Splitting methods for linear oscillators

Ander Murua (in collaboration with Fernando Casas and Sergio Blanes)

Lyon, November 2006

< □ > < 同 > < 回 > <

Consider a highly oscillatory system of the form (Ω symmetric)

$$rac{d^2}{dt^2}q=-\Omega^2 q-U(q).$$

with Hamiltonian function

$$H(q,p) = \frac{1}{2}(p^{T}p + q^{T}\Omega^{2}q + U(q)).$$

Idea: Consider composition integrators based on the splitting

$$H(q,p) = T(p) + V(q) + U(q),$$

where $T(p) = \frac{1}{2}p^T p$, $V(q) = \frac{1}{2}q^T \Omega^2 q$.

Goal: Construct methods to be used with relatively large τ .

For instance, the operator $e^{\tau(T+V+U)}$ can be replaced by

$$e^{\tau a_1 T} e^{\tau b_1 V} \cdots e^{\tau a_m T} e^{\tau b_m V} e^{\tau U} e^{\tau b_m V} e^{\tau a_m T} \cdots e^{\tau b_1 V} e^{\tau a_1 T}$$
(1)

where $a_1, b_1, \dots, a_m, b_m \in \mathbb{R}$. In particular, if $e^{\frac{1}{2}\tau(T+V)}$ is well approximated by

$$e^{\tau b_m V} e^{\tau a_m T} \cdots e^{\tau b_1 V} e^{\tau a_1 T}$$
(2)

then, (1) is an approximation of the method of Deuflhard (1979).

In principle, (1) might give a good integrator even if (2) is a poor approximation to $e^{\frac{1}{2}\tau(T+V)}$.

Of course, for U = 0 we get in particular

$$e^{\tau(T+V)} \approx e^{\tau a_1 T} e^{\tau b_1 V} \cdots e^{\tau a_m T} e^{\tau b_m V} e^{\tau b_m V} e^{\tau a_m T} \cdots e^{\tau b_1 V} e^{\tau a_1 T}.$$
 (3)

Our present goal

Obtain efficient approximations of $e^{\tau(T+V)}$ of the form (3).

Future work:

- Approximate e^{τ(T+V+U)} by inserting exponentials of the form e^{c_jτU} in (3).
- More generally, insert terms of the form $e^{c_j \tau U_j}$ with

 $U_j(q) = U(P_j(\tau \Omega)q)$, where $P_j(z)$ is a polynomial in *z*.

• Number of inserted terms << Number 2*m* of factors in (3).

Linear stability of splitting methods Application to linear systems From the stability polynomial to the splitting scheme

When
$$T(p) = \frac{1}{2}p^T p$$
, $V(q) = \frac{1}{2}q^T \Omega^2 q$,

$$e^{\tau(T+V)} \rightarrow \begin{pmatrix} \cos(\tau\Omega) & \Omega^{-1}\sin(\tau\Omega) \\ -\Omega\sin(\tau\Omega) & \cos(\tau\Omega) \end{pmatrix}, \quad (4)$$

$$e^{\tau T} \rightarrow \begin{pmatrix} I & \tau I \\ 0 & I \end{pmatrix}, \quad e^{\tau V} \rightarrow \begin{pmatrix} I & 0 \\ -\tau\Omega^2 & I \end{pmatrix},$$

Thus, in a splitting scheme, (4) is approximated by

$$\begin{pmatrix} I & 0 \\ -\tau b_m \Omega^2 & I \end{pmatrix} \begin{pmatrix} I & \tau a_m I \\ 0 & I \end{pmatrix} \cdots \begin{pmatrix} I & 0 \\ -\tau b_1 \Omega^2 & I \end{pmatrix} \begin{pmatrix} I & \tau a_1 I \\ 0 & I \end{pmatrix}$$
$$= \begin{pmatrix} K_1(\tau \Omega) & \Omega^{-1} K_2(\tau \Omega) \\ -\Omega K_3(\tau \Omega) & K_4(\tau \Omega) \end{pmatrix}$$

 $K_1(x)$ and $K_4(x)$ even, $K_2(x)$ and $K_3(x)$) odd.

