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Consider a highly oscillatory system of the form (Ω symmetric)

d2

dt2 q = −Ω2q − U(q).

with Hamiltonian function

H(q, p) =
1
2

(pT p + qT Ω2q + U(q).

Idea: Consider composition integrators based on the splitting

H(q, p) = T (p) + V (q) + U(q),

where T (p) = 1
2pT p, V (q) = 1

2qT Ω2q.

Goal: Construct methods to be used with relatively large τ .
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For instance, the operator eτ(T+V+U) can be replaced by

eτa1T eτb1V · · · eτamT eτbmV eτUeτbmV eτamT · · · eτb1V eτa1T (1)

where a1, b1, · · · , am, bm ∈ R. In particular, if e
1
2 τ(T+V ) is well

approximated by

eτbmV eτamT · · · eτb1V eτa1T (2)

then, (1) is an approximation of the method of Deuflhard (1979).

In principle, (1) might give a good integrator even if (2) is a poor
approximation to e

1
2 τ(T+V ).
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Of course, for U = 0 we get in particular

eτ(T+V ) ≈ eτa1T eτb1V · · · eτamT eτbmV eτbmV eτamT · · · eτb1V eτa1T . (3)

Our present goal

Obtain efficient approximations of eτ(T+V ) of the form (3).

Future work:

Approximate eτ(T+V+U) by inserting exponentials of the
form ecjτU in (3).

More generally, insert terms of the form ecjτUj with

Uj(q) = U(Pj(τΩ)q), where Pj(z) is a polynomial in z.

Number of inserted terms << Number 2m of factors in (3).
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When T (p) = 1
2pT p, V (q) = 1

2qT Ω2q,

eτ(T+V ) →

(

cos(τΩ) Ω−1 sin(τΩ)
−Ω sin(τΩ) cos(τΩ)

)

, (4)

eτT →

(

I τ I
0 I

)

, eτV →

(

I 0
−τΩ2 I

)

,

Thus, in a splitting scheme, (4) is approximated by

(

I 0
−τbmΩ2 I

)(

I τamI
0 I

)

· · ·

(

I 0
−τb1Ω

2 I

)(

I τa1I
0 I

)

=

(

K1(τΩ) Ω−1K2(τΩ)
−ΩK3(τΩ) K4(τΩ)

)

K1(x) and K4(x) even, K2(x) and K3(x)) odd.
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The stability matrix and the stability polynomial

We define the stability matrix of a splitting method as

K (x) =

(

1 0
−bmx 1

)(

1 amx
0 1

)

· · ·

(

1 0
−b1x 1

)(

1 a1x
0 1

)

,

that is, the result of applying the method to the harmonic
oscillator q̇ = p, ṗ = −q with step-size τ = x . Thus,

K (x) =

(

K1(x) K2(x)
K3(x) K4(x)

)

.

where K1(x), K4(x) (resp. K2(x), K3(x)) are even (resp. odd) an

det K (x) = K1(x)K4(x) − K2(x)K3(x) = 1.

The stability polynomial of the method is defined as

p(x) =
1
2

tr(K (x)) =
1
2

(K1(x) + K4(x)).
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Proposition

K (x) is stable (K (x)n is bounded ∀n) for a given x ∈ R if and
only if any of the following two conditions hold

1 The matrix K (x) is diagonalizable with eigenvalues with
modulus one,

2 |p(x)| ≤ 1 and there exists a 2 × 2 matrix Q(x) such that

Q(x)−1K (x)Q(x) =

(

cos(Φ(x)) sin(Φ(x))
− sin(Φ(x)) cos(Φ(x))

)

,

where Φ(x) = arccos(p(x)).

The stability threshold x∗ is defined as the largest x∗ > 0 such
that the stability matrix K (x) is stable ∀x ∈ (−x∗, x∗).
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Consider q̇ = p, ṗ = −Ω2q. If for the stability polynomial

p(x) = cos(x) + O(x2n+2) as x → 0,

then, there exists Ω̃ = Ω + O(τ2n) (as τ → 0) such that
(

I 0
−τbmΩ2 I

)(

I τamI
0 I

)

· · ·

(

I 0
−τb1Ω

2 I

)(

I τa1I
0 I

)

is similar to
(

cos(τ Ω̃) Ω̃−1 sin(τ Ω̃)

−Ω̃ sin(τ Ω̃) cos(τ Ω̃)

)

provided that |τ |ρ(Ω) < x∗.



