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Abstract

We present a new family of one-step symplectic integration schemes
for Hamiltonian systems of the general forṁy = J−1∇H(y)T . Such a
class of methods contains as particular cases the methods ofMiesbach and
Pesch [13], and also the family of symplectic Runge-Kutta methods. As in
the case of the methods introduced in [13], the new integration methods are
constructed by defining a generating function, which automatically deter-
mines a symplectic map. The resulting methods are implicit,and require the
evaluation of the gradient of the Hamiltonian function as well as the Hessian
times a vector.

1 Introduction

We present a new class of one-step symplectic integration schemes for Hamiltonian
systems of the general form

ẏ = J−1∇H(y), J =

(
0 I
−I 0

)
. (1)

(we assume thatH : U ⊂ R
2d → R is a smooth function defined in an open setU

of R
2d). It is well known [2], [11], [7] that there exist explicit symplectic methods

for Hamiltonian systems (1) with Hamiltonian function of the form

H(p, q) = T (p) + V (q). (2)

However, all known symplectic schemes that can be applied toany general Hamil-
tonian system of the form (1) are implicit. Even for systems with Hamiltonian of
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the form (2), implicit methods will be required if a symplectic variable time-step
strategy [9],[15] (see also [7]) is needed (for instance, when integrating numer-
ically the solution of an initial value problem for which thetime scale changes
significantly along the solution).

The integration schemes we present are implicit methods that are symplectic
when applied to a Hamiltonian system of the form (1), and can be interpreted as
a generalization of the implicit midpoint rule. Actually, the schemes we introduce
can be used to integrate numerically any system of ordinary differential equations
of the form

ẏ = f(y), f : U ⊂ R
D → R

D. (3)

Integrating with our new schemes an ODE system (3) that is notof the form (1)
may be of particular interest if (3) has one or more quadraticinvariants. In fact,
the family of integrators we introduce in the present work fall within the class of
symplectic B-series methods, which can be characterized asB-series methods that
conserve all the quadratic invariants of the original system.

Our new family of methods contains as particular cases the symplectic Runge-
Kutta methods and the methods of Miesbach and Pesch [13]. As in the case of
the methods introduced in [13], the new integration methodsare constructed for
the Hamiltonian system (1) by defining a generating function, which automatically
determines a symplectic map. The resulting methods are implicit, and require the
evaluation of the gradient of the Hamiltonian function as well as the Hessian times
a vector. It is worth noting that, as it is standard in automatic differentiation, the
computational effort needed to evaluate the gradient∇H(y) of a scalar function in
several variables together with the functionH(y) itself, is a small factor (depending
on the functionH, typically between one and two) times the cost of evaluating
H(y) alone. Similarly occurs with the evaluation of∇2H(y)v (v a given vector)
together with∇H(y) (see [17]) (observe that∇2H(y)v actually is the gradient of
the scalar function∇H(y)v with v a constant vector).

Consider a one-parameter family of functionsS(·, h) : Uh ⊂ R
2d → R that

satisfies the Hamilton-Jacobi equation

Ṡ(z, h) = H

(
z +

1

2
J−1∇S(z, h)

)
(4)

with initial conditionS(y, 0) ≡ 0. Hereafter,Ṡ(z, h) denotes the partial derivative
of S(z, h) with respect toh, while ∇S(z, h) denotes the gradient ofS(z, h) with
respect toz. Then, for any solutiony(t) of (1), it holds that

y(t+ h) = y(t) + J−1∇S(1
2 (y(t) + y(t+ h)), h).

2



In other words,S(z, h) is a generating function of the (symplectic)h-flow of (1)
(denoted byS3(z, h) in [7]). In [13], a family of symplectic integrators is intro-
duced by considering explicit approximations of the generating functionS(z, h)
defined in terms of values of the Hamiltonian functionH and its gradient∇H.
A slight generalization of the family of generating functions that they consider is
given as

S(z, h) = h

s∑

i=1

biH(Yi), (5)

where fori = 1, . . . , s,

Yi = z + hJ−1
s∑

j=1

αij∇H(Yj),

and the real parametersbi, αij are appropriately chosen so thatS(z, h) is an ap-
proximate solution of the Hamilton-Jacobi equation (4). Thus, one stepy∗ =
ψh(y) of the method is implicitly defined as

y∗ = y + J−1∇S
(

1
2 (y + y∗), h

)
. (6)

High order symplectic integrator based on generating functions were also consid-
ered in [5],[6], and [4], but in such case, derivatives of theHamiltonian functionH
of order higher than two are required.

