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Abstract. The detailed spectral structure of symmetric, algebraic, quadratic eigenvalue prob-
lems has been developed recently. In this paper we take advantage of these canonical forms to
provide a detailed analysis of inverse problems of the form: construct the coefficient matrices from
the spectral data including the classical eigenvalue/eigenvector data and sign characteristics for the
real eigenvalues. An orthogonality condition dependent on these signs plays a vital role in this con-
struction. Special attention is paid to the cases when the leading and trailing coefficients of the
quadratic matrix polynomial are prescribed to be positive definite.
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1. Introduction. Given a quadratic matrix polynomial L(λ) = L2λ
2+L1λ+L0,

the direct quadratic eigenvalue problem (QEP) is to find scalars λ and nonzero vectors
x satisfying L(λ)x = 0. The scalars λ and the vectors x are called, respectively,
eigenvalues and eigenvectors of the quadratic matrix polynomial L(λ).

The QEP appears repeatedly in different scientific areas including the analysis
of mechanical and acoustic systems, electrical oscillations, fluid mechanics and signal
processing. Many applications, mathematical properties, and a variety of numerical
techniques for this problem were surveyed by Tisseur and Meerbergen in [22].

In many applications properties of the underlying physical system determine real
matrix coefficients L2, L1, L0 (frequently known as the mass, damping and stiffness
matrices of the system), while the behaviour of the system can frequently be inter-
preted in terms of the eigenvalues and eigenvectors. Thus, the process of analysing
and deriving the spectral information (eigenvalues and eigenvectors) from the ma-
trix coefficients is the direct QEP. The inverse QEP is then to validate, determine
or estimate the parameters (matrices) of the system consistent with its observed or
expected behaviour. In this general setting the “pole assignment problem” (see, for
example, [3, 4, 7, 19] and the references there) can also be seen as an inverse QEP.
An important reference for inverse eigenvalue problem is the book by Chu and Golub,
[6], where a section is dedicated to the inverse QEP.

If the matrix coefficients are not subject to symmetry constraints, a general tech-
nique for constructing families of quadratic matrix polynomials with prescribed eigen-
structure was proposed in [12]. However, as noted above, many physical systems
determine quadratic systems with symmetry constraints on their coefficients. The
inverse symmetric quadratic eigenvalue problem (ISQEP) calls for the construction of
a family of real symmetric quadratic matrix polynomials (possibly with some definite-
ness restrictions on the coefficients) from an admissible set of spectral data. Although
this notion will be extended later in this section, it will be seen that an admissible
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set of spectral data for real symmetric quadratic matrix polynomial must include a
complete family of 2n real and/or complex eigenvalues, with the property that the
non-real eigenvalues (with their associated eigenvectors) appear in conjugate pairs.

This ISQEP has received much attention because of its many applications (see
[21]). Thus, in [2, 20] the case of symmetric tridiagonal coefficients is considered and
in [5, 11] positivity restrictions are imposed on (some of) the matrix coefficients. It
is a common feature of these references that the spectral data is partially prescribed.
In [12, 14] the problem is considered in greater generality but only partial results
were obtained. In this paper the techniques developed there will be completed and a
procedure for constructing a family of real symmetric quadratic matrix polynomials
with admissible Jordan structure (Definition 2) will be provided in the semisimple
case; i.e. when the algebraic and geometric multiplicities of the eigenvalues coincide.

By Jordan structure, or spectral data, we mean a complete family of real and
complex eigenvalues with their partial multiplicities and sign characteristics. The
sign characteristic is a collection of signs, + and −, attached to the elementary divi-
sors corresponding to the real eigenvalues of any self-adjoint matrix polynomial. The
notion of sign characteristic plays a fundamental role in the study of the self-adjoint
matrix polynomial structures ([10] and [17]) and in the solution of the ISQEP. It will
be reviewed in Section 2 (see also [12, Appen. B]). In that section we will also revisit
an orthogonality property of the eigenvectors of symmetric matrix polynomials that
is important for our developments. This property was studied in [14] for quadratic
matrix polynomials with purely non-real spectrum and then in [12] for quasi hyper-
bolic systems (only real spectrum). It was generalized in [15] to semisimple matrix
polynomials of any degree with arbitrary, but admissible, spectrum.

The assumption that the leading coefficient, L2, is prescribed to be non-singular
will be maintained throughout this paper. We first study the ISQEP with no def-
initeness constraints on the coefficients, and then the case when L2 is required to
be positive definite. The starting point of this study is the fact (see (2.10)) that
the coefficients of any self-adjoint matrix polynomial can be obtained from any of
its self-adjoint Jordan triples (Section 2.1). Thus, the first goal is the construction of
self-adjoint Jordan triples from the prescribed spectral data. This is also the approach
taken in the Ph.D. thesis of Maha Al-Ammari [1] - but in a broader context. Section
3 completes that study. It will be shown that, in the semisimple case, any spectral
data is admissible provided that two properties are fulfilled:

1. The non-real eigenvalues must be in conjugate pairs and
2. Half of the real spectrum must be of positive type (+1 as sign characteristic)

and the other half of negative type (-1 as sign characteristic). However, multiple real
eigenvalues of “mixed’ ’ type (some of them of positive type and some of negative
type) are admitted.

Theorem 8 of Section 3 is a central result based on recently developed orthogo-
nality properties of the eigenvectors (Theorem 3). Theorems 13, 14, 15 and 17 are
similar results, but admitting positivity constraints on the leading and/or trailing
coefficients.

A quadratic matrix polynomial is said to be diagonalizable if there is a diagonal
quadratic matrix polynomial with the same eigenvalues and partial multiplicities (or
the same elementary divisors, or the same invariant factors, or the same Smith normal
form). It turns out that semisimple real quadratic matrix polynomials (whether they
are symmetric or not) may not be diagonalizable (see [16]). However, if we confine
ourselves to semisimple real symmetric quadratic matrix polynomials with positive
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definite leading coefficient then they are all diagonalizable (Theorem 13).

2. Preliminary notions and definitions. In this section we summarize the
spectral properties of semisimple quadratic matrix polynomials required in the sub-
sequent development, namely: self-adjoint Jordan triples (including the sign charac-
teristic), orthogonality of the eigenvectors, and conditions for diagonalizability.

2.1. Selfadjoint Jordan triples. We consider n×n semisimple real quadratic
matrix polynomials,

L(λ) = L2λ
2 + L1λ+ L0, (2.1)

with real and symmetric coefficients LTi = Li, i = 0, 1, 2, and non-singular leading
coefficient, L2. The notions of self-adjoint Jordan triple and sign characteristic of real
symmetric matrix polynomials play a fundamental role in what follows.The reader is
referred to [17] (or [15] for a summary). An specific instance of self-adjoint Jordan
triple will be used along the paper. It is now introduced.

Assume that L(λ) has 2s (s ≤ n) non-real eigenvalues (counting multiplicities)
and 2q = 2n−2s real eigenvalues. Bearing in mind that the sign characteristic of L(λ)
as a complex hermitian matrix polynomial or as a real symmetric polynomial is the
same ([15, Appen. A]) then, by Proposition 4.2 of [8], half of these real eigenvalues
have a positive sign characteristic and the other half a negative sign characteristic.

Let r1, . . . , rq be the real eigenvalues of positive type, rq+1, . . . , r2q be those of
negative type and construct diagonal matrices of size q:

R+ = Diag(r1, . . . , rq), R− = Diag(rq+1, . . . , r2q).