Motivation: Splitting methods for highly oscillatory systems
Splitting methods applied to systems of linear oscillators
Optimized splitting methods systems of linear oscillators

Linear stability of splitting methods
Application to linear systems
From the stability polynomial to the splitting scheme

Consider u̇ = iΩu. If we put u = p + iq, then

q̇ = Ωp, ṗ = −Ωq.

Similarly to previous case, if p(x) = cos(x) + O(x2n+2), then,
there exists Ω̃ = Ω + O(τ2n) such that
(

I 0
−τbmΩ I

) (

I τamΩ
0 I

)

· · ·

(

I 0
−τb1Ω I

)(

I τa1Ω
0 I

)

is similar to
(

cos(τ Ω̃) sin(τ Ω̃)

− sin(τ Ω̃) cos(τ Ω̃)

)

provided that |τ |ρ(Ω) < x∗.
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Application to more general linear systems

Consider the expansion x + φ3x3 + φ5x5 + · · · in powers of x of
Φ(x) = arccos(p(x)). Then, there exists r > 0 (r ≤ x∗) such
that the following holds for arbitrary linear systems of the form
q̇ = Mp, ṗ = −Nq:
(

I 0
−hbmN I

)(

I hamM
0 I

)

· · ·

(

I 0
−hb1N I

)(

I ha1M
0 I

)

is similar to exp
(

0 hM̃
−hÑ 0

)

, where

M̃ = M(1 + φ3 h2(NM) + φ5 h4(NM)2 + · · · ),

Ñ = N(1 + φ3 h2(MN) + φ5 h4(MN)2 + · · · ),

provided that the (non-necessarily diagonalizable) matrices NM
and MN are such that |τ |min(

√

ρ(NM),
√

ρ(MN)) < r .
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We are mainly interested in symmetric splitting methods, that
is, K (x)−1 = K (−x) (i.e. K1(x) = K4(x)).

Assume that p(x) is an even polynomial satisfying that the
smallest positive zero with odd multiplicit of p(x)2 − 1 is x∗, and

p(x) = 1 −
x2

2
+ O(x4) as x → 0,

Then, there exists a finite number of symmetric stability
matrices of the form

K (x) =

(

p(x) K2(x)
K3(x) p(x)

)

with stability interval (−x∗, x∗).

All of them are similar to each other for x ∈ (−x∗, x∗).
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Consider the matrix

K (x) =

(

1 − 1
2x2 + 1

36x4 x − 2
9x3 + 1

108x5

−x + 1
12x3 1 − 1

2x2 + 1
36x4

)

.

It is straightforward to check that it can be decomposed as
(

1 x
3

0 1

) (

1 0
− x

2 1

)(

1 x
3

0 1

)(

1 0
− x

2 1

)(

1 x
3

0 1

)

.

Let us now consider the matrix

K (x) =

(

1 − 1
2x2 + 1

24x4 x − 1
4x3 + 1

48x5

−x + 1
2x3 1 − 1

2x2 + 1
24x4

)

. (5)

It is easy to check that (5) coincides with
(

1 1
2 x

0 1

)(

1 0
−x + 1

12x3 1

)(

1 1
2 x

0 1

)
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Proposition

Given a 2 × 2 matrix K (x) with polynomial entries satisfying
that det K (x) ≡ 1, K2(x) and K3(x) are odd polynomials, and
K1(x) and K4(x) are even polynomials with K1(0) = K4(0) = 1,
there exists a unique decomposition of K (x) of the form
(

1 0
Bm(x) 1

)(

1 Am(x)
0 1

)

· · ·

(

1 0
B1(x) 1

)(

1 A1(x)
0 1

)

,

where Aj(x), Bj (x) (j = 1, . . . , m) are odd polynomials in x with

Aj(x) 6= 0, Bj−1(x) 6= 0, j = 2, . . . , m.

That factorization corresponds to a generalized splitting
method. If K (x) is the stability matrix of a standard splitting
method, then Aj(x) = ajx and Bj(x) = −bjx . Any splitting
method is uniquely determined by its stability matrix!
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We want to obtain accurate symmetric schemes with large
stability intervals (−x∗, x∗).

A family of stability matrices

Given m, n ≥ 1, l ≥ 0, such that m ≥ 2n + l − 1, we consider
p(x) = K1(x) of degree 2m and K2(x) and K3(x) of degrees
2m + 1 and 2m − 1 resp., satisfying that

K1(x)2 − K2(x)K3(x) = 1, K1(x) = cos(x) + O(x2n+2),

K2(x) = sin(x) + O(x2n+1), K3(x) = − sin(x) + O(x2n+1),

and there exist xj ≈ jπ, j = 1, . . . , l , such that

K1(xj) = (−1)j , K ′

1(xj) = 0,

K2(xj) = 0, K3(xj) = 0.