Outline

Linear stability of splitting methods Application to linear systems From the stability polynomial to the splitting scheme

Motivation: Splitting methods for highly oscillatory systems

- Splitting methods applied to systems of linear oscillators
 - Linear stability of splitting methods
 - Application to linear systems
 - From the stability polynomial to the splitting scheme
- 3 Optimized splitting methods systems of linear oscillators
 - A family of optimized methods
 - Neighbouring constrained minimization problem
 - Efective efficiency diagrams for stability polynomials

Linear stability of splitting methods Application to linear systems From the stability polynomial to the splitting scheme

The stability matrix and the stability polynomial

We define the stability matrix of a splitting method as

$$\mathcal{K}(\mathbf{x}) = \begin{pmatrix} 1 & 0 \\ -b_m \mathbf{x} & 1 \end{pmatrix} \begin{pmatrix} 1 & a_m \mathbf{x} \\ 0 & 1 \end{pmatrix} \cdots \begin{pmatrix} 1 & 0 \\ -b_1 \mathbf{x} & 1 \end{pmatrix} \begin{pmatrix} 1 & a_1 \mathbf{x} \\ 0 & 1 \end{pmatrix},$$

that is, the result of applying the method to the harmonic oscillator $\dot{q} = p$, $\dot{p} = -q$ with step-size $\tau = x$. Thus,

$$\mathcal{K}(\mathbf{x}) = \left(egin{array}{cc} \mathcal{K}_1(\mathbf{x}) & \mathcal{K}_2(\mathbf{x}) \ \mathcal{K}_3(\mathbf{x}) & \mathcal{K}_4(\mathbf{x}) \end{array}
ight).$$

where $K_1(x)$, $K_4(x)$ (resp. $K_2(x)$, $K_3(x)$) are even (resp. odd) an

$$\det K(x) = K_1(x)K_4(x) - K_2(x)K_3(x) = 1.$$

The stability polynomial of the method is defined as

$$p(x) = \frac{1}{2} \operatorname{tr}(K(x)) = \frac{1}{2}(K_1(x) + K_4(x)).$$

Linear stability of splitting methods Application to linear systems From the stability polynomial to the splitting scheme

Proposition

K(x) is stable ($K(x)^n$ is bounded $\forall n$) for a given $x \in \mathbb{R}$ if and only if any of the following two conditions hold

The matrix K(x) is diagonalizable with eigenvalues with modulus one,

2 $|p(x)| \le 1$ and there exists a 2 \times 2 matrix Q(x) such that

$$Q(x)^{-1}K(x)Q(x) = \left(egin{array}{cc} \cos(\Phi(x)) & \sin(\Phi(x)) \ -\sin(\Phi(x)) & \cos(\Phi(x)) \end{array}
ight)$$

where $\Phi(x) = \arccos(p(x))$.

The stability threshold x_* is defined as the largest $x_* > 0$ such that the stability matrix K(x) is stable $\forall x \in (-x_*, x_*)$.

Outline

Linear stability of splitting methods Application to linear systems From the stability polynomial to the splitting scheme

Motivation: Splitting methods for highly oscillatory systems

- 2 Splitting methods applied to systems of linear oscillators
 - Linear stability of splitting methods
 - Application to linear systems
 - From the stability polynomial to the splitting scheme
- 3 Optimized splitting methods systems of linear oscillators
 - A family of optimized methods
 - Neighbouring constrained minimization problem
 - Efective efficiency diagrams for stability polynomials

Linear stability of splitting methods Application to linear systems From the stability polynomial to the splitting scheme

Consider $\dot{q} = p$, $\dot{p} = -\Omega^2 q$. If for the stability polynomial

$$p(x) = \cos(x) + \mathcal{O}(x^{2n+2})$$
 as $x \to 0$,

then, there exists $ilde{\Omega} = \Omega + \mathcal{O}(au^{2n})$ (as au o 0) such that

$$\begin{pmatrix} I & 0 \\ -\tau b_m \Omega^2 & I \end{pmatrix} \begin{pmatrix} I & \tau a_m I \\ 0 & I \end{pmatrix} \cdots \begin{pmatrix} I & 0 \\ -\tau b_1 \Omega^2 & I \end{pmatrix} \begin{pmatrix} I & \tau a_1 I \\ 0 & I \end{pmatrix}$$

is similar to

$$egin{pmatrix} \cos(au ilde{\Omega}) & ilde{\Omega}^{-1}\sin(au ilde{\Omega}) \ - ilde{\Omega}\sin(au ilde{\Omega}) & \cos(au ilde{\Omega}) \end{pmatrix}$$

provided that $|\tau|\rho(\Omega) < x_*$.