Note that the same eigenvalue may appear in both R+ and R−. Write the 2s conjugate
pairs of eigenvalues as follows:

βj = µj + iνj , βj+1 = β̄j = µj − iνj (νj > 0), j = 1, 3, . . . , 2s− 1

and define

M = Diag(µ1, µ3, . . . , µ2s−1), N = Diag(ν1, ν3, . . . , ν2s−1) > 0. (2.2)

Let X+, X−, Ũ and Ṽ be real matrices with the property that the j-th column

of X+ (resp. X−, Ũ + iṼ and Ũ − iṼ ) is an eigenvector of L(λ) associated with rj
(resp. rq+j , βj and β̄j). Now we summarize complete spectral data with a real matrix
triple:

J = Diag

(
R+, R−,

[
M −N
N M

])
∈ R2n×2n, (2.3)

P = Diag (Iq,−Iq,−Is, Is) ∈ R2n×2n, (2.4)

X =
[
X+ X− V U

]
∈ Rn×2n, (2.5)

where X+, X− ∈ Rn×q and

V =
√

2
[
v1 · · · vs

]
∈ Rn×s, U =

√
2
[
u1 · · · us

]
∈ Rn×s, (2.6)

uj + ivj and uj − ivj being the j-th column of Ũ + iṼ and Ũ − iṼ . Notice that U and
V are (up to the factor

√
2) the real and imaginary parts of eigenvectors associated

with non-real eigenvalues. Then ([15, Thm. 1]):
Theorem 1. With X, J, P defined as in (2.5), (2.3), (2.4), (X, J, PXT ) is a

real self-adjoint Jordan triple for L(λ) of (2.1).
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2.2. Selfdajoint Jordan structures. A self-adjoint Jordan triple (X,J, P ) of
the quadratic matrix polynomial L(λ) of (2.1) has the properties

XPXT = 0 (2.7)

and, for the leading coefficient of L(λ) we have

XJPXT = L−12 . (2.8)

Indeed, it is possible to express all the coefficients of L(λ) in terms of a self-adjoint
Jordan triple. Specifically, define the moment functions Pk acting on matrices X ∈
Rn×2n as follows:

Pk(X) := XJkPXT (2.9)

for integers k (and note that k is any integer if zero is not in the spectrum and,
otherwise, k ≥ 0).

Then (2.7) gives P0(X) = 0 and the coefficients are defined by the moments in
the form (see [15]):

L−12 = P1(X),
L1 = −L2P2(X)L2 = −P1(X)−1P2(X)P1(X)−1,
L0 = −L2P3(X)L2 + L1P1(X)L1

= −P1(X)−1
(
P3(X) + P2(X)P1(X)−1P2(X))

)
P1(X)−1.

(2.10)

Alternatively, if 0 /∈ σ(L) then

L0 = −P−1(X)−1. (2.11)

We can also use Theorem 14.7.1 of [13] to write L1 and L0 in the form:

[
L0 L1

]
= −L2XJ

2

[
X
XJ

]−1
. (2.12)

Notice that (see Remark 2 in [15]), given J and P as in (2.3) and (2.4), for any full
rank matrix X for which XPXT = 0 and XJPXT is invertible, (X, J, PXT ) forms a
self-adjoint Jordan triple of some real symmetric quadratic matrix polynomial L(λ).
In fact, the leading coefficient of such a matrix is L2 = (XJPXT )−1 and L1 and L0

are obtained as in (2.12), for example.
Thus, given a semisimple quadratic polynomial L(λ) as in (2.1), there is always

a self-adjoint Jordan triple (X, J, PXT ) for L(λ) given by (2.3)-(2.5) where (J, P )
summarizes the spectral data of L(λ). Conversely, given matrices (J, P ) as in (2.3)
and (2.4) that prescribe the eigenvalues, partial multiplicities and sign characteristics
associated with the real eigenvalues, then for every real X satisfying conditions (2.7)
and (2.8) there is a real symmetric quadratic matrix polynomial L(λ) with this pre-
scribed spectral data. In addition, the matrix X determines a matrix of eigenvectors
for L(λ).

It is our goal to design a procedure to produce matrices X which determine a
viable set of right eigenvectors and also satisfy conditions (2.7) and (2.8) for given
matrices J and P . It will be shown that if J and P are as in (2.3) and (2.4), and no
definiteness condition is imposed on the coefficients, such a matrix X always exists.
However, if it is required that L2 is positive definite, then it may happen that, for
some specific matrices J and P , there is no such matrix X.
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For example, there is no 2× 2 quadratic matrix polynomial with positive definite
leading coefficient and Jordan structure

J = Diag(1, 2, 3, 4), P = Diag(1, 1,−1− 1).

The reason is that, by Example 1.5 of [9], for all matrix polynomials of even degree
with positive definite leading coefficient, the sign characteristic of the largest real
eigenvalue must be positive and that of the smallest real eigenvalue must be negative.
Hence, for these matrices J and P , there is no matrix X satisfying (2.7) and (2.8)
and L2 > 0 .

Definition 2.
(a) A real self-adjoint Jordan structure (for a QEP) is a pair of matrices

(J, P ) ∈ R2n×2n × R2n×2n with the form (2.3), (2.4) for four real diagonal
matrices R+, R− ∈ Rq×q and M,N ∈ Rs×s (q + s = n) with N > 0.

(b) A real self-adjoint Jordan structure (J, P ) is said to be admissible if there is
an X ∈ Rn×2n for which equations (2.7) holds and XJPXT is non-singular
(see (2.8)) .

Example 1. Consider the real self-adjoint structure with n = 1,

J =

[
λ1 0
0 λ2

]
, P =

[
1 0
0 −1

]
,

and λ2 6= λ1. With X =
[
x1 x2

]
and x2 = ±x1 6= 0, we have

XPXT = x21 − x22 = 0, XJPXT = λ1x
2
1 − λ2x22 6= 0.

So (J, P ) is admissible because we can take x2 = ±x1 6= 0 and λ1 6= λ2. If, in addition,
we require λ1 > λ2 then XJPXT > 0. 2

2.3. Orthogonality. The eigenvectors of a semisimple matrix polynomial satisfy
an orthogonality property derived from (2.7) and the form of the matrix P in (2.4)
(see [15]).

Assume that J and P are given by (2.3) and (2.4), respectively. Let X ∈ Rn×2n
be an arbitrary matrix and partition it as in (2.5); i. e.

X =
[
X+ X− V U

]
,

where X+, X− ∈ Rn×q and U, V ∈ Rn×s. It follows from Theorem 2 of [15] that
(X, J, PXT ) is a self-adjoint Jordan triple if and only if XJPXT is invertible and
there exists an orthogonal matrix Θ ∈ Rn×n such that[

X− V
]

=
[
X+ U

]
Θ (2.13)

and, in particular,

rank
[
X− V

]
= rank

[
X+ U

]
= n. (2.14)

These are conditions that any matrix X must satisfy for (X,J, PXT ) to be a self-
adjoint Jordan triple.

Observe that, using (2.13), X can be written as

X =
[
X+ U

] [
Iq+s Θ

]
Q (2.15)
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where

Q =


Iq 0 0 0
0 0 0 Is
0 Iq 0 0
0 0 Is 0

 , (2.16)

and then

XJPXT =
[
X+ U

]
H(Θ)

[
XT

+

UT

]
, (2.17)

where

H(Θ) :=
[
In Θ

] 
R+ 0 0 0
0 M 0 −N
0 0 −R− 0
0 −N 0 −M

[ In
ΘT

]
. (2.18)

Since
[
X+ U

]
is non-singular, XJPXT is non-singular or positive definite accord-

ing as H(Θ) is non-singular or positive definite, respectively. In conclusion:
Theorem 3. Given a real self-adjoint Jordan structure (J, P ), there is a semisim-

ple, real, symmetric quadratic matrix polynomial with (J, P ) as Jordan structure and
non-singular (or positive definite) leading coefficient if and only if there exists an or-
thogonal matrix Θ such that H(Θ) of (2.18) is non-singular (resp. positive definite).

