Optimized splitting methods for linear oscillators

Ander Murua
Joint work with Sergio Blanes and Fernando Casas

Innsbruck, October 2008

Consider the linear time-dependent Shrödinger equations in semi-discrete form

$$
i \frac{d}{d t} u=H_{h} u
$$

(H_{h} a real symmetric matrix) obtained from a suitable space discretization, with discretization parameter h.
We consider splitting methods with the ODE system split in the form

$$
\frac{d}{d t}\binom{p}{q}=\overbrace{\left(\begin{array}{cc}
0 & H_{h} \\
0 & 0
\end{array}\right)}^{A}\binom{p}{q}+\overbrace{\left(\begin{array}{cc}
0 & 0 \\
-H_{h} & 0
\end{array}\right)}^{B}\binom{p}{q}
$$

where $u=q+i p$. In a splitting method, one replaces the operator $e^{\tau(A+B)}$ by a product of the form

$$
e^{\tau(A+B)} \approx e^{\tau a_{1} A} e^{\tau b_{1} B} \cdots e^{\tau a_{m} A} e^{\tau b_{m} B}
$$

with appropriately chosen $a_{1}, b_{1}, \cdots, a_{m}, b_{m} \in \mathbb{R}$.

Since

$$
\begin{gather*}
e^{\tau H_{h}}=e^{\tau(A+B)}=\left(\begin{array}{cc}
\cos \left(\tau H_{h}\right) & \sin \left(\tau H_{h}\right) \\
-\sin \left(\tau H_{h}\right) & \cos \left(\tau H_{h}\right)
\end{array}\right), \tag{1}\\
e^{\tau A}=\left(\begin{array}{cc}
1 & \tau H_{h} \\
0 & 1
\end{array}\right), \quad e^{\tau B}=\left(\begin{array}{cc}
1 & 0 \\
-\tau H_{h} & 1
\end{array}\right),
\end{gather*}
$$

in a splitting scheme, (1) is approximated by

$$
\begin{aligned}
\left(\begin{array}{cc}
l & 0 \\
\tau b_{m} H_{h} & l
\end{array}\right) & \left(\begin{array}{cc}
I & \tau a_{m} H_{h} \\
0 & I
\end{array}\right) \cdots\left(\begin{array}{cc}
I & 0 \\
\tau b_{1} H_{h} & I
\end{array}\right)\left(\begin{array}{cc}
1 & \tau a_{1} H_{h} \\
0 & I
\end{array}\right) \\
& =\left(\begin{array}{cc}
K_{1}\left(\tau H_{h}\right) & K_{2}\left(\tau H_{h}\right) \\
-K_{3}\left(\tau H_{h}\right) & K_{4}\left(\tau H_{h}\right)
\end{array}\right)
\end{aligned}
$$

where $K_{1}(x)$ and $K_{4}(x)$ even polynomials, and $K_{2}(x)$ and $K_{3}(x)$ odd polynomials satisfying $K_{1} K_{4}-K_{2} K_{2}=1$.

Stability restriction: $|\tau| \rho\left(H_{h}\right)<x_{*}$ with stability threshold x_{*} depending on $\left(a_{1}, b_{1}, \cdots, a_{m}, b_{m}\right) \in \mathbb{R}^{2 m}$. Recall that $\rho\left(H_{h}\right) \rightarrow \infty$ as $h \rightarrow 0$.
Stability barrier: Relative stability threshold $\frac{x_{*}}{m} \leq 2$.

Assumption

There exists $k>0, h_{0}>0, C_{k}>0$ such that for all $h \leq h_{0}$

$$
\left\|H_{h}^{k} u(0)\right\| \leq C_{k} .
$$

where $\|\cdot\|$ is the discrete L_{2} norm.
Provided that the discrete energy is bounded

$$
\frac{h}{2} u(0)^{T} H_{h} \overline{u(0)} \leq C \quad \text { for } \quad h \leq h_{0},
$$

our assumption holds at least for $k=1 / 2$.