It is interesting to note that any symplectic Runge-Kutta method can also be
written in a very similar form [2],[7], the only difference being that the generating
function (5) must be replaced by

S(z, h) = h

s∑

i=1

biH(Yi) +
h2

2

s∑

i,j=1

biαij∇H(Yi)
TJ−1∇H(Yj), (7)

where the parametersbi, αij are such thatbiαij + bjαji = 0 for all i, j (with
aij = αij + bi/2, one gets the more familiar conditionsbiaij + bjaji − bibj = 0,
i.e. the conditions for a Runge-Kutta method to be symplectic).

The generalization we propose consists on replacing the coefficients biαij in
(7) by arbitrary real parametersβij .

The main purpose of this paper is to introduce a new family of symplectic
integration methods based on generating functions intended to solve numerically
Hamiltonian systems of the form (1). The definition of the methods is given in
Section 2, and we show how to compute efficiently the gradient∇S(z, h) of the
generating functionS(z, h) required in (6). In addition, we generalize the methods
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to general (non-necessarily Hamiltonian) ODE systems. In section 3 we apply the
theory of B-series to derive the order conditions of our new family of methods
and we use them in Section 4 to construct a time-symmetric 6thorder method of
explicit type (i.e., with a explicitly defined generating functionS(z, h)) with s = 4.
Finally, we summarize the conclusions in Section 5.

2 The new family of methods

2.1 Definition of the methods

Given a positive integers and real numbersbi (1 ≤ i ≤ s), αij andβij (1 ≤ i, j ≤
s) such thatβij = −βji for all i, j, one stepy∗ = ψh(y) of the method is implicitly
defined by (6), where the generating functionS(z, h) is defined as

S(z, h) = h

s∑

i=1

biH(Yi) +
h2

2

s∑

i,j=1

βij∇H(Yi)
TJ−1∇H(Yj) (8)

= h
s∑

i=1

biH(Yi) + h2
s∑

i=1

i−1∑

j=1

βij∇H(Yi)
TJ−1∇H(Yj),

where fori = 1, . . . , s,

Yi = z + hJ−1
s∑

j=1

αij∇H(Yj). (9)

Notice that considering a matrix(βij)
s
i,j=1 that is not skew-symmetric would not

give more generality to the method: SinceJ−1 is skew-symmetric,βij can be
replaced by(βij − βji)/2 in the definition ofS(z, h) in (8).

Clearly, if the matrix(αij)
s
i,j=1 is strictly lower triangular, thenS(z, h) is ex-

plicitly given in (8)–(9) as a function ofh andz. In such case, (we will say that
the method is of explicit type,) the method (6) with the generating functionS(z, h)
given by (8)–(9) is only implicit iny∗.

We will be mainly interested in time-symmetric (or self-adjoint) methods, that
is, methods satisfying thatψ−1

h = ψ−h, which is easily seen to be equivalent to
S(z,−h) ≡ −S(z, h) for one-step methodsy∗ = ψh(y) defined as (6). It is not
difficult to check that, if there exists a permutationπ of the set of indices{1, . . . , s}
such thatπ−1 = π, and

bπ(i) = bi, απ(i),π(j) = −αi,j βπ(i),π(j) = −βi,j, (10)

for all i, j = 1, . . . , s, thenS(z,−h) ≡ −S(z, h), and thus the method is time-
symmetric.
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2.2 Efficient computation of the gradient of the generating function

In order to implement the integration scheme (6) with the generating function de-
fined by (8)–(9), the gradient ofS(z, h) need to be computed. Let us denote

ki = h∇H(Yi),

then we have that

∂S(z, h)

∂z
=

s∑

i=1

bik
T
i

∂Yi

∂z
+

s∑

i,j=1

βijk
T
i J

−1∂kj

∂z
,

where for eachi = 1, . . . , s,

∂Yi

∂z
= I + J−1

s∑

j=1

αij
∂kj

∂z
,

∂ki

∂z
= h∇2H(Yi)

∂Yi

∂z
.