Linear stability of splitting methods Application to linear systems From the stability polynomial to the splitting scheme

▲ロト ▲圖ト ▲ 国ト ▲ 国ト

Consider $\dot{u} = i\Omega u$. If we put u = p + iq, then

$$\dot{q} = \Omega p, \quad \dot{p} = -\Omega q.$$

Similarly to previous case, if $p(x) = \cos(x) + O(x^{2n+2})$, then, there exists $\tilde{\Omega} = \Omega + O(\tau^{2n})$ such that

$$\begin{pmatrix} I & 0 \\ -\tau b_m \Omega & I \end{pmatrix} \begin{pmatrix} I & \tau a_m \Omega \\ 0 & I \end{pmatrix} \cdots \begin{pmatrix} I & 0 \\ -\tau b_1 \Omega & I \end{pmatrix} \begin{pmatrix} I & \tau a_1 \Omega \\ 0 & I \end{pmatrix}$$

is similar to

$$ig(egin{array}{c} \cos(au ilde{\Omega}) & \sin(au ilde{\Omega}) \ -\sin(au ilde{\Omega}) & \cos(au ilde{\Omega}) \ \end{array}ig)$$

provided that $|\tau|\rho(\Omega) < x_*$.

Linear stability of splitting methods Application to linear systems From the stability polynomial to the splitting scheme

Application to more general linear systems

Consider the expansion $x + \phi_3 x^3 + \phi_5 x^5 + \cdots$ in powers of x of $\Phi(x) = \arccos(p(x))$. Then, there exists r > 0 ($r \le x_*$) such that the following holds for arbitrary linear systems of the form $\dot{q} = Mp$, $\dot{p} = -Nq$:

$$\left(\begin{array}{cc}I&0\\-hb_mN&I\end{array}\right)\left(\begin{array}{cc}I&ha_mM\\0&I\end{array}\right)\cdots\left(\begin{array}{cc}I&0\\-hb_1N&I\end{array}\right)\left(\begin{array}{cc}I&ha_1M\\0&I\end{array}\right)$$

is similar to $\exp\left(\begin{array}{cc} 0 & h\tilde{M} \\ -h\tilde{N} & 0 \end{array}\right)$, where

$$\begin{split} \tilde{M} &= M(1 + \phi_3 \, h^2(NM) + \phi_5 \, h^4(NM)^2 + \cdots), \\ \tilde{N} &= N(1 + \phi_3 \, h^2(MN) + \phi_5 \, h^4(MN)^2 + \cdots), \end{split}$$

provided that the (non-necessarily diagonalizable) matrices *NM* and *MN* are such that $|\tau| \min(\sqrt{\rho(NM)}, \sqrt{\rho(MN)}) < r_{\bullet}$

Linear stability of splitting methods Application to linear systems From the stability polynomial to the splitting scheme

Application to more general linear systems

Consider the expansion $x + \phi_3 x^3 + \phi_5 x^5 + \cdots$ in powers of x of $\Phi(x) = \arccos(p(x))$. Then, there exists r > 0 ($r \le x_*$) such that the following holds for arbitrary linear systems of the form $\dot{q} = Mp$, $\dot{p} = -Nq$:

$$\left(\begin{array}{cc}I&0\\-hb_mN&I\end{array}\right)\left(\begin{array}{cc}I&ha_mM\\0&I\end{array}\right)\\\cdots\\\left(\begin{array}{cc}I&0\\-hb_1N&I\end{array}\right)\left(\begin{array}{cc}I&ha_1M\\0&I\end{array}\right)$$

is similar to

$$\exp\left(\begin{array}{cc}0 & h\tilde{M}\\ -h\tilde{N} & 0\end{array}\right), \tilde{M} = M(1+\phi_3 h^2(NM)+\phi_5 h^4(NM)^2+\cdots),$$
$$\tilde{N} = N(1+\phi_3 h^2(MN)+\phi_5 h^4(MN)^2+\cdots),$$

provided that the (non-necessarily diagonalizable) matrices *NM* and *MN* are such that $|\tau| \min(\sqrt{\rho(NM)}, \sqrt{\rho(MN)}) < r_{\pm}$

Outline

Linear stability of splitting methods Application to linear systems From the stability polynomial to the splitting scheme

Motivation: Splitting methods for highly oscillatory systems

- 2 Splitting methods applied to systems of linear oscillators
 - Linear stability of splitting methods
 - Application to linear systems
 - From the stability polynomial to the splitting scheme
- 3 Optimized splitting methods systems of linear oscillators
 - A family of optimized methods
 - Neighbouring constrained minimization problem
 - Efective efficiency diagrams for stability polynomials

We are mainly interested in symmetric splitting methods, that is, $K(x)^{-1} = K(-x)$ (i.e. $K_1(x) = K_4(x)$).