In this case, if
[
X+ U

]
∈ Rn×n is any non-singular matrix and X is defined

by (2.15), then (X, J, PXT ) is a self-adjoint Jordan triple which uniquely defines a
semisimple real symmetric quadratic matrix polynomial with (J, P ) as Jordan structure
and non-singular (resp. positive definite) leading coefficient.

The theorem implies that, once Θ is found for which H(Θ) is non-singular or
positive definite, half of the eigenvectors corresponding to real eigenvalues and the real
parts of the eigenvectors of the non-real eigenvalues can be freely chosen (provided
that they are linearly independent). Then the other half of the real eigenvectors, and
the imaginary parts of the non-real ones, are completely determined by the choice of
Θ in (2.13).

This orthogonality property was also observed in [1] for general (not necessar-
ily semisimple) complex hermitian or real symmetric quadratic matrix polynomials.
However, the expression derived in [1] for the inverse of the leading coefficient is less
explicit than that given in (2.8) and (2.17). Our formulation will be convenient in
proving that the set of matrices

[
X+ U

]
and Θ such that XJPXT in (2.17) is

invertible is not empty and consequently (as mentioned in [1]), is open and dense (see
Section 3).

In other words, in the semisimple case, detXJPXT 6= 0 is a generic property for
matrices J and P of (2.3) and (2.4). Proving this property for general real symmetric
quadratic matrix polynomials may require a generalization of (2.17) for arbitrary
Jordan matrices and sign characteristics.

2.4. Computing the sign characteristic. As introduced in Section 2.1, the
sign characteristic attached to the elementary divisors associated with the real eigen-
values of self-adjoint matrix polynomials is not suitable for computations. Two other
characterizations were proposed in [10] and [9] for matrices with monic and non-
singular leading coefficient, respectively. For computational purposes the so-called
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third characterization is most convenient. We present a brief summary of the results
in Section 3.4 of [9]1.

Let L(λ) be an n× n self-adjoint matrix polynomial. We may see L(λ) as a real
or complex valued matrix function of the real parameter λ. The eigenfunctions µ1(λ),
. . . , µn(λ) of L(λ) are the roots of the characteristic equation of L(λ):

det(µIn − L(λ)) = 0,

and they are real analytic functions of real λ. Clearly, λ0 is an eigenvalue of L(λ)
if and only if λ0 is a zero of µj(λ) for some j = 1, . . . , n. Moreover, dim KerL(λ0)
is exactly the number of eigenfunctions with a zero at λ0. The important Theorem
3.7 of [9] (see also [8, Th. 6.10] and [10, Th. 12.5] for the monic case) relates the
elementary divisors of the real eigenvalues of L(λ) and their sign characteristics to
the eigenfunctions.

Theorem 4. Let L(λ) be an n × n self-adjoint matrix polynomial with non-
singular leading coefficient and let µ1(λ), . . . , µn(λ) be real analytic functions of real λ
such that det(µj(λ)In−L(λ)) = 0, for j = 1, . . . , n. Let λ1 < · · · < λr be the different
real eigenvalues of L(λ). For every i = 1, . . . , r, write µj(λ) = (λ − λi)

mijνij(λ),
where νij(λi) 6= 0 is real.

Then the non-zero numbers among mi1,. . . , min are the partial multiplicities of
L(λ) associated with λi, and the sign of νij(λi) (for mij 6= 0) is the sign characteristic
associated with the elementary divisors (λ− λi)mij of L(λ).

Here, we examine the limiting behaviour of the eigenfunctions as λ → ∞ and
as λ → 0. These properties will lead to a simpler characterization of the sign char-
acteristics in the semisimple case with either positive definite leading coefficient, or
positive definite trailing coefficient.

2.5. Diagonalizable quadratic matrix polynomials. As mentioned in the
introduction, L(λ) = L2λ

2 + L1λ + L0 is said to be diagonalizable over C or R if
there is, respectively, a complex or real diagonal quadratic matrix polynomial with
the same Jordan structure as L(λ). The diagonalizable real and complex quadratic
matrix polynomials with non-singular leading coefficient were characterized in [16].
The following results will be needed in the sequel. The first is a re-phrasing of Theorem
6 of that paper.

Theorem 5. Let L(λ) be an n × n quadratic matrix polynomial over C with
non-singular leading coefficient, let λ1, . . . , λt ∈ C be its distinct eigenvalues and for
i = 1, . . . , t let the partial multiplicities of λi be ni1 ≥ · · · ≥ ni,µg,i > 0, where µg,i is
the geometric multiplicity of λi. Then L(λ) is diagonalizable over C if and only if the
following conditions hold:

t∑
i=1

µg,i∑
j=1

nij = 2n, (2.19)

1 ≤ nij ≤ 2, for 1 ≤ i ≤ t, 1 ≤ j ≤ µg,i, (2.20)

and

µg,i − ri ≤ n− r, i = 1, 2, . . . , t, (2.21)

1See also Section VI.5 of [8]. Appendix B of [12] provides an account of the main facts for
semisimple quadratic matrix polynomials.
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where ri is the number of partial multiplicities ni1,. . . , niµg,i equal to 2, i = 1, . . . , t,
and r = r1 + · · ·+ rt.

In contrast, for the real case we have ([16, Th. 7]):
Theorem 6. Let L(λ) be an n × n real quadratic matrix polynomial with non-

singular leading coefficient and let λ1,. . . , λt ∈ R and α1, ᾱ1, . . . , αs, ᾱs ∈ C \ R be
its eigenvalues. For i = 1, . . . , t let ni1 ≥ · · · ≥ ni,µg,i > 0 be the partial multiplicities
of λi. Then L(λ) is diagonalizable over R if and only if the partial multiplicities of
αi and ᾱi are equal to 1, 1 ≤ i ≤ s, and conditions (2.19), (2.20), (2.21) hold with n
replaced by n− s.

Thus, for a semisimple quadratic matrix polynomial it is important to recognise
whether it is defined over C or R. While all complex semisimple matrices are diag-
onalizable, this may not be the case for real matrix polynomials. For example, the
following quadratic matrix polynomial (to reappear in Example 9)

L(λ) =

 0 −1/4 1/8
−1/4 1/4 −1/8
1/8 −1/8 −1/16

λ2+

 1/4 −1/8 1/16
−1/8 −3/16 3/32
1/16 3/32 −3/64

λ+

 0 0 0
0 0 0
0 0 −1/8


has λ1 = 0 as a real eigenvalue with partial multiplicities n11 = n12 = 1, and two
semsimple non-real conjugate eigenvalues α1 = i ᾱ = −i of multiplicity 2.

Over the complex field

D(λ) = Diag[λ(λ+ i), λ(λ− i), λ2 + 1]

has the same elementary divisors as L(λ), but there is no real diagonal quadratic
matrix polynomial with the same elementary divisors as L(λ). For example,

Diag[λ2, λ2 + 1, λ2 + 1]

has the same eigenvalues, but the partial multiplicity of λ1 = 0 is n11 = 2. The fact
is that condition (2.21) is violated: for λ1 = 0 we have 2− 0 = µg,i− ri > n− s− r =
3− 2− 0 = 1.