However, computing the Jacobian matrices∂Yi

∂z
and ∂ki

∂z
in order to evaluate the

gradient ofS(z, h) is in general highly inefficient. It is standard in automaticdif-
ferentiation theory that the gradient of a scalar function of several variables is more
efficiently evaluated by applying the chain rule in reverse order. In our case, the
computation of the expensive Jacobian matrices∂Yi

∂z
and ∂ki

∂z
can be avoided as

follows. Given arbitrary column vectorŝYi, vi ∈ R
2d (1 ≤ i ≤ s), we have that

∂S(z, h)

∂z
=

s∑

i=1

bik
T
i

∂Yi

∂z
+

s∑

i,j=1

βijk
T
i J

−1∂kj

∂z

+

s∑

i=1

Ŷ T
i



I + J−1
s∑

j=1

αij
∂kj

∂z
−
∂Yi

∂z





+
s∑

i=1

vT
i

(
h∇2H(Yi)

∂Yi

∂z
−
∂ki

∂z

)
,

and reordering terms we obtain

∂S(z, h)

∂z
=

s∑

i=1

Ŷi +

s∑

i=1

(
bik

T
i − Ŷ T

i + hvT
i ∇

2H(Yi)
) ∂Yi

∂z

+
s∑

i=1




s∑

j=1

(
βjik

T
j J

−1 + αjiŶ
T
j J

−1
)
− vT

i



 ∂ki

∂z
.
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Now, we define the vectorŝYi andvi (1 ≤ i ≤ s) as

Ŷi = biki + h∇2H(Yi)vi,

vi = J−T
s∑

j=1

(βjikj + αjiŶj) = −J−1
s∑

j=1

(βjikj + αjiŶj),

so that∂S(z,h)
∂z

=
∑s

i=1 Ŷi. We thus have that

J−1∇S(z, h) = Θ(z, h), (11)

where

Θ(z, h) = h
s∑

i=1

(
bif(Yi) + f ′(Yi)vi

)
, (12)

f(z) = J−1∇H(z) andf ′(z) = J−1∇2H(z), and

Yi = z + h

s∑

j=1

αijf(Yj), i = 1, . . . , s, (13)

vi = h
s∑

j=1

(
γijf(Yj) − αjif

′(Yj)vj

)
, i = s, . . . , 1, (14)

whereγij = βij − bjαji for all i, j.
It is worth noting that the definition of one stepy∗ = ψh(y) implicitly defined

by

y∗ = y + Θ(1
2 (y + y∗), h) (15)

whereΘ(z, h) is given by (12)-(14) also makes sense in the general case of a
system of autonomous (non-necessarily Hamiltonian) ODEs (3) wheref ′(Yj) in
(12)-(14) denotes the Jacobian matrix off evaluated atYj.

Obviously,Θ(z, h) is explicitly defined when the matrix(αij) is strictly lower
triangular, and the definition of one stepy∗ = ψh(y) of the method (6) is only
implicit in y∗. For an arbitrary matrix(αij), the method is fully implicit, and it
makes more sense expressing one step of the method as

ψh(y) = y + h
s∑

i=1

(
bif(Yi) + f ′(Yi)vi

)
, (16)
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whereYi, vi (i = 1, . . . , s) are implicitly defined by

Yi = y + h
s∑

j=1

(
aijf(Yj) + 1

2f
′(Yj)vj

)
, (17)

vi = h

s∑

j=1

(
γijf(Yj) − αjif

′(Yj)vj

)
, (18)

where

aij = αij +
bj
2
, γij = βij − bjαji ∀i, j. (19)

Observe that in the particular case where

βij = bjαji = bjaji −
1

2
bibj for all i, j (20)

(hencebiaij + bjaji = bibj sinceβji = −βij), we have thatγij = 0, and thus
vi = 0 for all i, and the scheme (16)-(18) is just a symplectic Runge-Kutta scheme.

We want to stress that the computational complexity of the scheme (16)-(18)
is not reduced if one takesβij = 0 for all i, j, and thus our generalization to the
methods introduced in [13] increases the number of parameters of the method for
free.

2.3 Order barriers

The method (16)–(19) when applied to the equationẏ = y givesy∗ = R(h)y,
where

R(h) =
2 +Q(h)

2 −Q(h)
, (21)

whereQ(h) is in general a rational function given by

Q(h) = h
(
eTB − heT (I + hAT )−1Γ

)
(I − hA)−1e,

= eT (I + hAT )−1(hB + h2C)(I − hA)−1e.

where we use the notationB = diag(b1, . . . , bs), eT = (1, . . . , 1),A = (αij)
s
i,j=1,

C = (βij)
s
i,j=1, andΓ = (γij)

s
i,j=1 = C + ATB (wherediag(v) with a vectorv

stands for a square diagonal matrix withv in the main diagonal).
In the particular case of methods of explicit type,Q(h) is a polynomial of

degreed ≤ 2s.
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A method of orderp necessarily has to satisfy thatR(h) − eh = O(hp+1) as
h→ 0, which by virtue of (21) is equivalent to

Q(h) = 2 tanh(h/2) + O(hp+1) ash→ 0.

