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Introduction

Consider the linear time-dependent Shrodinger equations in
semi-discrete form

d
iau = Hhu

(Hp a real symmetric matrix) obtained from a suitable space
discretization, with discretization parameter h.
We consider splitting methods with the ODE system split in the form

A B

— —~
d (p\ _(0 Hp\ (p (9 0 (P
dt \g/ \0 0 q —Hp, 0 q
where u = g + ip. In a splitting method, one replaces the operator

e™(A+B) by a product of the form

eT(A+B) ~ eTalAe‘rblB .. TamAeTme

- e

with appropriately chosen ag, by, -, am, bm € R.
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in a splitting scheme, (1) is approximated by

/ 0 / TamHh / 0 / Tath
TbmHh / 0 / Tbth / 0 /

_ < Kl(THh) Kz(THh) >
—K3(THp) Ka(THp)

; (1)

where Ki(x) and Ka(x) even polynomials, and K>(x) and K3(x)
odd polynomials satisfying K1 Ky — KoKy = 1.
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Stability restriction: |7|p(Hp) < x. with stability threshold x,
depending on (a1, b1, , am, bm) € R?™. Recall that p(Hp) — oo
as h— 0.

Stability barrier: Relative stability threshold = < 2.

There exists k > 0, hg > 0, C, > 0 such that for all h < hg

|Hiu(0)]] < C.

where || - || is the discrete Ly norm.

Provided that the discrete energy is bounded
h T
(0) Hyu(0) < C for h < ho,

our assumption holds at least for k = 1/2.
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The stability matrix

We define the stability matrix of a splitting method as

(5, (5 - (4 0)(2 ).

that is, the result of applying the method to the harmonic
oscillator ¢ = p, p = —q with step-size 7 = x. Thus,

_ | Kilx)  Ka(x)
K(X)_(K3(x) Ka(x) >

where Ki(x), Ka(x) (resp. Ka(x), K3(x)) are even (resp. odd) an
det K(x) = Ki(x)Ka(x) — Ka(x)K3z(x) = 1.

Important: Any splitting method is uniquely determined by its
stability matrix.
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The stability polynomial of the method is defined as
p(x) = 3tr(K(x)) = 3(Ki(x) + Ka(x))-

Given x € R, the following three conditions are equivalent:
@ K(x) is stable (K(x)" is bounded ¥n)
@ K(x) is diagonalizable with eigenvalues with modulus one,
Q |p(x)| <1 and there exists a 2 x 2 real matrix Q(x) such that

) _( cos(@)  sin(@())
QL) K()Qx) = ( —sin($(x))  cos($(x)) )

where ¢(x) = arccos(p(x)) € R.

The stability threshold x, is defined as the largest x, > 0 such that
the stability matrix K(x) is stable Vx € (—x, x).
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Consider a consistent symmetric splitting method with

o (&) 1)

The matrix K(x) is stable for a given x € R if and only if there
exist ¢(x),v(x) € R such that p(x) = cos(¢(x)) and
Ka(x) = —v(x)2K3(x). In that case,

cos(6(x))  (x)sin((x) 0 1(x)6()
K(x) = < sin(¢/(x)) > = exp( GO N ) '

) cos(¢(x))

7(x)

If the splitting method is of order 2n, then
d(x) = x + O, y(x)=1+0(x*"), as x—0,

Symmetry implies that ¢(—x) = —¢(x) and y(—x).= v(x).
D
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Proposition 2 implies that, provided that |7|p(Hp) < x,
uj = qj + ip; = u(t;) (tj = j7) obtained by applying the splitting
method to i%u = Hju satisfies

(5) = (s et ) (%) |

where Hj, = L(THp,) = Hyp + O(72") (as 7 — 0). Equivalently,

T

-1/2

B = y(rHp) "2 + in(THn)?p;

is the exact solution &I; = i(t;) of

In particular, the L, norm of & = g+ ip and the modified energy
%(E]TH;,E] + BT Hpp) are conserved by the numerical integrator.
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Consider the numerical solution u; = q; + ip; ~ u(t;) (tj =7n)
obtained by applying a symmetric splitting method to i %u = Hpu
with u(0) = qo + ipo, then

luj —u(t)l] < [n($(THn) — THr)u(0)]|
+max(|[(v(rHp) — 1u(O)I], [|(+(rHa) ™ — 1)u(0)]]).