3. Non-singular leading coefficient. Not all 2n×2n matrices in Jordan form
can be the canonical Jordan matrix of a quadratic matrix polynomial. For example,
J = λ0I2n is in Jordan form but there is no quadratic matrix polynomial with this
matrix as its Jordan form. The reason is that the maximal geometric multiplicity of
the eigenvalues of any n× n matrix polynomial is n. Thus, if L(λ) is semisimple and
p is the maximal multiplicity of any real eigenvalue, then p ≤ n.

Now assume that L(λ) is real and symmetric and let s be the number of conjugate
pairs of non-real eigenvalues of L(λ). If this matrix is semisimple then n = s + q,
where q is the number of real eigenvalues of positive type (or of negative type) counting
multiplicities. Consequently,

s ≥ p− q (3.1)

is a condition that must be satisfied by any semisimple real symmetric quadratic
matrix polynomial. In particular, if all eigenvalues are distinct then p = 1 and (3.1)
is always satisfied.

It should be noticed that p− q can be either positive or negative. However:
Proposition 7. With the above notation, assume that L(λ) is a semisimple

real symmetric quadratic matrix polynomial with non-singular leading coefficient. It
is diagonalizable over R[λ] if and only if p− q ≤ 0.
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Proof. If L(λ) is semisimple then, by definition, all partial multiplicities are equal
to 1 and conditions (2.19) and (2.20) are satisfied with n replaced by n − s. For
condition (2.21) we have ri = 0 for i = 1, . . . , 2q, r = 0, µg,i ≤ p for i = 1, . . . , 2q and
there is an index i such that µg,i = p. Thus

µg,i − ri ≤ n− s− r, i = 1, . . . , 2q ⇔ p ≤ n− s = q.

By Theorem 6, L(λ) is diagonalizable if and only if p ≤ q as claimed.

The basic condition (3.1) is also sufficient for the existence of semisimple real
quadratic matrix polynomials with prescribed Jordan structure.

Theorem 8. Let J, P ∈ R2n×2n be matrices of the form (2.3) and (2.4). Then
there exists a semisimple real symmetric quadratic matrix polynomial L(λ) for which
(J, P ) is an admissible real self-adjoint Jordan structure (Definition 2) if and only if
condition (3.1) holds.

Proof. We have already seen that (3.1) is necessary for the existence of a semisim-
ple real symmetric quadratic matrix polynomial.

Conversely, assume that (3.1) holds and J ∈ R2n×2n is given as in (2.3). We
divide the proof into two parts according as

p− q ≤ 0 or p− q > 0.

(i) p− q ≤ 0. If there is a real symmetric quadratic matrix polynomial with a
Jordan structure (J, P ) for which p ≤ q then it is diagonalizable (Proposition 7). Let
us confirm that a diagonal quadratic matrix polynomial can be constructed with the
desired spectral data. First, recall that R+ = Diag(r1, . . . , rq) collects the eigenvalues
of J of positive type, R− = Diag(rq+1, . . . , r2q) those of negative type and µj ± iνj ,
j = 1, 3, . . . , 2s− 1, are the non-real complex conjugate eigenvalues of J .

If p ≤ q then it is not difficult to see that the diagonal entries of R− can be
arranged in such a way that ri 6= rq+i, 1 ≤ i ≤ q. For i = 1, . . . , q put

ai(λ) = (λ− ri)(λ− rq+i) if ri > rq+i,
ai(λ) = −(λ− ri)(λ− rq+i) if ri < rq+i,

and for i = 1, . . . , s put

aq+i = λ2 − 2µiλ+ µ2
i + ν2i .

It is clear that L(λ) = Diag(a1(λ), . . . , an(λ)) is real symmetric, quadratic and J
is a Jordan matrix for L(λ). Now, using Theorem 4, we conclude that the sign
characteristics of the real eigenvalues of L(λ) are as prescribed.

However, a general technique can be designed that provides infinitely many quadratic
matrix polynomials with (J, P ) as their real self-adjoint Jordan structure.

Since the diagonal elements of R− can be arranged in such a way that ri 6= rq+i,

1 ≤ i ≤ q, there is a permutation matrix Θ̂ ∈ Rq×q such that R+ − Θ̂R−Θ̂T is
non-singular.

Take any n× n non-singular matrix and write it in the form
[
X+ U

]
, where

X+ ∈ Rn×q and U ∈ Rn×s. Define the permutation matrix

Θ =

[
Θ̂ 0
0 Is

]
, (3.2)
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and a matrix X as in (2.15). Then, with P of (2.4), XPXT = 0 and (cf. (2.17))

XJPXT =
[
X+ U

]
H(Θ)

[
XT

+

UT

]
,

where H(Θ) is defined in (2.18) and can be written in the form

H(Θ) =

[
R+ 0
0 M

]
−Θ

[
0 0
0 N

]
−
[

0 0
0 N

]
ΘT −Θ

[
R− 0
0 M

]
ΘT , (3.3)

where M and N are the diagonal matrices of (2.2). With Θ of (3.2),

H(Θ) =

[
R+ − Θ̂R−Θ̂T 0

0 −2N

]
.

But Θ̂ has been chosen so that R+ − Θ̂R−Θ̂T is non-singular. Thus, H(Θ) is non-
singular and, since

[
X+ U

]
is also non-singular, so is XJPXT of (2.17).

We conclude that (X, J, PXT ) is a real self-adjoint Jordan triple generating a
semisimple quadratic matrix polynomial whose coefficients are given by (2.10) and,
in particular, L2 is non-singular.

(ii) p− q > 0. This case is more involved because there is no diagonal quadratic
matrix polynomial with the prescribed real self-adjoint Jordan structure (J, P ) (Propo-
sition 7).

Let λ0 be an eigenvalue of J of highest algebraic multiplicity p and let p+ and p−
be the number of times that λ0 appears in the diagonal of R+ and R−, respectively.
Let r+1 , . . . r

+
q−p+ and r−1 , . . . , r

−
q−p− be the remaining elements of R+ and R−. Since

p+ + p− = p > q the diagonal elements of R+ and R− can be paired as follows:

(λ0, r
−
1 ), . . . , (λ0, r

−
q−p−), (r+1 , λ0), . . . , (r+q−p+ , λ0), (λ0, λ0), . . . , (λ0, λ0),

where (λ0, λ0) appears q − (q − p−) − (q − p+) = p − q times. Thus, we can assume
without lost of generality that

R+ = Diag(λ0Iq−p− , r
+
1 , . . . , r

+
q−p+ , λ0Ip−q), R− = Diag(r−1 , . . . , r

−
q−p− , λ0Iq−p+ , λ0Ip−q).

Recalling (3.3), we aim to find an orthogonal matrix Θ̃ such that

H(Θ̃) =

[
R+ 0
0 M

]
− Θ̃

[
0 0
0 N

]
−
[

0 0
0 N

]
Θ̃T − Θ̃

[
R− 0
0 M

]
Θ̃T

is non-singular. Given that λ0 6= r−i and λ0 6= r+i it is enough to find an orthogonal
matrix Θ such that

H̃(Θ) =

[
λ0Ip−q 0

0 M

]
−Θ

[
0 0
0 N

]
−
[

0 0
0 N

]
ΘT −Θ

[
λ0Ip−q 0

0 M

]
ΘT

is non-singular. For, if such a matrix Θ is found and Θ̃ = Diag(I2q−p+−p− ,Θ), then

detH(Θ̃) 6= 0.
Now condition (3.1) (s ≥ p− q) enters the scene. Write

N = Diag(N1, N2), M = Diag(M1,M2),
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with N1 and M1 of size (p− q)× (p− q) and define

Θ =

 0 Ip−q 0
Ip−q 0 0

0 0 Is−(p−q)

 . (3.4)

Then

H̃(Θ) =

 λ0Ip−q −M1 −N1 0
−N1 M1 − λ0Ip−q 0

0 0 −2N2


Bearing in mind that the diagonal elements of N are all different from zero we conclude
that the eigenvalues of H̃(Θ) are those of −2N2 and ±|zj | where

zj = (λ0 − µj)± iνj , j = 1, . . . , p− q.