This gives an order barrier of2s for methods of explicit type, since in that case,
Q(h) is a polynomial of degree≤ 2s− 1. In the particular case of time-symmetric
methods of explicit type, the degree ofQ(h) can be seen to be at most(4s+ 2)/3.

3 The order conditions

The order conditions of the method (16)–(19) applied to the system of autonomous
(non-necessarily Hamiltonian) ODEs (3) can be obtained by expandingy∗ = ψh(y)
as a B-seriesB(c, y), and then comparing it with the B-series expansion of the
exact solution. This is the standard procedure to obtain theorder conditions for
B-series methods [8],[7] which gives rise to one order condition per rooted tree.
As ψh is by construction symplectic, the B-seriesB(c, y) will necessarily satisfy
the symplecticity conditions [3, 7], which introduce certain dependencies among
the set of order conditions.

The coefficientsc(u) of the B-series expansionB(c, y) of ψh(y) can be ob-
tained with standard techniques by applying the result due to Hairer and Wan-
ner [10] (see also [7]) for the B-series expansion ofhf(B(a, y)), and the result
given by Nørsett and Wolfbrandt [14] forhf ′(B(a, y))B(b, y), whereB(a, y) and
B(b, y) are B-series (witha(∅) = 1 andb(∅) = 0).

The scheme (16)–(19) is of orderp if

c(u) =
1

γ(u)
(22)

for all rooted trees with|u| ≤ p whereγ(u) (sometimes referred to as thedensity
of the rooted tree) is given in [8] . Since by construction theB-seriesB(c) is a
symplectic (or canonical) B-series, such conditions are not independent [3] (see
also [7]).

Such a dependency is related to a equivalence relation∼ in T , where two
rooted trees are equivalent if they only differ in the location of the root, that is, if
they have the same underlying free tree (obtained from the rooted tree by forgetting
the location of the root). In particular,u ◦ v ∼ v ◦u for arbitraryu, v ∈ T . Thus,
each equivalence class of rooted trees can be identified witha free tree. A free tree
is said to be superfluous if it can be represented by a rooted tree of the formu ◦ u
with u ∈ T . In [3] it is shown that, given a positive integerp, if for each non-
superfluous free tree withn ≤ p vertices, the order condition (22) of one rooted
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u

|u| 1 3 4 5 5 5

γ(u) 1 3 4 20 10 5

Table 1: Values of|u| andγ(u) for rooted trees representing non-superfluous free
trees with up to 5 vertices

treeu in the equivalence class associated to that free tree is fulfilled, then the order
conditions for all rooted trees withn ≤ p vertices hold (and thus the method is at
least of orderp).

Let be T̂p ⊂ T a set of canonical representatives of the equivalence classes
of rooted trees associated to non-superfluous free trees with n ≤ p vertices. In
Table 1, the subset̂Tp of rooted trees, corresponding each one to a different equiv-
alence class of non-superfluous free trees withn ≤ 5 vertices is displayed. A set
of independent condition for our scheme to be of orderp can then be obtained by
considering the condition (22) for eachv ∈ T̂p.

We thus have that the method is of order at least3 if and only if

c( ) = 1, c( ) =
1

3
. (23)

If in addition

c( ) =
1

4
, (24)

then the method is of order at least 4. If the method satisfy the assumptions (10),
so that it is time-symmetric, then (24) automatically holdsif the conditions (23) for
order three are fulfilled. The method is of order at least5 if and only if, in addition
to (23)–(24), the following conditions hold,

c( ) =
1

10
, c( ) =

1

5
, c( ) =

1

20
. (25)

If the method satisfy the symmetry assumptions (10), then (23) together with (25)
guarantees that the method is at least of order six.