Notation: For each k <= 2n and r < x,.
p(r) = sup_ (r/x)¥(60)/x D),

ve(r) = sup (r/x)* max(|(v(x) = 1), |(v(x) 7" = 1))

—r<x<r

Remark: Obviously, ux(or) < o¥puk(r) and vi(or) < okuy(r) if
0<o<1.



Linear stability and backward error analysis

Theorem

Consider i-%u = Hyu with u(0) = qo + ipo satisfying

||[HKu(0)|| < Ck, and the numerical solution u; = q; + ip; ~ u(t;)
(tj = j ) of a splitting method of order 2n > k and stability
threshold x.. If r = |7|p(Hp) < x. then

luj — ()l < Cic(|tluw(r) + v(r)) p(Hn) 5.

Goal: Given 0 < r < 2 and k > 0, construct optimized splitting
methods to be used with a prescribed |7| = r/p(2) (under the
assumptions of Theorem 4) that minimize px(r) + € vk(r) for some
€e>0:

@ ¢ =~ 1 for short term integration,

@ ¢ << 1 for long term integration.
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Examples of known m-stage methods of order 2n

@ Values of relative stability threshold x./m,
o (uk(rm),vi(rm)) (for a few r and k) in the error estimate

oy = u(t)ll < Cie(|tluk(r m) + vic(r m)) p(Hp) ™

. .  rm
with step-size 7 = FGAR

’ Method H Leapfrog \ Yoshida \ Blanes & Moan ‘
m 1 4 6
2n 2 4 4
x./m 2 0.393 0.482
(12(C), v2(3T)) (0.078,0.27) (00, 00) (00, 0)
(u2(m), va(m)) (0.0472,0.155) (00, 0) (00, 0)
(ﬂz(%),VQ(%)) (0.0037,0.011) | (0.186,0.230) | (0.0002,0.003)
(1a(32), va(32)) (00, 00) (0.186,0.230) | (0.0002,0.003)
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For practical purposes, we replace the co-norm of functions defined
in [—r, r] by the norm || - ||, defined by

1
l|ul|? = / (1- x2)_1/2 u(rx)? dx.
-1
Recall that, if
u(x) =To+2) Uk Ti(x/r)
k=1

is the Chebyshev series expansion of u(x) in the interval [—r, r],
(with the Chebyshev polynomials Ty(x) = cos(k arccos(x)),) then

o0
ully = |7 (ag +2Zaﬁ>.
k=1
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Theorem 4 motivates us for considering the following optimized
splitting methods: Given r € R*, n,m € Z* with m > 2n — 1,
consider the set S(r, m, n) of stability matrices K(x) of (2n)th
order symmetric splitting methods with m stages with x, > r.

Optimization of splitting methods for linear system

Given r,e € RT, m,n, k € ZT with m > 2n—1 and k < 2n,
determine K(x) in S(r, m, n) that minimizes

[60/x = 00r/¥|| +el|ox)-Demk|| . @

Difficulty: The objective function is very ill-conditioned with
respect to the coefficients of the polynomials p(x), Ka(x), K3(x) of
K(x) (where K(x) = p(x)?> — Ka(x)K3(x) = 1).
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Optimal stability polynomials

Given r € R™, k,m € Z*, consider the even polynomial(s) of
degree 2m with minimal value of ||d]|,, where

5(x) = (k(x) — 1)x % = (arccos(p(x)) — x)x~*~1.

