23)—(24), the following conditions hold,

(o) = ) =5, o= o 25)

If the method satisfy the symmetry assumptions (10), th8ht@&ether with (25)
guarantees that the method is at least of order six.
The coefficients:(u) for the trees in Table 1 can be seen to be

s

o) = by ) = 3 (o2 +2ei(0)dils)).
=1

i=1



S

o(%*) = D (bici(6)’+3ci(e)’di(s)),

P
(") = i(bici(.)4+4ci(.)3di(.)),
c(ng>) = :i;(bia(-)Qa('s)+—a(-)2di(&) +2ci(e)ei(%)di(e))
o(L>) = ji;(mcz<x>24-2q<~_>dx-»>),

where for eacti :_1, ..., s, the coefficients; (s ), ci(% ), di(«) andd;( %), are

given by
a(e) = i3 ay a(n) = Y a0,
=1 =1

di(e) = Z%’j, di(\)ZZ’YijCj(-)—Zajidj(-),
j=1 j=1 j=1
where;; is given in terms of the parameters «;;, 3;; of the method in (19).

4 Construction of a time-symmetric 6th order method of
explicit type

Let us consider the family of time-symmetric methods of &iptype with s = 4.
We choose the permutationof the set of indiceg1, 2, 3,4} determined by

so that the parameters of the method satisfy (10). This gavismily of time-
symmetric methods of explicit type with eight parameteesnaely,

b1,b3,b4, 331, B32, 343, 31, 3.

By imposing the conditions (23) and (25), we get a three+patar family of
time-symmetric sixth order methods of explicit type. We dahosen one partic-
ular method of the family which gives reasonably small reald|c(u) — 1/~(u)|
for rooted trees of order 7, 8, and 9.
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One stepy™ = v, (y) of the resulting scheme is implicitly defined by (15),
whereO(z, h) is explicitly given by

783475 783475 896141
h) = — (Vo) + —f(V3) + ——
O(zh) (3359232f( 2)+ 33502327 (Y3 * 16796167 4)>
+h (f'(Y)v1 + f/(Ya)va + f'(Y3)vs + f'(Ya)va)
where
Yi = z
18
}/2 = Z—h%f(Yi),
18
}/3 = Z+h%f(yl),
Vi = 2t h (o f(V2) — o f(Y)
4 = 70 2 70 3 ;
3240577 3240577
= S Y,) - e
v (78382080f (¥2) — 75352080 ¢ 3)>’
11277773 33275 8617423
v 2 < 783820807 YV F 550872/ (Y2) + 755530807 ¢ 4)>
9
h—f(Y,
+ 7Of( 1)v4,
5294873 18
= h—m (V) — f(Y (' (Ya)vs — ' (Ya)vs).
o h = zsa0s0 U (V3) = F(V2) + A (f'(Yo)va = f'(Ya)uy)

5 Concluding remarks

We have presented a new family of one-step symplectic iatiegr schemes for
Hamiltonian systems of the general foym= J 'V H (y)T. Our new integration
methods are constructed by defining a generating functidrichnautomatically
determines a symplectic map. Such methods generalize ithiogéuced by Mies-
bach and Pesch [13] in such a way that additional parametermtaoduced for
free (by keeping the same number of order conditions, anehéally the same
computational cost). We show that the evaluation of theigradf the generat-
ing function can be performed efficiently (without the neeccompute Jacobian
matrices), by evaluating one gradient of the Hamiltoniamcfion as well as one
product of Hessian times a vector per stage.

We have focused on methods that are symmetric and of exyyjpst(i.e., with
explicitly given generating function, so that they can bersas generalizations of
the implicit midpoint rule). We give an order barrier ofs + 2)/3 for s-stage
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symmetric methods of explicit type (which, compared to théeo2s of s-stage
Gauss methods, is in principle a negative result). Thissgingarticulars > 4 for
methods of order 6. We actually construct a three-paraniateity of particular
symmetric sixth order methods with= 4 stages, and choose a particular method
with optimized coefficients. We however believe that mofecieint methods can
be constructed by considering more stages. Methods of eiglet with optimized
coefficients (intended to minimize the error constants) ameently under con-
struction.

It is still unclear whether there exist methods within oumily of symplec-
tic integrators that, conveniently implemented, can bepetitive with respect to
existing symplectic schemes for general Hamiltonian sgstsuch as Gauss meth-
ods. According to our preliminary numerical experimentsadvantage of the new
methods with respect to Gauss schemes seems to be the jtgssilnbtaining a
considerably better initial guess (by using generalizethtite interpolation based
on available data of previous steps) for the implicit equragito be solved at each
step. Furthermore, we believe that a very efficient impleatén can be obtained
by adapting the ideas in [12] to the new class of schemes,, Idgether with the
construction of optimized high order methods, is the sulgéongoing work.
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