The coefficientsc(u) for the trees in Table 1 can be seen to be

c( ) =
s∑

i=1

bi, c( ) =
s∑

i=1

(
bi ci( )2 + 2ci( )di( )

)
,
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c( ) =

s∑

i=1

(
bi ci( )3 + 3ci( )2di( )

)
,

c( ) =

s∑

i=1

(
bi ci( )4 + 4ci( )3di( )

)
,

c( ) =
s∑

i=1

(
bi ci( )2ci( ) + ci( )2di( ) + 2ci( )ci( )di( )

)
,

c( ) =

s∑

i=1

(
bi ci( )2 + 2ci( )di( )

)
,

where for eachi = 1, . . . , s, the coefficientsci( ), ci( ), di( ) anddi( ), are
given by

ci( ) =
c( )

2
+

s∑

j=1

αij , ci( ) =
c( )

2
+

s∑

j=1

αij cj( ),

di( ) =

s∑

j=1

γij, di( ) =

s∑

j=1

γijcj( ) −
s∑

j=1

αji dj( ),

whereγij is given in terms of the parametersbi, αij , βij of the method in (19).

4 Construction of a time-symmetric 6th order method of
explicit type

Let us consider the family of time-symmetric methods of explicit type with s = 4.
We choose the permutationπ of the set of indices{1, 2, 3, 4} determined by

π(1) = 1, π(2) = 3, π(3) = 2, π(4) = 4,

so that the parameters of the method satisfy (10). This givesa family of time-
symmetric methods of explicit type with eight parameters, namely,

b1, b3, b4, β31, β32, β43, α31, α43.

By imposing the conditions (23) and (25), we get a three-parameter family of
time-symmetric sixth order methods of explicit type. We have chosen one partic-
ular method of the family which gives reasonably small residuals|c(u) − 1/γ(u)|
for rooted trees of order 7, 8, and 9.
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One stepy∗ = ψh(y) of the resulting scheme is implicitly defined by (15),
whereΘ(z, h) is explicitly given by

Θ(z, h) = h

(
783475

3359232
f(Y2) +

783475

3359232
f(Y3) +

896141

1679616
f(Y4)

)

+h
(
f ′(Y1)v1 + f ′(Y2)v2 + f ′(Y3)v3 + f ′(Y4)v4

)
,

where

Y1 = z,

Y2 = z − h
18

55
f(Y1),

Y3 = z + h
18

55
f(Y1),

Y4 = z + h

(
9

70
f(Y2) −

9

70
f(Y3)

)
,

v4 = h

(
3240577

78382080
f(Y2) −

3240577

78382080
f(Y3)

)
,

v3 = −v2 = h

(
−

11277773

78382080
f(Y1) +

33275

559872
f(Y2) +

8617423

78382080
f(Y4)

)

+ h
9

70
f ′(Y4)v4,

v1 = h
5294873

78382080
(f(Y3) − f(Y2)) + h

18

55
(f ′(Y2)v2 − f ′(Y3)v3).

5 Concluding remarks

We have presented a new family of one-step symplectic integration schemes for
Hamiltonian systems of the general forṁy = J−1∇H(y)T . Our new integration
methods are constructed by defining a generating function, which automatically
determines a symplectic map. Such methods generalize thoseintroduced by Mies-
bach and Pesch [13] in such a way that additional parameters are introduced for
free (by keeping the same number of order conditions, and essentially the same
computational cost). We show that the evaluation of the gradient of the generat-
ing function can be performed efficiently (without the need to compute Jacobian
matrices), by evaluating one gradient of the Hamiltonian function as well as one
product of Hessian times a vector per stage.

We have focused on methods that are symmetric and of explicittype (i.e., with
explicitly given generating function, so that they can be seen as generalizations of
the implicit midpoint rule). We give an order barrier of(4s + 2)/3 for s-stage
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symmetric methods of explicit type (which, compared to the order 2s of s-stage
Gauss methods, is in principle a negative result). This gives in particulars ≥ 4 for
methods of order 6. We actually construct a three-parameterfamily of particular
symmetric sixth order methods withs = 4 stages, and choose a particular method
with optimized coefficients. We however believe that more efficient methods can
be constructed by considering more stages. Methods of ordereight with optimized
coefficients (intended to minimize the error constants) arecurrently under con-
struction.

It is still unclear whether there exist methods within our family of symplec-
tic integrators that, conveniently implemented, can be competitive with respect to
existing symplectic schemes for general Hamiltonian systems such as Gauss meth-
ods. According to our preliminary numerical experiments, an advantage of the new
methods with respect to Gauss schemes seems to be the possibility of obtaining a
considerably better initial guess (by using generalized Hermite interpolation based
on available data of previous steps) for the implicit equations to be solved at each
step. Furthermore, we believe that a very efficient implementation can be obtained
by adapting the ideas in [12] to the new class of schemes. This, together with the
construction of optimized high order methods, is the subject of ongoing work.
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