

FACULTY OF ENGINEERING BILBAO UNIVERSITY OF THE BASQUE COUNTRY

COMPMECH Research Group

Department of Mechanical Engineering Faculty of Engineering in Bilbao University of the Basque Country (UPV/EHU) http://www.ehu.eus/compmech/

Where are we Group Members

Where are we

Bilbao

- 346,574 inhabitants
- 41.6 km²
- Metropolitan area:
 - 910,843 inhabitants
 - 500.2 km²

How to get

- Airport: 15 km away
- Bus: 2 min walking
- Car
- Train/metro/tram
- Ferry: 15 km away

About usWhere are wResearchGroupContractsMembers

Group

Belonging to:

- Department of Mechanical Engineering (135 staff)
- Faculty of Engineering in Bilbao (800 staff and \simeq 5,000 students)
- University of the Basque Country (Spain) (5,000 staff and \simeq 47,000 students)

About usWhere are weResearchGroupContractsMembers

Group

Research focused on:

- Basic and applied research
- Design and analysis of parallel manipulators
- Computational mechanics

Web site:

www.ehu.es/compmech

About us Research Members

Members

Alfonso Hernández

Oscar Altuzarra

Charles Pinto

Mónica Urizar

Saioa Herrero

Fran Campa

Javier Corral

Diego Caballero

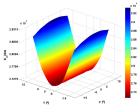
Constantino

Roldán

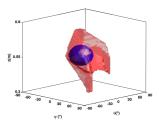
- 24 MSc./BSc. Students ۲
- Several International Collaborators

Antonio Ruiz

Lines Projects

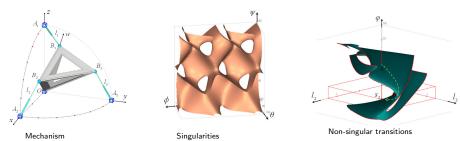

Analysis & Design of Parallel Manipulators

New design methodologies


- Based on:
 - Kinematics
 - Dynamics
 - Workspace
 - Stiffness
 - Natural Frequencies
 - Power Consumption

2PRU-1PRS parallel manipulator prototype

2PRU-1PRS: stiffness



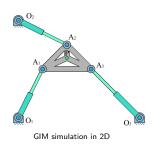
2PRU-1PRS: workspace

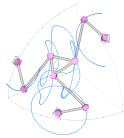
Methodology for Cuspidal Parallel Manipulators

Non-singular transitions in cuspidal PM

- Cuspidal points in the projection of singular curves on the joint space
- Methodology
 - Identification of non-singular transitions
 - $\bullet\,$ Joining parts of workspace $\rightarrow\,$ bigger operational workspace

Lines Projects

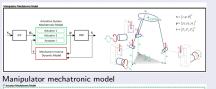

GIM: simulation & analysis software


GIM

- Registered software
- Used all around the World
- Used for:
 - Kinematic & dynamic analysis
 - 2D & 3D mechanisms

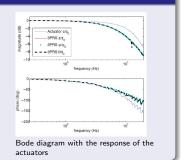
Countries where GIM has been downloaded

GIM simulation in 3D


Lines Projects

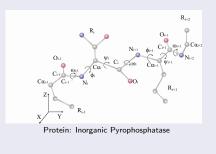
Mechatronics applied to Parallel manipulators

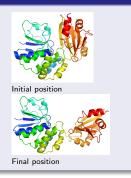
Mechatronics models


- Parallel manipulators
- Actuators

Example

Actuator mechatronic model

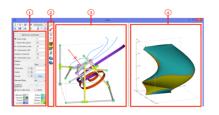

Lines Projects


Protein Simulation

Application

- Bio-kinematics
- Molecular folding motion simulation based on energy approaches
- Example: Inorganic Pyrophosphatase

Example: Inorganic Pyrophosphatase



Modular Design of Reconfigurable Parallel Manipulators

Design methodologies

- Reconfigurable parallal manipulators:
 - Changeable configuration to execute multiple tasks
 - Study of 6 DOF PM
 - Reconfiguring ability by blocking different actuators
 - Simpler machine from the operative point of view
 - Faster and more efficient control
 - Design to achieve the highest number of motion patterns

Analysis in GIM

- Kinematic chains library
- Different reconfigurable PM by combining the chains
- Analysis

Ultra Flexible Parallel Kinematic Machines

Flexible PM

- Motion generated by large deformation of elements
- Spatial and planar compliant parallel morphologies
- Several degrees of freedom

Characteristics

- Reduced number of components
- Without kinematic pairs
- Low maintenance
- No lubrication
- Simpler manufacture and assembly
- Large range of motion

Compliant parallel manipulator

Multiaxial Parallel Kinematic Machines with High Dynamic Capabilities

Multiaxial Machines

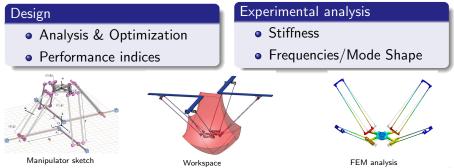
- Coupled motion in the end-effector : rotations + translations
- New design methodology proposed based on:
 - Analysis
 - Optimization
- Experimentation & Prototypes

Compliant 3PRS

2PRU-1PRS parallel manipulator

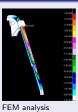
Gough platform

Lines Projects


Lower Mobility Manipulators

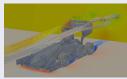
Characteristics

- Less than 6 DOF
- Complex kinematics


Araba prototype

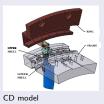
Contracts

MINOS97


• Wheel chair component analysis

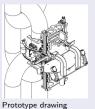
Formula Student

 Design and manufacture of an electric formula vehicle


FS 2017: CDF analysis

Contracts

Openaer


• Smart and active control systems in turbomachines

Vicinay cadenas

 Robot for automatic ultrasonic inspection of the welding plane of the stud-less links

Prototype

FACULTY OF ENGINEERING BILBAO UNIVERSITY OF THE BASQUE COUNTRY

COMPMECH Research Group

Department of Mechanical Engineering Faculty of Engineering in Bilbao University of the Basque Country (UPV/EHU) http://www.ehu.eus/compmech/