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Consider the linear time-dependent Shrödinger equations in
semi-discrete form

i
d

dt
u = Hhu

(Hh a real symmetric matrix) obtained from a suitable space
discretization, with discretization parameter h.
We consider splitting methods with the ODE system split in the form

d

dt

(
p
q

)
=

A︷ ︸︸ ︷(
0 Hh

0 0

) (
p
q

)
+

B︷ ︸︸ ︷(
0 0

−Hh 0

) (
p
q

)
where u = q + ip. In a splitting method, one replaces the operator
eτ(A+B) by a product of the form

eτ(A+B) ≈ eτa1Aeτb1B · · · eτamAeτbmB

with appropriately chosen a1, b1, · · · , am, bm ∈ R.
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Since

eτHh = eτ(A+B) =

(
cos(τHh) sin(τHh)
− sin(τHh) cos(τHh)

)
, (1)

eτA =

(
I τHh

0 I

)
, eτB =

(
I 0

−τHh I

)
,

in a splitting scheme, (1) is approximated by

(
I 0

−τbmHh I

)(
I τamHh

0 I

)
· · ·
(

I 0
−τb1Hh I

)(
I τa1Hh

0 I

)
=

(
K1(τHh) K2(τHh)
−K3(τHh) K4(τHh)

)
where K1(x) and K4(x) even polynomials, and K2(x) and K3(x)
odd polynomials satisfying K1K4 − K2K2 = 1.
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Stability restriction: |τ |ρ(Hh) < x∗ with stability threshold x∗
depending on (a1, b1, · · · , am, bm) ∈ R2m. Recall that ρ(Hh) →∞
as h → 0.
Stability barrier: Relative stability threshold x∗

m ≤ 2.

Assumption

There exists k > 0, h0 > 0, Ck > 0 such that for all h ≤ h0

||Hk
h u(0)|| ≤ Ck .

where || · || is the discrete L2 norm.

Provided that the discrete energy is bounded

h

2
u(0)THh u(0) ≤ C for h ≤ h0,

our assumption holds at least for k = 1/2.
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The stability matrix

We define the stability matrix of a splitting method as

K (x) =

(
1 0

−bmx 1

)(
1 amx
0 1

)
· · ·

(
1 0

−b1x 1

)(
1 a1x
0 1

)
,

that is, the result of applying the method to the harmonic
oscillator q̇ = p, ṗ = −q with step-size τ = x . Thus,

K (x) =

(
K1(x) K2(x)
K3(x) K4(x)

)
.

where K1(x), K4(x) (resp. K2(x), K3(x)) are even (resp. odd) an

det K (x) = K1(x)K4(x)− K2(x)K3(x) = 1.

Important: Any splitting method is uniquely determined by its
stability matrix.
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The stability polynomial of the method is defined as

p(x) = 1
2tr(K (x)) = 1

2(K1(x) + K4(x)).

Proposition

Given x ∈ R, the following three conditions are equivalent:

1 K (x) is stable (K (x)n is bounded ∀n)

2 K (x) is diagonalizable with eigenvalues with modulus one,

3 |p(x)| ≤ 1 and there exists a 2× 2 real matrix Q(x) such that

Q(x)−1K (x)Q(x) =

(
cos(φ(x)) sin(φ(x))
− sin(φ(x)) cos(φ(x))

)
,

where φ(x) = arccos(p(x)) ∈ R.

The stability threshold x∗ is defined as the largest x∗ > 0 such that
the stability matrix K (x) is stable ∀x ∈ (−x∗, x∗).
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Proposition

Consider a consistent symmetric splitting method with

K (x) =

(
p(x) K2(x)
K3(x) p(x)

)
.

The matrix K (x) is stable for a given x ∈ R if and only if there
exist φ(x), γ(x) ∈ R such that p(x) = cos(φ(x)) and
K2(x) = −γ(x)2K3(x). In that case,

K (x) =

(
cos(φ(x)) γ(x) sin(φ(x))

− sin(φ(x))
γ(x) cos(φ(x))

)
= exp

(
0 γ(x)φ(x)

−φ(x)
γ(x) 0

)
.

If the splitting method is of order 2n, then

φ(x) = x +O(x2n+1), γ(x) = 1 +O(x2n), as x → 0,

Symmetry implies that φ(−x) = −φ(x) and γ(−x) = γ(x).
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Proposition 2 implies that, provided that |τ |ρ(Hh) < x∗,
uj = qj + ipj ≈ u(tj) (tj = jτ) obtained by applying the splitting
method to i d

dt u = Hhu satisfies(
qj

pj

)
=

(
cos(tj H̃h) γ(τHh) sin(tj H̃h)

−γ(τHh)
−1 sin(tj H̃h) cos(tj H̃h)

)(
q0

p0

)
where H̃h = 1

τ φ(τHh) = Hh +O(τ2n) (as τ → 0). Equivalently,

ũj = γ(τHh)
−1/2qj + iγ(τHh)

1/2pj

is the exact solution ũj = ũ(tj) of

i
d

dt
ũ = H̃hũ, ũ(0) = ũ0,

In particular, the L2 norm of ũ = q̃ + i p̃ and the modified energy
1
2(q̃THhq̃ + p̃THhp̃) are conserved by the numerical integrator.