Assume that p(x) is an even polynomial satisfying that the smallest positive zero with odd multiplicit of $p(x)^2 - 1$ is x_* , and

$$p(x) = 1 - rac{x^2}{2} + \mathcal{O}(x^4) ext{ as } x o 0,$$

Then, there exists a finite number of symmetric stability matrices of the form

$$\mathcal{K}(\mathbf{x}) = \left(egin{array}{cc} p(\mathbf{x}) & \mathcal{K}_2(\mathbf{x}) \ \mathcal{K}_3(\mathbf{x}) & p(\mathbf{x}) \end{array}
ight)$$

with stability interval $(-x_*, x_*)$.

All of them are similar to each other for $x \in (-x_*, x_*)$.

Linear stability of splitting methods Application to linear systems From the stability polynomial to the splitting scheme

Consider the matrix

$$\mathcal{K}(x) = \left(\begin{array}{ccc} 1 - \frac{1}{2}x^2 + \frac{1}{36}x^4 & x - \frac{2}{9}x^3 + \frac{1}{108}x^5 \\ -x + \frac{1}{12}x^3 & 1 - \frac{1}{2}x^2 + \frac{1}{36}x^4 \end{array}\right)$$

It is straightforward to check that it can be decomposed as

$$\left(\begin{array}{cc}1 & \frac{x}{3}\\0 & 1\end{array}\right)\left(\begin{array}{cc}1 & 0\\-\frac{x}{2} & 1\end{array}\right)\left(\begin{array}{cc}1 & \frac{x}{3}\\0 & 1\end{array}\right)\left(\begin{array}{cc}1 & 0\\-\frac{x}{2} & 1\end{array}\right)\left(\begin{array}{cc}1 & \frac{x}{3}\\0 & 1\end{array}\right).$$

Let us now consider the matrix

$$\mathcal{K}(x) = \begin{pmatrix} 1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 & x - \frac{1}{4}x^3 + \frac{1}{48}x^5 \\ -x + \frac{1}{2}x^3 & 1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 \end{pmatrix}.$$
 (5)

It is easy to check that (5) coincides with

$$\left(\begin{array}{cc}1 & \frac{1}{2}x\\0 & 1\end{array}\right)\left(\begin{array}{cc}1 & 0\\-x + \frac{1}{12}x^3 & 1\end{array}\right)\left(\begin{array}{cc}1 & \frac{1}{2}x\\0 & 1\end{array}\right)$$

Linear stability of splitting methods Application to linear systems From the stability polynomial to the splitting scheme

Proposition

Given a 2 × 2 matrix K(x) with polynomial entries satisfying that det $K(x) \equiv 1$, $K_2(x)$ and $K_3(x)$ are odd polynomials, and $K_1(x)$ and $K_4(x)$ are even polynomials with $K_1(0) = K_4(0) = 1$, there exists a unique decomposition of K(x) of the form

$$\left(\begin{array}{cc}1&0\\B_m(x)&1\end{array}\right)\left(\begin{array}{cc}1&A_m(x)\\0&1\end{array}\right)\cdots\left(\begin{array}{cc}1&0\\B_1(x)&1\end{array}\right)\left(\begin{array}{cc}1&A_1(x)\\0&1\end{array}\right)$$

where $A_j(x), B_j(x)$ (j = 1, ..., m) are odd polynomials in x with

$$A_j(x) \neq 0, \quad B_{j-1}(x) \neq 0, \quad j=2,\ldots,m.$$

That factorization corresponds to a generalized splitting method. If K(x) is the stability matrix of a standard splitting method, then $A_j(x) = a_j x$ and $B_j(x) = -b_j x$. Any splitting method is uniquely determined by its stability matrix!