The stability matrix

We define the stability matrix of a splitting method as

$$
K(x)=\left(\begin{array}{cc}
1 & 0 \\
-b_{m} x & 1
\end{array}\right)\left(\begin{array}{cc}
1 & a_{m} x \\
0 & 1
\end{array}\right) \cdots\left(\begin{array}{cc}
1 & 0 \\
-b_{1} x & 1
\end{array}\right)\left(\begin{array}{cc}
1 & a_{1} x \\
0 & 1
\end{array}\right),
$$

that is, the result of applying the method to the harmonic oscillator $\dot{q}=p, \dot{p}=-q$ with step-size $\tau=x$. Thus,

$$
K(x)=\left(\begin{array}{cc}
K_{1}(x) & K_{2}(x) \\
K_{3}(x) & K_{4}(x)
\end{array}\right) .
$$

where $K_{1}(x), K_{4}(x)$ (resp. $\left.K_{2}(x), K_{3}(x)\right)$ are even (resp. odd) an

$$
\operatorname{det} K(x)=K_{1}(x) K_{4}(x)-K_{2}(x) K_{3}(x)=1 .
$$

Important: Any splitting method is uniquely determined by its stability matrix.

The stability polynomial of the method is defined as

$$
p(x)=\frac{1}{2} \operatorname{tr}(K(x))=\frac{1}{2}\left(K_{1}(x)+K_{4}(x)\right) .
$$

Proposition

Given $x \in \mathbb{R}$, the following three conditions are equivalent:
(1) $K(x)$ is stable $\left(K(x)^{n}\right.$ is bounded $\left.\forall n\right)$
(2) $K(x)$ is diagonalizable with eigenvalues with modulus one,
(3) $|p(x)| \leq 1$ and there exists a 2×2 real matrix $Q(x)$ such that

$$
Q(x)^{-1} K(x) Q(x)=\left(\begin{array}{cc}
\cos (\phi(x)) & \sin (\phi(x)) \\
-\sin (\phi(x)) & \cos (\phi(x))
\end{array}\right)
$$

where $\phi(x)=\arccos (p(x)) \in \mathbb{R}$.
The stability threshold x_{*} is defined as the largest $x_{*}>0$ such that the stability matrix $K(x)$ is stable $\forall x \in\left(-x_{*}, x_{*}\right)$.

Proposition

Consider a consistent symmetric splitting method with

$$
K(x)=\left(\begin{array}{cc}
p(x) & K_{2}(x) \\
K_{3}(x) & p(x)
\end{array}\right) .
$$

The matrix $K(x)$ is stable for a given $x \in \mathbb{R}$ if and only if there exist $\phi(x), \gamma(x) \in \mathbb{R}$ such that $p(x)=\cos (\phi(x))$ and $K_{2}(x)=-\gamma(x)^{2} K_{3}(x)$. In that case,
$K(x)=\left(\begin{array}{cc}\cos (\phi(x)) & \gamma(x) \sin (\phi(x)) \\ -\frac{\sin (\phi(x))}{\gamma(x)} & \cos (\phi(x))\end{array}\right)=\exp \left(\begin{array}{cc}0 & \gamma(x) \phi(x) \\ -\frac{\phi(x)}{\gamma(x)} & 0\end{array}\right)$.
If the splitting method is of order $2 n$, then

$$
\phi(x)=x+\mathcal{O}\left(x^{2 n+1}\right), \quad \gamma(x)=1+\mathcal{O}\left(x^{2 n}\right), \quad \text { as } \quad x \rightarrow 0
$$

Symmetry implies that $\phi(-x)=-\phi(x)$ and $\gamma(-x)=\gamma(x)$.

Proposition 2 implies that, provided that $|\tau| \rho\left(H_{h}\right)<x_{*}$, $u_{j}=q_{j}+i p_{j} \approx u\left(t_{j}\right)\left(t_{j}=j \tau\right)$ obtained by applying the splitting method to $i \frac{d}{d t} u=H_{h} u$ satisfies

$$
\binom{q_{j}}{p_{j}}=\left(\begin{array}{cc}
\cos \left(t_{j} \tilde{H}_{h}\right) & \gamma\left(\tau H_{h}\right) \sin \left(t_{j} \tilde{H}_{h}\right) \\
-\gamma\left(\tau H_{h}\right)^{-1} \sin \left(t_{j} \tilde{H}_{h}\right) & \cos \left(t_{j} \tilde{H}_{h}\right)
\end{array}\right)\binom{q_{0}}{p_{0}}
$$

where $\tilde{H}_{h}=\frac{1}{\tau} \phi\left(\tau H_{h}\right)=H_{h}+\mathcal{O}\left(\tau^{2 n}\right)$ (as $\left.\tau \rightarrow 0\right)$. Equivalently,

$$
\tilde{u}_{j}=\gamma\left(\tau H_{h}\right)^{-1 / 2} q_{j}+i \gamma\left(\tau H_{h}\right)^{1 / 2} p_{j}
$$

is the exact solution $\tilde{u}_{j}=\tilde{u}\left(t_{j}\right)$ of

$$
i \frac{d}{d t} \tilde{u}=\tilde{H}_{h} \tilde{u}, \quad \tilde{u}(0)=\tilde{u}_{0}
$$

In particular, the L_{2} norm of $\tilde{u}=\tilde{q}+i \tilde{p}$ and the modified energy $\frac{1}{2}\left(\tilde{q}^{T} H_{h} \tilde{q}+\tilde{p}^{T} H_{h} \tilde{p}\right)$ are conserved by the numerical integrator.