Hence H̃(Θ) is a non-singular matrix as claimed.
We complete the proof as in the first case: Take any n×n non-singular real matrix

and write it as
[
X+ U

]
, where X+ ∈ Rn×q an U ∈ Rn×s. Define[

X− V
]

=
[
X+ U

]
Θ, X = X(Θ) =

[
X+ X− V U

]
as in (2.13). Then XPXT = 0 and XJPXT is non-singular. Therefore (X, J, PXT )
is a real self-adjoint Jordan triple that generates a unique semisimple real symmetric
quadratic matrix polynomial whose coefficients are given by (2.10) or, alternatively,
L2 = (XJPXT )−1 and L1 and L0 are given by (2.12).

Let us illustrate these techniques with two examples:
Example 9. : (a) Assume that

J = Diag

(
−2,−1,

[
−2 −1
1 −2

])
, P = Diag(1,−1,−1, 1)

(with the structure of (2.3) and (2.4)) and we are to find a quadratic matrix polyno-
mial with (J, P ) as the real self-adjoint Jordan structure. In other words, we are to
construct a real, symmetric and quadratic L(λ) with eigenvalues r1 = −2, r2 = −1,
β1 = −2 + i and β̄1 = −2 − i and such that the sign characteristic of r1 = −2 is +1
and that of r2 = −1 is −1.

Since there are no repeated real eigenvalues we can follow the proof of Theorem
8: R+ = [−2], R− = [−1] and Θ̂ = [1]. Thus Θ = I2 and

H(Θ) =

[
−1 0
0 −2

]
.

Now let
[
X+ U

]
be any invertible matrix; say

[
X+ U

]
=

[
2 1
0 2

]
.

We use (2.10) to compute coefficients L2 and L1. Thus,

P1(X) =
[
X+ U

]
H(Θ)

[
XT

+

UT

]
=

[
−6 −4
−4 −8

]
11



and

L2 = P1(X)−1 =

[
−1/4 1/8
1/8 −3/16

]
.

Now we compute L1. First,

P2(X) = XJ2PXT =

[
20 16
16 32

]
and so (2.10) gives

L1 = −L2P2(X)L2 =

[
−3/4 3/8
3/8 −11/16

]
.

Finally, since 0 is not a prescribed eigenvalue, (2.11) gives L0 = (−P−1(X))
−1

where

P−1(X) = XJ−1PXT =

[
12/5 4/5
4/5 8/5

]
Thus

L0 = −P−1(X)−1 =

[
−1/2 1/4
1/4 −3/4

]
and therefore

L(λ) =

[
−1/4 1/8
1/8 −3/16

]
λ2 +

[
−3/4 3/8
3/8 −11/16

]
λ+

[
−1/2 1/4
1/4 −3/4

]
.

It is easily seen that, as prescribed, the eigenvalues of L(λ) are −1, −2, −2 + i and
−2−i. The sign characteristics of the real eigenvalues can be computed using Theorem
4. It is found that the sign characteristic of −1 is −1 and that of −2 is +1, as desired.

Notice that Θ = I2 and so

X =

[
2 2 1 1
0 0 2 2

]
is a matrix of eigenvectors of L(λ). Thus, we have determined a real symmetric
quadratic matrix polynomial with prescribed real self-adjoint Jordan structure and,
by choosing

[
X+ U

]
and Θ, a matrix of eigenvectors for that matrix. 2

(b) Assume that

J =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
0 0 1 0 0 0
0 0 0 1 0 0

 , P = Diag(1,−1,−1,−1, 1, 1) (3.5)

so that the prescribed elementary divisors are λ, λ, λ2 + 1 and λ2 + 1 and the sign
characteristic associated with the eigenvalue 0 is both +1 and −1. According to
Theorem 6 (see the example following this theorem) there is no diagonal quadratic
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matrix polynomial with these elementary divisors. Taking into account that s =
2 > p − q = 1 there is a real symmetric quadratic matrix polynomial with (J, P ) as
self-adjoint Jordan structure, but that matrix polynomial cannot be diagonal. Let
us apply the technique developed in the proof of Theorem 8 to find one such matrix
polynomial.

As p− q = 1 and s− (p− q) = 1 matrix Θ of (3.4) is Θ =

 0 1 0
1 0 0
0 0 1

, and then

(3.3) gives

H(Θ) =

 0 0 0
0 0 0
0 0 0

−Θ

 0 0 0
0 1 0
0 0 1

−
 0 0 0

0 1 0
0 0 1

ΘT −Θ

 0 0 0
0 0 0
0 0 0

ΘT ,

so that

H(Θ) =

 0 −1 0
−1 0 0
0 0 −2


which is non-singular. If, for example

[
X+ U

]
=

 2 1 0
0 2 1
0 0 2

 ,
then

P1(X) =

 −4 −4 0
−4 −2 −4
0 −4 −8

 and L2 = P1(X)−1 =

 0 −1/4 1/8
−1/4 1/4 −1/8
1/8 −1/8 −1/16

 .
As 0 is a prescribed eigenvalue we use (2.12) to compute coefficients L1 and L0. First,

[
X+ U

] [
I3 Θ

]
=

 2 1 0 1 2 0
0 2 1 2 0 1
0 0 2 0 0 2

 =
[
X+ U X− V

]
.

Then

X =
[
X+ X− V U

]
=

 2 1 2 0 1 0
0 2 0 1 2 1
0 0 0 2 0 2

 ,
and

[
L0 L1

]
= −L2XJ

2

[
X
XJ

]−1
=

 0 0 0 1/4 −1/8 1/16
0 0 0 −1/8 −3/16 3/32
0 0 −1/8 1/16 3/32 −3/64

 .
In conclusion,

L(λ) =

 0 −1/4 1/8
−1/4 1/4 −1/8
1/8 −1/8 −1/16

λ2+

 1/4 −1/8 1/16
−1/8 −3/16 3/32
1/16 3/32 −3/64

λ+

 0 0 0
0 0 0
0 0 −1/8


is a real symmetric quadratic matrix polynomial with the prescribed self-adjoint Jor-
dan structure (J, P ) of (3.5). 2
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3.1. Constructing infinitely many symmetric quadratic matrix polyno-
mials. We have seen in Theorem 8 that, given J and P of the form (2.3) and (2.4)
and provided that the basic condition (3.1) is satisfied, there is always a full rank ma-
trix X such that det(XJPXT ) 6= 0. This matrix X is a matrix of eigenvectors for the
unique semisimple real symmetric quadratic matrix polynomial having (X, J, PXT )
as self-adjoint Jordan triple. It is obtained from an arbitrary non-singular matrix
X1 =

[
X+ U

]
and an orthogonal matrix Θ for which detH(Θ) 6= 0, and H(Θ)

is defined by (2.18). As announced in [1], det(XJPXT ) 6= 0 for “almost all” ma-
trices X provided that condition (3.1) is satisfied. This can be explained as follows:
Let S be the set of orthogonal matrices Θ such that detH(Θ) 6= 0 and let Gln(R)
denote the set of n × n real invertible matrices. Any matrix X ∈ Rn×2n obtained
by formula (2.15) from matrices X1 =

[
X+ U

]
∈ Gln(R) and Θ ∈ S satisfies

det(XJPXT ) 6= 0. Now, Gln(R) and S are open and dense sets in Rn×n and On
(the set of n× n real orthogonal matrices), respectively. Thus, “almost” all matrices
X1 ∈ Rn×n and Θ ∈ On produce matrices X such that det(XJPXT ) 6= 0. Hence, a
procedure of constructing infinitely many semisimple real symmetric quadratic matrix
polynomials with prescribed spectral data (J, P ) is as follows:

1. Let X1 ∈ Gln(R), Θ ∈ S, and split X1 into submatrices X1 =
[
X+ U

]
with X+ ∈ Rn×q and U ∈ Rn×s (recall that 2q and 2s are the number of real
and non-real eigenvalues, respectively).