Observe that ||d]|, is a well defined finite real number for an even
polynomial p(x), if and only if the following two conditions hold:
o |p(x)| <1forxe[—r,r],
o p(x) = cos(x) + O(x**2).
The optimal stability polynomial p(x) must then be of the form

/2l gy
)= D gy +x a0, (3)
j=0 '

Remark: These conditions can fail for arbitrarily small perturbation
of the coefficients of a polynomial p(x) satisfying them.
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Optimization procedure to construct second-order symmetric
splitting methods to apply when ||H2u(0)|| < G:

@ Choose m > 3 and r < 2m, and find a polynomial p(x) of
degree 2m that minimizes

[arccos(p(x))/x — 1)(r/x)?]ls-

@ Choose among all odd polynomials Kz(x) = x 4+ O(x3) and
Ks(x) = —x + O(x3) satisfying p(x)? — 1 = Ka(x)Kz(x), the
pair (K3, K3) that minimizes

va(r) = sup (r/x)* max(|(v(x) = 1], [(v(x) 7" = 1)])

—r<x<r

where v(x) = y/—Ka(x)/Kz(x).
© Find (a1, b1, ,am, bm) € R?™ of a splitting method having
K (x) as stability matrix (if it exists, it is unique).
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Example: Coefficients pa(rm) for long term integration with

A — rm
step-size 7 = _r7y of

iau = Hupu

under the assumption ||H2u(0)|| < G, in the estimate
luj = u(t)ll < G (|tlua(r m) +va(r m)) p(Hp) =

Method of order 2 with m = 19 optimized for r=5/4m

] Method H Leapfrog \ Optimized method ‘
m 1 19
2n 2 2
Xe/m 2 1.352
12(32) || 0.078 1.044 107
pa(m) 0.0472 6.68 10~/
12(32) || 0.0037 6.01 108
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Work in progress

@ Construction of optimized symmetric splitting methods with
large number 2m of compositions of different order 2n under
the assumptions ||HKu(0)|| < Cx with k < 2n.

@ Theoretical and experimental comparison of our splitting
methods with truncated Chebyshev series expansions of e in
x € [—r,r].

@ Extension of results with linear systems of the form

d
9= Mwp, o p=—Nhg
(Maxwel equations, wave equations .. .)

@ Generalization of splitting methods for the Shrodinger

equation with time-dependent potential, i.e.,

d
I.EU = Hh(t)u
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Under the assumptions of Proposition 2, let

0=xp <x3 <:--<x <X be all the non-negative zeroes of the
polynomial p(x)? — 1 = Ka(x)K3(x) in the interval [0, x.]. In what
follows we adopt the following

Each zero x; (0 < j < /) of the stability polynomial in the interval
[0, %) is a zero of multiplicity m; for both K>(x) and K3(x).

Otherwise, y(x) or v(x)~! is unbounded in a neighbourhood of x;.
Such an additional assumption tipically holds with m; =1, if

cos(x)  sin(x)

K(x) ~ ( —sin(x) cos(x)

> for x < x < x,

in which case x; ~ jm, K}(xj) ~ —cos(jm) = (—1)*! and
Ki(x;) ~ cos(jm) = (—1) for j=1,....1.
Then, ¢(x) and ~(x) are uniquely defined for x € (—x, xs).
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A parametrization of stability polynomials

Given r € R and m, n, I,k € Z* with m > n+ 2/ and k < 2n.
For each (01,... 9,,, n—y) € RM=1— ! consider the odd polynomial 0(x)
of degree 2(m — ) — 1 of the form

We determine an even polynomial p(x) of degree 2m of the form
Z P 1 (/2

that minimize ||¢||,, where e(x) = ( (6(x)) — cos(x))(r/x)?>"*2, under the
following constraints: For j=1,...,/,

p(ej) = (1Y, p'(a;) =0, where o =0(jr).
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