Introduction
Linear stability and backward error analysis

Optimized splitting methods for linear oscillators

Lemma

Consider the numerical solution uj = qj + ipj ≈ u(tj) (tj = τ n)
obtained by applying a symmetric splitting method to i d

dt u = Hhu
with u(0) = q0 + ip0, then

||uj − u(tj)|| ≤ ||n (φ(τHh)− τHh)u(0)||
+max(||(γ(τHh)− I )u(0)||, ||(γ(τHh)

−1 − I )u(0)||).

Notation: For each k <= 2n and r < x∗.

µk(r) = sup
−r≤x≤r

(r/x)k |(φ(x)/x − 1)|,

νk(r) = sup
−r≤x≤r

(r/x)k max(|(γ(x)− 1)|, |(γ(x)−1 − 1)|).

Remark: Obviously, µk(σr) ≤ σkµk(r) and νk(σr) ≤ σkνk(r) if
0 < σ ≤ 1.
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Theorem

Consider i d
dt u = Hhu with u(0) = q0 + ip0 satisfying

||Hk
h u(0)|| ≤ Ck , and the numerical solution uj = qj + ipj ≈ u(tj)

(tj = j τ) of a splitting method of order 2n ≥ k and stability
threshold x∗. If r = |τ |ρ(Hh) < x∗ then

||uj − u(tj)|| ≤ Ck (|t|µk(r) + νk(r)) ρ(Hh)
−k .

Goal: Given 0 < r < 2 and k > 0, construct optimized splitting
methods to be used with a prescribed |τ | = r/ρ(Ω) (under the
assumptions of Theorem 4) that minimize µk(r) + ε νk(r) for some
ε > 0:

ε ≈ 1 for short term integration,

ε << 1 for long term integration.
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Examples of known m-stage methods of order 2n

Values of relative stability threshold x∗/m,

(µk(r m), νk(r m)) (for a few r and k) in the error estimate

||uj − u(tj)|| ≤ Ck (|t|µk(r m) + νk(r m)) ρ(Hh)
−k

with step-size τ = r m
ρ(Hh)

.

Method Leapfrog Yoshida Blanes & Moan

m 1 4 6
2n 2 4 4

x∗/m 2 0.393 0.482
(µ2(

5m
4 ), ν2(

5m
4 )) (0.078, 0.27) (∞,∞) (∞,∞)

(µ2(m), ν2(m)) (0.0472, 0.155) (∞,∞) (∞,∞)
(µ2(

3m
10 ), ν2(

3m
10 )) (0.0037, 0.011) (0.186, 0.230) (0.0002, 0.003)

(µ4(
3m
10 ), ν4(

3m
10 )) (∞,∞) (0.186, 0.230) (0.0002, 0.003)
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For practical purposes, we replace the ∞-norm of functions defined
in [−r , r ] by the norm || · ||r defined by

||u||2r =

∫ 1

−1

(
1− x2

)−1/2
u (r x)2 dx .

Recall that, if

u(x) = û0 + 2
∞∑

k=1

ûkTk(x/r)

is the Chebyshev series expansion of u(x) in the interval [−r , r ],
(with the Chebyshev polynomials Tk(x) = cos(k arccos(x)),) then

||u||r =

√√√√π

(
û2
0 + 2

∞∑
k=1

û2
k

)
.
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Theorem 4 motivates us for considering the following optimized
splitting methods: Given r ∈ R+, n,m ∈ Z+ with m ≥ 2n − 1,
consider the set S(r ,m, n) of stability matrices K (x) of (2n)th
order symmetric splitting methods with m stages with x∗ > r .

Optimization of splitting methods for linear system

Given r , ε ∈ R+, m, n, k ∈ Z+ with m ≥ 2n − 1 and k ≤ 2n,
determine K (x) in S(r ,m, n) that minimizes∣∣∣∣∣∣(φ(x)/x − 1)(r/x)k

∣∣∣∣∣∣
r
+ ε
∣∣∣∣∣∣(γ(x)− 1)(r/x)k

∣∣∣∣∣∣
r
. (2)

Difficulty: The objective function is very ill-conditioned with
respect to the coefficients of the polynomials p(x),K2(x),K3(x) of
K (x) (where K (x) = p(x)2 − K2(x)K3(x) = 1).
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Optimal stability polynomials

Given r ∈ R+, k,m ∈ Z+, consider the even polynomial(s) of
degree 2m with minimal value of ||δ||r , where

δ(x) = (κ(x)− 1)x−k = (arccos(p(x))− x)x−k−1.