2. With X1 and Θ construct a full rank matrix X as in (2.13).
3. Define L2 = (XJPXT )−1 and L1 and L0 as in (2.12).

Then the matrix polynomial L(λ) = L2λ
2+L1λ+L0 is semisimple, real and symmetric

with (J, P ) as Jordan structure (eigenvalues and sign characteristic). The matrix X
is a matrix of eigenvectors for L(λ).

Example 10. Consider the following spectral data:
Elementary divisors λ− 1 λ− 1 λ− 1 λ+ 1 λ2 + λ+ 1
Sign characteristic +1 −1 −1 +1

The corresponding Jordan structure is:

J = Diag

(
1,−1, 1, 1,

[
1 −1
1 1

])
P = Diag(1, 1,−1,−1,−1, 1).

Define (cf. (2.16))

Q =


Iq 0 0 0
0 0 0 Is
0 Iq 0 0
0 0 Is 0

 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0


There is no diagonal quadratic matrix polynomial with this Jordan structure. How-
ever, for almost any X1 =

[
X+ U

]
∈ Rn×n and Θ ∈ On we can use (2.15)

to construct a real self-adjoint Jordan triple that defines a unique real symmetric
quadratic matrix polynomial with the desired Jordan structure.

This technique can be implemented numerically using (2.12) and MATLAB code
to obtain coefficients L0 and L1. An example follows where X1 is chosen as a random
matrix (along this paper random matrix will mean a matrix containing pseudorandom
values drawn from the standard normal distribution) and Θ is the Q-factor of a QR
factorization of a random matrix:
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>> X1=randn(3); Th=randn(3); [Th,R]=qr(Th); X=X1*[eye(3) Th]*Q;

>> L2=(X*J*P*X’)^(-1),L=-L2*X*J^2*[X;X*J]^(-1); L1=L(:,4:6), L0=L(:,1:3)

L2 = L1 =

-44.4598 21.9310 25.6340 72.2346 -27.1021 -49.2375

21.9310 -12.1663 -13.0700 -27.1021 9.7963 19.6616

25.6340 -13.0700 -13.2789 -49.2375 19.6616 29.7717

L0 =

-27.7748 5.1711 23.6035

5.1711 2.3700 -6.5916

23.6035 -6.5916 -16.4928

4. Positive definite leading coefficient. The real self-adjoint Jordan struc-
tures prescribed in the two cases of Example 9 are admissible but the leading coeffi-
cients of the real symmetric quadratic matrix polynomials with that Jordan structure
cannot be positive definite. In fact, in the first case the sign characteristics assigned
to the real eigenvalues −1 and −2 are, respectively, −1 and +1 and, for all matrix
polynomials of even degree with positive definite leading coefficient, the largest and
smallest real eigenvalues must be of positive and negative type, respectively. In the
second case of Example 9, the prescribed spectral data satisfies this condition but, as
we will see in a moment, all semisimple real symmetric quadratic matrix polynomials
with positive definite leading coefficient are diagonalizable and there is no diagonal
real quadratic matrix polynomial with λ, λ, λ2 + 1 and λ2 + 1 as elementary divisors.
This diagonalizability property follows from careful analysis of the sign characteris-
tics admissible for semisimple self-adjoint matrix polynomials; the topic of the next
section.

4.1. Distribution of characteristic signs; general degree. We now examine
the distribution of the real eigenvalues of L(λ) with respect to their sign character-
istics. For this purpose we quote two results from [18] concerning polynomials of
general degree, `.

Theorem 11. Let L(λ) be an n×n semisimple symmetric matrix polynomial with
L` > 0 and maximal and minimal real eigenvalues λmax and λmin, respectively. For
any α ≤ λmax, let p(α) denote the number of real eigenvalues (counting multiplicities)
of L(λ) of positive type in (α,+∞) and n(α) the number of real eigenvalues (counting
multiplicites) of L(λ) of negative type in [α,+∞). Then n(α) ≤ p(α) for all α ∈
[λmin, λmax].

This theorem implies that, if L` > 0 then, for each real eigenvalue of negative
type, there is at least one larger real eigenvalue of positive type.

Theorem 12. Let L(λ) be an n × n semisimple symmetric matrix polynomial
with L0 > 0 and maximal and minimal real eigenvalues λmax and λmin, respectively.
For α < 0 let p−(α) denote the number of real eigenvalues (counting multiplicities)
of L(λ) of positive type in (α, 0] and n−(α) the number of real eigenvalues (counting
multiplicites) of L(λ) of negative type in [α, 0). For α > 0 let p+(α) denote the
number of real eigenvalues (counting multiplicities) of L(λ) of positive type in (0, α]
and n+(α) the number of real eigenvalues (counting multiplicites) of L(λ) of negative
type in [0, α). Then n−(α) ≤ p−(α) for all α ∈ [λmin, 0) and n+(α) ≥ p+(α) for all
α ∈ (0, λmax].

We also note that, when L` > 0, the largest real eigenvalue (if any) has positive
type. Similarly, if L0 > 0 and λz is the positive eigenvalue of L(λ) closest to zero
(provided that L(λ) has a positive real eigenvalue) then it must be of negative type
because n+(λz) ≥ p+(λz).

15



4.2. The ISQEP with positive definite leading coefficient. Now we have
a condition that all semisimple real symmetric quadratic matrix polynomials with
positive leading coefficient must satisfy:

n(α) ≤ p(α) for all α ∈ [λmin, λmax]. (4.1)

On the other hand, we recall that (Proposition 7)

p− q ≤ 0, (4.2)

is a necessary and sufficient condition for a semisimple real symmetric quadratic ma-
trix polynomial be diagonalizable. It turns out that condition (4.1) implies (4.2).
Thus, (4.1) is sufficient for the existence of a semisimple real symmetric quadratic
matrix polynomials with positive definite leading coefficient. All this will be shown in
the next Theorem. Notice first that if p− q ≤ 0 then condition (3.1) is automatically
satisfied.

Theorem 13. Let J, P ∈ R2n×2n be matrices of the form (2.3) and (2.4). Then
there exists a semisimple real symmetric quadratic matrix polynomial L(λ) with (J, P )
as real self-adjoint Jordan structure and positive definite leading coefficient if and
only if condition (4.1) holds. In particular, all these quadratic matrix polynomials are
diagonalizable.

Proof. The necessity of condition (4.1) is already established. Let us show that it
is also sufficient for the construction of a monic diagonal quadratic matrix polynomial
with (J, P ) as Jordan structure. Let λ1,. . . , λ2n be the prescribed eigenvalues and
assume, without lost of generality, that λ1 ≥ λ2 ≥ · · · ≥ λ2q are the real eigenvalues
and λ2q+2j−1 = µj + iνj , λ2q+2j = µj − iνj , j = 1, . . . , s with νj > 0. Recall that q
real eigenvalues are of positive type and q of negative type.