Lemma

Consider the numerical solution $u_{j}=q_{j}+i p_{j} \approx u\left(t_{j}\right)\left(t_{j}=\tau n\right)$ obtained by applying a symmetric splitting method to $i \frac{d}{d t} u=H_{h} u$ with $u(0)=q_{0}+i p_{0}$, then

$$
\begin{aligned}
\| u_{j}- & u\left(t_{j}\right)\|\leq\| n\left(\phi\left(\tau H_{h}\right)-\tau H_{h}\right) u(0) \| \\
& +\max \left(\left\|\left(\gamma\left(\tau H_{h}\right)-I\right) u(0)\right\|,\left\|\left(\gamma\left(\tau H_{h}\right)^{-1}-I\right) u(0)\right\|\right)
\end{aligned}
$$

Notation: For each $k<=2 n$ and $r<x_{*}$.

$$
\begin{aligned}
\mu_{k}(r) & =\sup _{-r \leq x \leq r}(r / x)^{k}|(\phi(x) / x-1)| \\
\nu_{k}(r) & =\sup _{-r \leq x \leq r}(r / x)^{k} \max \left(|(\gamma(x)-1)|,\left|\left(\gamma(x)^{-1}-1\right)\right|\right) .
\end{aligned}
$$

Remark: Obviously, $\mu_{k}(\sigma r) \leq \sigma^{k} \mu_{k}(r)$ and $\nu_{k}(\sigma r) \leq \sigma^{k} \nu_{k}(r)$ if $0<\sigma \leq 1$.

Theorem

Consider $i \frac{d}{d t} u=H_{h} u$ with $u(0)=q_{0}+i p_{0}$ satisfying $\left\|H_{h}^{k} u(0)\right\| \leq C_{k}$, and the numerical solution $u_{j}=q_{j}+i p_{j} \approx u\left(t_{j}\right)$ ($t_{j}=j \tau$) of a splitting method of order $2 n \geq k$ and stability threshold x_{*}. If $r=|\tau| \rho\left(H_{h}\right)<x_{*}$ then

$$
\left\|u_{j}-u\left(t_{j}\right)\right\| \leq C_{k}\left(|t| \mu_{k}(r)+\nu_{k}(r)\right) \rho\left(H_{h}\right)^{-k}
$$

Goal: Given $0<r<2$ and $k>0$, construct optimized splitting methods to be used with a prescribed $|\tau|=r / \rho(\Omega)$ (under the assumptions of Theorem 4) that minimize $\mu_{k}(r)+\varepsilon \nu_{k}(r)$ for some $\epsilon>0$:

- $\epsilon \approx 1$ for short term integration,
- $\epsilon \ll 1$ for long term integration.

Examples of known m-stage methods of order $2 n$

- Values of relative stability threshold x_{*} / m,
- $\left(\mu_{k}(r m), \nu_{k}(r m)\right)$ (for a few r and k) in the error estimate

$$
\left\|u_{j}-u\left(t_{j}\right)\right\| \leq C_{k}\left(|t| \mu_{k}(r m)+\nu_{k}(r m)\right) \rho\left(H_{h}\right)^{-k}
$$

with step-size $\tau=\frac{r m}{\rho\left(H_{h}\right)}$.

Method	Leapfrog	Yoshida	Blanes \& Moan
m	1	4	6
$2 n$	2	4	4
x_{*} / m	2	0.393	0.482
$\left(\mu_{2}\left(\frac{5 m}{4}\right), \nu_{2}\left(\frac{5 m}{4}\right)\right)$	$(0.078,0.27)$	(∞, ∞)	(∞, ∞)
$\left(\mu_{2}(m), \nu_{2}(m)\right)$	$(0.0472,0.155)$	(∞, ∞)	(∞, ∞)
$\left(\mu_{2}\left(\frac{3 m}{10}\right), \nu_{2}\left(\frac{3 m}{10}\right)\right)$	$(0.0037,0.011)$	$(0.186,0.230)$	$(0.0002,0.003)$
$\left(\mu_{4}\left(\frac{3 m}{10}\right), \nu_{4}\left(\frac{3 m}{10}\right)\right)$	(∞, ∞)	$(0.186,0.230)$	$(0.0002,0.003)$