Outline

- Motivation: Splitting methods for highly oscillatory systems
- 2 Splitting methods applied to systems of linear oscillators
 - Linear stability of splitting methods
 - Application to linear systems
 - From the stability polynomial to the splitting scheme
- 3 Optimized splitting methods systems of linear oscillators
 - A family of optimized methods
 - Neighbouring constrained minimization problem
 - Efective efficiency diagrams for stability polynomials

A family of optimized methods Neighbouring constrained minimization problem Efective efficiency diagrams for stability polynomials

We want to obtain accurate symmetric schemes with large stability intervals $(-x_*, x_*)$.

A family of stability matrices

Given $m, n \ge 1$, $l \ge 0$, such that $m \ge 2n + l - 1$, we consider $p(x) = K_1(x)$ of degree 2m and $K_2(x)$ and $K_3(x)$ of degrees 2m + 1 and 2m - 1 resp., satisfying that

$$egin{aligned} &\mathcal{K}_1(x)^2 - \mathcal{K}_2(x)\mathcal{K}_3(x) = 1, & \mathcal{K}_1(x) = \cos(x) + \mathcal{O}(x^{2n+2}), \ &\mathcal{K}_2(x) = \sin(x) + \mathcal{O}(x^{2n+1}), & \mathcal{K}_3(x) = -\sin(x) + \mathcal{O}(x^{2n+1}), \end{aligned}$$

and there exist $x_j \approx j\pi$, $j = 1, \ldots, I$, such that

$$egin{array}{rcl} \mathcal{K}_1(x_j) &=& (-1)^j, & \mathcal{K}_1'(x_j) = 0, \ \mathcal{K}_2(x_j) &=& 0, & \mathcal{K}_3(x_j) = 0. \end{array}$$

There are m - (2n + I - 1) free parameters.

A family of optimized methods Neighbouring constrained minimization problem Efective efficiency diagrams for stability polynomials

Let us consider the Chebyshev norm $|| \cdot ||_l$ defined by

$$||f(x)||_{l} = \int_{-1}^{1} \left(1 - x^{2}\right)^{-1/2} f\left(\frac{(2l+1)\pi x}{2}\right)^{2} dx.$$

Determine the free parameters of K(x) in such a way that

$$\left\|\frac{K_{1}(x) - \cos(x)}{x^{2n+2}}\right\|_{I}^{2} + \left\|\frac{K_{2}(x) - \sin(x)}{x^{2n+1}}\right\|_{I}^{2} + \left\|\frac{K_{3}(x) + \sin(x)}{x^{2n+1}}\right\|_{I}^{2}$$

is minimized (equivalent to minimizing in the least square sense the coefficients of their Chebyshev series expansion). This is a nonlinearly constrained minimization problem that has (for moderate m) a high number of local minima. Good initial guesses are required for the numerical search.

Outline

- Motivation: Splitting methods for highly oscillatory systems
- 2 Splitting methods applied to systems of linear oscillators
 - Linear stability of splitting methods
 - Application to linear systems
 - From the stability polynomial to the splitting scheme
- Optimized splitting methods systems of linear oscillators
 - A family of optimized methods
 - Neighbouring constrained minimization problem
 - Efective efficiency diagrams for stability polynomials

A family of optimized methods Neighbouring constrained minimization problem Efective efficiency diagrams for stability polynomials

Assume that $m \ge 2(n+l) - 1$.

Find $\hat{K}_1(x)$, $\hat{K}_2(x)$, $\hat{K}_3(x)$ of degrees 2m, 2m + 1, and 2m - 1 resp., such that

$$\left\| \frac{\mathcal{K}_1(x) - \cos(x)}{x^{2n+2}} \right\|_{L^2}^2$$

is minimized under the constraints

$$egin{aligned} &\hat{K}_1(x)^2 - \hat{K}_2(x)\hat{K}_3(x) = 1, & \hat{K}_1(x) = \cos(x) + \mathcal{O}(x^{2n+2}), \ &\hat{K}_2(x) = \sin(x) + \mathcal{O}(x^3), & \hat{K}_3(x) = -\sin(x) + \mathcal{O}(x^3), \ &\hat{K}_1(j\pi) = (-1)^j, \ &\hat{K}_1'(j\pi) = 0, & \hat{K}_2(j\pi) = 0, \ &\hat{K}_3(j\pi) = 0. \end{aligned}$$

All the local minima of that minimization problem can be explicitly obtained.