Condition (4.1) guarantees that the real eigenvalues of L(λ) can be split into two
groups: λi1 ≥ · · · ≥ λiq of positive type, and λj1 ≥ · · · ≥ λjq of negative type, with
λik > λjk , k = 1, . . . , q. This implies that q ≥ p and (4.2) follows.

Now define

ak(λ) = (λ− λik)(λ− λjk), k = 1, . . . , q
aq+k(λ) = λ2 − 2µkλ+ µ2

k + ν2k , k = 1, . . . , s
(4.3)

and then L(λ) = Diag[a1(λ), . . . , an(λ)]. This matrix is a monic semisimple real
symmetric quadratic matrix polynomial with the desired eigenvalues. Using Theotem
4, it is easily seen that L(λ) also has the prescribed sign characteristic.

4.3. Positive definite trailing coefficient. Theorem 12 provides two condi-
tions that the sign characteristic of any semisimple real symmetric quadratic matrix
polynomial with positive definite trailing coefficient must satisfy, namely,

n−(α) ≤ p−(α), for all α ∈ [λmin, 0) (4.4)

and

n+(α) ≥ p+(α), for all α ∈ (0, λmax]. (4.5)

As in the case of positive definite leading coefficient, these conditions are also sufficient
for the existence of a diagonal real quadratic matrix polynomial with positive definite
trailing coefficient.
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Theorem 14. Let J, P ∈ R2n×2n be matrices of the form (2.3) and (2.4). Then
there exists a semisimple real symmetric quadratic matrix polynomial L(λ) with (J, P )
as Jordan structure and positive definite trailing coefficient if and only if (4.4) and
(4.5) hold.

Proof. Let

λ1 ≥ · · · ≥ λf > 0 > λf+1 ≥ · · · ≥ λ2q

be the real eigenvalues of J , and let {i1, . . . , ir} ⊆ {f + 1, . . . , 2q} be the set of
indices such that λiβ is of negative type for β = 1, . . . , r. By (4.4) there are indices
{j1, . . . , jr} ⊆ {f + 1, . . . , 2q} such that, for β = 1, . . . , r, λjβ is of positive type and
λjβ > λiβ . The remaining real negative eigenvalues are of positive type. That is
to say, if {k1, . . . , k2q−f−2r} = {f + 1, . . . , 2q} \ {i1, . . . , ir, j1, . . . , jr} then λkβ is of
positive type for β = 1, . . . , 2q − f − 2r.

Similarly, let {u1, . . . , ut} ⊆ {1, . . . , f} be the set of indices such that λuβ is of
positive type. It follows from condition (4.5) that there is a set of indices {v1, . . . , vt} ⊆
{1, . . . , f} such that, for β = 1, . . . , t, λvβ is of negative type and λvβ < λuβ . Moreover,
if {w1, . . . , wf−2t} = {1, . . . , f} \ {u1, . . . , ut, v1, . . . , vt} then λwβ is of negative type
for β = 1, . . . , f − 2t.

Since the number of prescribed eigenvalues of positive type equals the number of
negative type, we conclude that 2q − f − 2r = f − 2t. Let h denote this number and
let λ2q+1,. . . , λ2q+2s be the non-real eigenvalues of J - in conjugate pairs. Assume,
without loss of generality, that λ2q+2j−1 = µj+iνj and λ2q+2j = µj−iνj , j = 1, . . . , s,
and define

aβ = (λ− λjβ )(λ− λiβ ), β = 1, . . . , r,
aβ = (λ− λuβ )(λ− λvβ ), β = 1, . . . , t,
aβ = −(λ− λkβ )(λ− λwβ ), β = 1, . . . , h,
aβ = λ2 − 2µβλ+ µ2

β + ν2β , β = 1, . . . , s,

(4.6)

and L(λ) = Diag[a1(λ), . . . , an(λ)]. Clearly, this is a semisimple real symmetric
quadratic matrix polynomial with the desired eigenvalues. Using Theotem 4, it is
easily verified that L(λ) also has the desired sign characteristic.

By combining the previous results we can provide a characterization of the sign
characteristics of all semisimple real symmetric quadratic matrix polynomials with
both positive definite leading and trailing coefficients:

Theorem 15. Let J, P ∈ R2n×2n be matrices of the form (2.3) and (2.4). Then
there exists a semisimple real symmetric quadratic matrix polynomial L(λ) with (J, P )
as Jordan structure, positive definite leading coefficient and positive semidefinite trail-
ing coefficient if and only if conditions (4.4), (4.5), and the following conditions hold:

n−(α) = p−(α) for α < λmin and n+(α) = p+(α) for α > λmax. (4.7)

Proof. We already know that conditions (4.4) and (4.5) are necessary. The ne-
cessity of (4.7) follows from Theorem 6 of [18].

In order to prove the sufficiency of (4.4), (4.5) and (4.7), notice that the first two
conditions allow us to define n quadratic polynomials ai(λ) as in (4.6). But it follows
from (4.7) that h = 0. Hence L(λ) = Diag(a1(λ), . . . , an(λ)) is monic and its trailing
coefficient is diagonal with positive elements.
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5. Quadratic matrix polynomials with L0, L2 > 0. The matrix polynomials
constructed in the main theorems of the previous sections are diagonal matrices.
There is however a procedure that, starting from those diagonal matrices, allows us
to construct families of non-diagonal real symmetric quadratic matrix polynomials
with the same Jordan structure (J, P ) and different eigenvectors.

5.1. The case L2 > 0. Let us start with the case when the leading coefficient
is prescribed to be positive definite The procedure to construct broad families of
symmetric, quadratic matrix polynomials with L2 > 0 and prescribed spectral data
is based on the following observation: Assume that (J, P ) is a given Jordan structure
that satisfies condition (4.1), and let

P = {Θ ∈ On|H(Θ) is positive definite}

where, as before, On is the orthogonal group of order n and H(Θ) is the matrix of
(2.18) for the given J and P . Since these two matrices are fixed, the eigenvalues of
H(Θ) depend continuously on Θ and so P is an open set of On with the usual relative
topology. In order to obtain matrices of P for a given Jordan structure (J, P ), we can
use the proof of Theorem 13 to construct a monic diagonal real symmetric quadratic
matrix polynomial with that Jordan structure. We will see that from that diagonal
matrix we can extract an orthogonal matrix Θ such that H(Θ) > 0. Since P is open,
all matrices in a small enough neighborhood of Θ in On will be in P. Any of those
matrices will allow us to construct a quadratic matrix polynomial L(λ) which is real,
symmetric and with (J, P ) as spectral data.

Let D(λ) be a monic diagonal matrix with (J, P ) as spectral data obtained by
the procedure described in the proof of Theorem 13. Using (2.10) we know that, for
D(λ), there is a matrix of eigenvectors X such that XJPXT = In. We also know (see
(2.18)) that XJPXT = X1H(Θ)XT

1 where X1 is the submatrix of X corresponding to
the eigenvectors of eigenvalues of positive type and the real parts of the eigenvectors
of non-real complex conjugate eigenvalues, and H(Θ) is given by (3.3).

Let us show explicit matrices Θ and X1 such that In = X1H(Θ)XT
1 : with the

notation of the proof of Theorem 13 and (4.3), we define R+ = Diag(λi1 , . . . , λiq ),
R− = Diag(λj1 , . . . , λjq ) and

Θ = Diag(Iq,−Is).