For practical purposes, we replace the ∞-norm of functions defined in $[-r, r]$ by the norm $\|\cdot\|_{r}$ defined by

$$
\|u\|_{r}^{2}=\int_{-1}^{1}\left(1-x^{2}\right)^{-1 / 2} u(r x)^{2} d x
$$

Recall that, if

$$
u(x)=\widehat{u}_{0}+2 \sum_{k=1}^{\infty} \widehat{u}_{k} T_{k}(x / r)
$$

is the Chebyshev series expansion of $u(x)$ in the interval $[-r, r]$, (with the Chebyshev polynomials $T_{k}(x)=\cos (k \arccos (x))$,) then

$$
\|u\|_{r}=\sqrt{\pi\left(\widehat{u}_{0}^{2}+2 \sum_{k=1}^{\infty} \widehat{u}_{k}^{2}\right)} .
$$

Theorem 4 motivates us for considering the following optimized splitting methods: Given $r \in \mathbb{R}^{+}, n, m \in \mathbb{Z}^{+}$with $m \geq 2 n-1$, consider the set $\mathcal{S}(r, m, n)$ of stability matrices $K(x)$ of $(2 n)$ th order symmetric splitting methods with m stages with $x_{*}>r$.

Optimization of splitting methods for linear system

Given $r, \varepsilon \in \mathbb{R}^{+}, m, n, k \in \mathbb{Z}^{+}$with $m \geq 2 n-1$ and $k \leq 2 n$, determine $K(x)$ in $S(r, m, n)$ that minimizes

$$
\begin{equation*}
\left\|(\phi(x) / x-1)(r / x)^{k}\right\|_{r}+\varepsilon\left\|(\gamma(x)-1)(r / x)^{k}\right\|_{r} . \tag{2}
\end{equation*}
$$

Difficulty: The objective function is very ill-conditioned with respect to the coefficients of the polynomials $p(x), K_{2}(x), K_{3}(x)$ of $K(x)$ (where $\left.K(x)=p(x)^{2}-K_{2}(x) K_{3}(x)=1\right)$.

Optimal stability polynomials

Given $r \in \mathbb{R}^{+}, k, m \in \mathbb{Z}^{+}$, consider the even polynomial(s) of degree $2 m$ with minimal value of $\|\delta\|_{r}$, where

$$
\delta(x)=(k(x)-1) x^{-k}=(\arccos (p(x))-x) x^{-k-1} .
$$

Observe that $\|\delta\|_{r}$ is a well defined finite real number for an even polynomial $p(x)$, if and only if the following two conditions hold:

- $|p(x)| \leq 1$ for $x \in[-r, r]$,
- $p(x)=\cos (x)+\mathcal{O}\left(x^{k+2}\right)$.

The optimal stability polynomial $p(x)$ must then be of the form

$$
\begin{equation*}
p(x)=\sum_{j=0}^{[(k+1) / 2]} \frac{(-1)^{j}}{(2 j)!} x^{2 j}+x^{k+2} q(x) . \tag{3}
\end{equation*}
$$

Remark: These conditions can fail for arbitrarily small perturbation of the coefficients of a polynomial $p(x)$ satisfying them.

Optimization procedure to construct second-order symmetric splitting methods to apply when $\left\|H_{h}^{2} u(0)\right\| \leq C_{2}$:
(1) Choose $m \geq 3$ and $r<2 m$, and find a polynomial $p(x)$ of degree $2 m$ that minimizes

$$
\left\|(\arccos (p(x)) / x-1)(r / x)^{2}\right\|_{r}
$$

(2) Choose among all odd polynomials $K_{2}(x)=x+\mathcal{O}\left(x^{3}\right)$ and $K_{3}(x)=-x+\mathcal{O}\left(x^{3}\right)$ satisfying $p(x)^{2}-1=K_{2}(x) K_{3}(x)$, the pair $\left(K_{2}, K_{3}\right)$ that minimizes

$$
\nu_{2}(r)=\sup _{-r \leq x \leq r}(r / x)^{2} \max \left(|(\gamma(x)-1)|,\left|\left(\gamma(x)^{-1}-1\right)\right|\right)
$$

where $\gamma(x)=\sqrt{-K_{2}(x) / K_{3}(x)}$.
(3) Find $\left(a_{1}, b_{1}, \cdots, a_{m}, b_{m}\right) \in \mathbb{R}^{2 m}$ of a splitting method having $K(x)$ as stability matrix (if it exists, it is unique).