A family of optimized methods Neighbouring constrained minimization problem Efective efficiency diagrams for stability polynomials

< □ > < 同 > < 回 > < 回 > < 回 >

A family of stability polynomials

We construct a stability polynomial $p_{n,l}(x)$ for arbitrary $n, l \ge 0$, as follows:

$$p_{n,l}(x) = 1 + \sum_{j=1}^{n} (-1)^j \frac{x^{2j}}{(2j)!} + x^{2n+2} \sum_{j=0}^{2l} d_j x^{2j}$$

where the coefficients d_j are uniquely determined by the requirement that

$$p_{n,l}(j\pi) = (-1)^j, \quad p'_{n,l}(j\pi) = 0, \quad j = 1, \dots, l.$$

Note the interpolatory nature of $p_{n,l}(x)$, as

$$\cos(j\pi)=(-1)^j,\quad \cos'(j\pi)=-\sin(j\pi)=0,\quad \forall j\geq 1.$$

A family of optimized methods Neighbouring constrained minimization problem Efective efficiency diagrams for stability polynomials

A more general family of stability polynomials

For
$$n, k, l \ge 0, k = m - 2(n + l) - 1,$$

 $p_{n,l,k}(x) = p_{n,l}(x) + x^{2n+2} \prod_{j=1}^{l} (x^2 - (j\pi)^2)^2 \sum_{i=0}^{k} e_i x^{2i},$

where the e_i are uniquely determined by requiring that

$$||\frac{p_{n,l,k}(x) - \cos(x)}{x^{2n+2}}||_{l}$$

is minimized. Each local minimum of the neighbouring constrained minimization problem corresponds to one different $\hat{K}(x)$ having $p_{n,l,k}(x)$ as stability polynomial. One can choose among them the best candidates as initial guesses in the numerical search to obtain the local minimia of the original constrained minimization problem (either by a Newton-type iteration or by using a continuation algorithm).

Outline

- Motivation: Splitting methods for highly oscillatory systems
- 2 Splitting methods applied to systems of linear oscillators
 - Linear stability of splitting methods
 - Application to linear systems
 - From the stability polynomial to the splitting scheme
- Optimized splitting methods systems of linear oscillators
 - A family of optimized methods
 - Neighbouring constrained minimization problem
 - Efective efficiency diagrams for stability polynomials

A family of optimized methods Neighbouring constrained minimization problem Efective efficiency diagrams for stability polynomials

The long-term error accuracy of splitting methods applied to linear systems is related to the difference

$$igg(egin{array}{cc} \cos(\Phi(x)) & \sin(\Phi(x)) \ -\sin(\Phi(x)) & \cos(\Phi(x)) \end{array} igg) - igg(egin{array}{cc} \cos(x) & \sin(x) \ -\sin(x) & \cos(x) \end{array} igg),$$

where $\Phi(x) = \arccos(p(x))$, that is, the long-term effective error corresponds to $|\Phi(x) - x|$. To fairly compare of method with different number 2m of factors, we consider

 $|\Phi(mx) - mx|$

That is, we compare a method with 2m factors applied with step-size τ to m steps of Störmer-Verlet with step-size τ/m .

We show diagrams in double logarithmic scale. That is, $\log_{10}(|mx - \arccos(p(mx))|)$ versus $\log_{10}(x)$.

A family of optimized methods Neighbouring constrained minimization problem Efective efficiency diagrams for stability polynomials

Leapfrog (m = 2), optimal stability method n = 3 and m = 6(Gray & McLachlan), and $p_{1,14,9}(x)$ (m = 38), $p_{1,18,13}(x)$, and $p_{7,18,7}(x) \ (m = 50).$ -0.8 -0.6 -0.2-1 -0.4-2.5 -5 -7.5 -20

References

- S. Gray and D.E. Manolopoulos, Symplectic integrators tailored to the time-dependent Schrödinger equation, *J. Chem. Phys.* **104** (1996), pp. 7099–7112.
- R.I. McLachlan and S.K. Gray, 'Optimal stability polynomials for splitting methods, with applications to the time-dependent Schrödinger equation', *Appl. Numer. Math.* 25, 275 (1997).
- S. Blanes, F. Casas, and A. Murua, Symplectic splitting operator methods for the time-dependent Shrödinguer equation, J. Chem. Phys. 124 (2006).
- S. Blanes, F. Casas, and A. Murua, On the linear stability of splitting methods, submitted (2006).