There are m − (2n + l − 1) free parameters.
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Let us consider the Chebyshev norm || · ||l defined by

||f (x)||l =

∫ 1

−1

(

1 − x2
)

−1/2
f
(

(2l+1)πx
2

)2
dx .

Determine the free parameters of K (x) in such a way that

∣

∣

∣

∣

∣

∣

∣

∣

K1(x) − cos(x)

x2n+2

∣

∣

∣

∣

∣

∣

∣

∣

2

l
+

∣

∣

∣

∣

∣

∣

∣

∣

K2(x) − sin(x)

x2n+1

∣

∣

∣

∣

∣

∣

∣

∣

2

l
+

∣

∣

∣

∣

∣

∣

∣

∣

K3(x) + sin(x)

x2n+1

∣

∣

∣

∣

∣

∣

∣

∣

2

l

is minimized (equivalent to minimizing in the least square sense
the coefficients of their Chebyshev series expansion).
This is a nonlinearly constrained minimization problem that has
(for moderate m) a high number of local minima. Good initial
guesses are required for the numerical search.
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Assume that m ≥ 2(n + l) − 1.

Find K̂1(x), K̂2(x), K̂3(x) of degrees 2m, 2m + 1, and 2m − 1
resp., such that

∣

∣

∣

∣

∣

∣

∣

∣

K1(x) − cos(x)

x2n+2

∣

∣

∣

∣

∣

∣

∣

∣

2

l

is minimized under the constraints

K̂1(x)2 − K̂2(x)K̂3(x) = 1, K̂1(x) = cos(x) + O(x2n+2),

K̂2(x) = sin(x) + O(x3), K̂3(x) = − sin(x) + O(x3),

K̂1(jπ) = (−1)j , K̂ ′

1(jπ) = 0, K̂2(jπ) = 0, K̂3(jπ) = 0.

All the local minima of that minimization problem can be
explicitly obtained.
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A family of stability polynomials

We construct a stability polynomial pn,l(x) for arbitrary n, l ≥ 0,
as follows:

pn,l(x) = 1 +
n

∑

j=1

(−1)j x2j

(2j)!
+ x2n+2

2l
∑

j=0

djx
2j

where the coefficients dj are uniquely determined by the
requirement that

pn,l(jπ) = (−1)j , p′

n,l(jπ) = 0, j = 1, . . . , l .

Note the interpolatory nature of pn,l(x), as

cos(jπ) = (−1)j , cos′(jπ) = − sin(jπ) = 0, ∀j ≥ 1.
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A more general family of stability polynomials

For n, k , l ≥ 0, k = m − 2(n + l) − 1,

pn,l ,k(x) = pn,l(x) + x2n+2
l

∏

j=1

(x2 − (jπ)2)2
k

∑

i=0

eix
2i ,

where the ei are uniquely determined by requiring that

||
pn,l ,k(x) − cos(x)

x2n+2 ||l

is minimized. Each local minimum of the neighbouring
constrained minimization problem corresponds to one different
K̂ (x) having pn,l ,k(x) as stability polynomial. One can choose
among them the best candidates as initial guesses in the
numerical search to obtain the local minimia of the original
constrained minimization problem (either by a Newton-type
iteration or by using a continuation algorithm).
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The long-term error accuracy of splitting methods applied to
linear systems is related to the difference

(

cos(Φ(x)) sin(Φ(x))
− sin(Φ(x)) cos(Φ(x))

)

−

(

cos(x) sin(x)
− sin(x) cos(x)

)

,

where Φ(x) = arccos(p(x)), that is, the long-term effective error
corresponds to |Φ(x) − x |. To fairly compare of method with
different number 2m of factors, we consider

|Φ(mx) − mx |

That is, we compare a method with 2m factors applied with
step-size τ to m steps of Störmer-Verlet with step-size τ/m.

We show diagrams in double logarithmic scale. That is,
log10(|mx − arccos(p(mx))|) versus log10(x).
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Leapfrog m = 2, optimal stability method with n = 3, m = 6
(Gray & McLachlan), and pn,l(x) for n = 10, and
l = 3, 6, 10, 14, 16 (m = 10 + 2l)
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Leapfrog m = 2, optimal stability method with n = 3, m = 6
(Gray & McLachlan), and pn,l ,k(x) for n = 1, k = 9, and
l = 4, 6, 8, 14, 16 (m = 10 + 2l)
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Leapfrog (m = 2), optimal stability method n = 3 and m = 6
(Gray & McLachlan), and p1,14,9(x) (m = 38), p1,18,13(x), and
p7,18,7(x) (m = 50).
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