Example: Coefficients $\mu_{2}(r m)$ for long term integration with step-size $\tau=\frac{r m}{\rho\left(H_{h}\right)}$ of

$$
i \frac{d}{d t} u=H_{h} u
$$

under the assumption $\left\|H_{h}^{2} u(0)\right\| \leq C_{2}$ in the estimate

$$
\left\|u_{j}-u\left(t_{j}\right)\right\| \leq C_{2}\left(|t| \mu_{2}(r m)+\nu_{2}(r m)\right) \rho\left(H_{h}\right)^{-2} .
$$

Method of order 2 with $m=19$ optimized for $r=5 / 4 m$

Method	Leapfrog	Optimized method
m	1	19
$2 n$	2	2
x_{*} / m	2	1.352
$\mu_{2}\left(\frac{5 m}{4}\right)$	0.078	1.04410^{-6}
$\mu_{2}(m)$	0.0472	6.6810^{-7}
$\mu_{2}\left(\frac{3 m}{10}\right)$	0.0037	6.0110^{-8}

Work in progress

- Construction of optimized symmetric splitting methods with large number $2 m$ of compositions of different order $2 n$ under the assumptions $\left\|H_{h}^{k} u(0)\right\| \leq C_{k}$ with $k \leq 2 n$.
- Theoretical and experimental comparison of our splitting methods with truncated Chebyshev series expansions of $e^{i x}$ in $x \in[-r, r]$.
- Extension of results with linear systems of the form

$$
\frac{d}{d t} q=M_{h} p, \quad \frac{d}{d t} p=-N_{h} q
$$

(Maxwel equations, wave equations ...)

- Generalization of splitting methods for the Shrödinger equation with time-dependent potential, i.e.,

$$
i \frac{d}{d t} u=H_{h}(t) u
$$

Under the assumptions of Proposition 2, let
$0=x_{0}<x_{1}<\cdots<x_{l}<x_{*}$ be all the non-negative zeroes of the polynomial $p(x)^{2}-1=K_{2}(x) K_{3}(x)$ in the interval [$0, x_{*}$]. In what follows we adopt the following

Assumption

Each zero $x_{j}(0 \leq j \leq I)$ of the stability polynomial in the interval [$0, x_{*}$) is a zero of multiplicity m_{j} for both $K_{2}(x)$ and $K_{3}(x)$.

Otherwise, $\gamma(x)$ or $\gamma(x)^{-1}$ is unbounded in a neighbourhood of x_{j}. Such an additional assumption tipically holds with $m_{j}=1$, if

$$
K(x) \approx\left(\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right) \quad \text { for } \quad x_{I} \leq x \leq x_{l}
$$

in which case $x_{j} \approx j \pi, K_{2}^{\prime}\left(x_{j}\right) \approx-\cos (j \pi)=(-1)^{j+1}$ and $K_{3}^{\prime}\left(x_{j}\right) \approx \cos (j \pi)=(-1)^{j}$ for $j=1, \ldots, l$.
Then, $\phi(x)$ and $\gamma(x)$ are uniquely defined for $x \in\left(-x_{*}, x_{*}\right)$.

A parametrization of stability polynomials

Given $r \in \mathbb{R}$ and $m, n, l, k \in \mathbb{Z}^{+}$with $m \geq n+2 l$ and $k \leq 2 n$.
For each $\left(\widehat{\theta}_{1}, \ldots, \widehat{\theta}_{m-n-1}\right) \in \mathbb{R}^{m-n-1}$, consider the odd polynomial $\theta(x)$ of degree $2(m-I)-1$ of the form

$$
\theta(x)=x\left(1+(x / r)^{2 n} \sum_{j=1}^{m-n-1} \widehat{\theta}_{j} T_{2(j-1)}(x / r)\right)
$$

We determine an even polynomial $p(x)$ of degree $2 m$ of the form

$$
p(x)=\sum_{j=0}^{n} \frac{(-1)^{j}}{(2 j)!} x^{2 j}+(x / r)^{2 n+2} q(x)
$$

that minimize $\|\epsilon\|_{r}$, where $\epsilon(x)=(p(\theta(x))-\cos (x))(r / x)^{2 n+2}$, under the following constraints: For $j=1, \ldots, l$,

$$
p\left(\alpha_{j}\right)=(-1)^{j}, \quad p^{\prime}\left(\alpha_{j}\right)=0, \quad \text { where } \quad \alpha_{j}=\theta(j \pi) .
$$