Observe that ||δ||r is a well defined finite real number for an even
polynomial p(x), if and only if the following two conditions hold:

|p(x)| ≤ 1 for x ∈ [−r , r ],

p(x) = cos(x) +O(xk+2).

The optimal stability polynomial p(x) must then be of the form

p(x) =

[(k+1)/2]∑
j=0

(−1)j

(2j)!
x2j + xk+2q(x). (3)

Remark: These conditions can fail for arbitrarily small perturbation
of the coefficients of a polynomial p(x) satisfying them.
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Optimization procedure to construct second-order symmetric
splitting methods to apply when ||H2

hu(0)|| ≤ C2:

1 Choose m ≥ 3 and r < 2m, and find a polynomial p(x) of
degree 2m that minimizes

||(arccos(p(x))/x − 1)(r/x)2||r .

2 Choose among all odd polynomials K2(x) = x +O(x3) and
K3(x) = −x +O(x3) satisfying p(x)2 − 1 = K2(x)K3(x), the
pair (K2,K3) that minimizes

ν2(r) = sup
−r≤x≤r

(r/x)2 max(|(γ(x)− 1)|, |(γ(x)−1 − 1)|)

where γ(x) =
√
−K2(x)/K3(x).

3 Find (a1, b1, · · · , am, bm) ∈ R2m of a splitting method having
K (x) as stability matrix (if it exists, it is unique).
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Example: Coefficients µ2(rm) for long term integration with
step-size τ = r m

ρ(Hh)
of

i
d

dt
u = Hhu

under the assumption ||H2
hu(0)|| ≤ C2 in the estimate

||uj − u(tj)|| ≤ C2 (|t|µ2(r m) + ν2(r m)) ρ(Hh)
−2.

Method of order 2 with m = 19 optimized for r=5/4m

Method Leapfrog Optimized method

m 1 19

2n 2 2

x∗/m 2 1.352

µ2(
5m
4 ) 0.078 1.044 10−6

µ2(m) 0.0472 6.68 10−7

µ2(
3m
10 ) 0.0037 6.01 10−8
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Work in progress

Construction of optimized symmetric splitting methods with
large number 2m of compositions of different order 2n under
the assumptions ||Hk

h u(0)|| ≤ Ck with k ≤ 2n.

Theoretical and experimental comparison of our splitting
methods with truncated Chebyshev series expansions of e ix in
x ∈ [−r , r ].

Extension of results with linear systems of the form

d

dt
q = Mhp,

d

dt
p = −Nhq

(Maxwel equations, wave equations . . .)

Generalization of splitting methods for the Shrödinger
equation with time-dependent potential, i.e.,

i
d

dt
u = Hh(t)u.
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Under the assumptions of Proposition 2, let
0 = x0 < x1 < · · · < xl < x∗ be all the non-negative zeroes of the
polynomial p(x)2 − 1 = K2(x)K3(x) in the interval [0, x∗]. In what
follows we adopt the following

Assumption

Each zero xj (0 ≤ j ≤ l) of the stability polynomial in the interval
[0, x∗) is a zero of multiplicity mj for both K2(x) and K3(x).

Otherwise, γ(x) or γ(x)−1 is unbounded in a neighbourhood of xj .
Such an additional assumption tipically holds with mj = 1, if

K (x) ≈
(

cos(x) sin(x)
− sin(x) cos(x)

)
for xl ≤ x ≤ xl ,

in which case xj ≈ jπ, K ′
2(xj) ≈ − cos(jπ) = (−1)j+1 and

K ′
3(xj) ≈ cos(jπ) = (−1)j for j = 1, . . . , l .

Then, φ(x) and γ(x) are uniquely defined for x ∈ (−x∗, x∗).
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A parametrization of stability polynomials

Given r ∈ R and m, n, l , k ∈ Z+ with m ≥ n + 2l and k ≤ 2n.
For each (θ̂1, . . . , θ̂m−n−l) ∈ Rm−n−l , consider the odd polynomial θ(x)
of degree 2(m − l)− 1 of the form

θ(x) = x
(
1 + (x/r)2n

m−n−l∑
j=1

θ̂jT2(j−1)(x/r)
)
.

We determine an even polynomial p(x) of degree 2m of the form

p(x) =
n∑

j=0

(−1)j

(2j)!
x2j + (x/r)2n+2q(x)

that minimize ||ε||r , where ε(x) = (p(θ(x))− cos(x))(r/x)2n+2, under the
following constraints: For j = 1, . . . , l ,

p(αj) = (−1)j , p′(αj) = 0, where αj = θ(jπ).
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