This is an orthogonal matrix and the corresponding H(Θ) is diagonal and positive
definite. Let H(Θ) = Diag(h1, . . . , hn) and take

X1 = Diag

(
1√
h1
, . . . ,

1√
hn

)
,

then X1H(Θ)XT
1 = In. If we put X1 =

[
X+ U

]
and use (2.15) to define X, then

(X, J, PXT ) is a real self-adjoint Jordan triple that uniquely defines a real symmetric
quadratic matrix polynomial with (J, P ) as Jordan structure and monic leading coef-
ficient. It can be seen that, actually, (X, J, PXT ) is a real self-adjoint Jordan triple
of D(λ) and so, X is a basic matrix of eigenvectors for D(λ).

Now, since P is open, any orthogonal matrix Θ̃ close enough to Θ = Diag(Iq,−Is)
will be in P; that is to say, H(Θ̃) > 0. Take any non-singular matrix X̃1 and use

(2.15)- (2.16) to construct X̃ = X̃1

[
Iq+s Θ̃

]
Q. By (2.17), X̃JPX̃T is positive

definite and so is L2 = (X̃JPX̃T )−1. Furthermore, (X̃, J, P X̃T ) is a real self-adjoint
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Jordan triple of a real symmetric quadratic matrix polynomial with positive definite
leading coefficient L2. The remaining coefficients can be obtained via (2.10) or (2.12).

There is still a point that should be clarified: How do we obtain an orthogonal
matrix Θ̃ close enough to Θ so that H(Θ̃) > 0?

In practice, one can proceed as follows: For any given matrix A ∈ Rn×n, the
Gram-Schmidt orthogonalization process produces an n × n orthonormal matrix Q
and an n × n upper triangular matrix R such that A = QR (a QR factorization
of A). It turns out that the Q and R depend continuously on A. Furthermore,
this orthogonalization process can be implemented through Householder or Givens
transformations. Then, if A = Θ + E is a sufficiently small perturbation of Θ =
Diag(Iq,−Is), and A = Θ̃R is a QR factorization of A then Θ̃ is in P. Notice that E
can be taken such that Θ + E is invertible and so its QR factorization is unique up
to the signs in the diagonal elements of R. This means that the QR factorization of
Θ +E must be implemented in such a way that the signs of the diagonal elements of
Θ̃ and Θ coincide in order to be close to one-another.

In summary:
1. For the given admissible positive spectral data (J, P ), reorder the diagonal

elements in R+ and R− in such a way that R+−R− > 0. According to The-
orem 13 this is always possible provided that the prescribed Jordan structure
satisfies condition (4.1).

2. Put Θ = Diag(Iq,−Is) and take any small matrix E such that Θ + E is

invertible and if Θ +E = Θ̃R is a QR factorization of Θ +E then H(Θ̃) > 0

and Θ̃ is close enough to Θ to ensure that Θ̃ ∈ P.

3. Take any n × n non-singular matrix X1 and define X = X1

[
Iq+s Θ̃

]
Q,

where Q is the matrix of (2.16).
4. Define L2 = (XJPXT )−1 and obtain L1 and L0 using (2.10) or (2.12).

Item 2 above is optional in the sense that with Θ = Diag(Iq,−Is), X1 arbitrary

and X as in item 3 (with Θ̃ replaced by Θ), (X, J, PXT ) is, in general, a real self-
adjoint Jordan triple of a non-diagonal real symmetric quadratic matrix polynomial.
We illustrate this procedure in the following example.

Example 16. Consider the problem of producing real symmetric quadratic ma-
trix polynomials with positive definite leading coefficient, and the following spectral
data:

Elementary divisors λ− 1 λ− 1 λ λ+ 2 λ2 + 1
Sign characteristic +1 +1 −1 −1

This spectral data is consistent with (4.1), so there exist 3 × 3 real symmetric
quadratic matrix polynomials with positive leading coefficient and this spectral data.
Using Theorem 13, a monic diagonal matrix polynomial with these properties is

D(λ) = Diag[(λ− 1)(λ+ 2), (λ− 1)λ, λ2 + 1]

The Jordan structure corresponding to D(λ) is

J = Diag

(
1, 1,−2, 0,

[
0 −1
1 0

])
, P = Diag(1, 1,−1,−1,−1, 1).

Then

H(Θ) =

 1 0 0
0 1 0
0 0 0

−Θ

 0 0 0
0 0 0
0 0 1

−
 0 0 0

0 0 0
0 0 1

ΘT −Θ

 −2 0 0
0 0 0
0 0 0

ΘT
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and taking

Θ =

 1 0 0
0 1 0
0 0 −1

 , X1 =

 1√
3

0 0

0 1 0
0 0 1√

2


we have

X1H(Θ)XT
1 = I3.

We can confirm that, with this selection of Θ and X1, and with X as in item 3,
(X, J, PXT ) is a real self-adjoint triple of D(λ):

X = X1

[
I3 Θ

]
Q =

 1/
√

3 0 1/
√

3 0 0 0
0 1 0 1 0 0

0 0 0 0 −1/
√

2 1/
√

2



L2 = (XJPXT )−1 = I3,
[
L0 L1

]
= −L2XJ

2

[
X
XJ

]−1
=

 −2 0 0 1 0 0
0 0 0 0 −1 0
0 0 1 0 0 0


We implement now the procedure described above with a random matrix X1 and a
random small perturbation of Θ. Recall that we must check whether the original Θ
and the perturbed Θ̃ have the same diagonal signs and modify it accordingly.
>> Tht=Th+randn(3)*10^(-5); [Tht,R]=qr(Tht); Tht

Tht =

-0.999999999996505 -0.000001773746785 0.000001960521798

0.000001773742907 -0.999999999996470 -0.000001978132593

0.000001960525307 -0.000001978129115 0.999999999996122

>> Tht=Tht*diag([ -1 -1 -1]); norm(Th-Tht)

ans =

3.301942618213596e-06

>> X1=randn(3);X=X1*[eye(3) Tht]*Q;

>> L2=(X*J*P*X’)^(-1), L=-L2*X*J^2*[X;X*J]^(-1); L1=L(:,4:6),L0=L(:,1:3)

L2 =

0.564734314916456 -0.092862337573416 0.013582910394543

-0.092862337573416 0.331961656422359 0.026598490231148

0.013582910394543 0.026598490231148 0.082894057875177

L1 =

0.017935233658507 -0.062356775774305 -0.040710761385933

-0.062356775774305 -0.255953801201674 0.054644110708787

-0.040710761385933 0.054644110708787 0.076435459806833

L0 =

0.491427835797938 -0.054563569267843 0.140172380028954

-0.054563569267843 -0.035035058372216 -0.103321403943779

0.140172380028954 -0.103321403943779 -0.147432025209495

Thus, a non-diagonal real symmetric quadratic matrix polynomials is obtained
whose leading coefficient, L2, is positive definite (this can be seen by computing its
eigenvalues, for example). Many quadratic matrix polynomials (real and symmetric)

can be constructed by different choices of Θ̃ and/or X1; all of them with same pre-
scribed spectral data and positive definite leading coefficient. 2
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5.2. The case L2 > 0 and L0 > 0. The prescribed matrices J and P in
the previous example do not satisfy conditions (4.4) and (4.5) and so L0 cannot be
constructed to be positive semidefinite. It will be shown that, given the hypotheses
of Theorem 15, a procedure similar to that of the previous section, can be designed
to produce a family of semisimple symmetric quadratic matrix polynomials with both
L2 > 0 and L0 > 0, and with the same prescribed spectral data.

First of all, we extend Theorem 3 to cover the case when the trailing coefficient
is also positive definite. Recall that if (X,J, PXT ) is a self-adjoint Jordan triple and
0 6∈ σ(L), then this triple defines a unique self-adjoint matrix polynomial, L(λ), with
trailing coefficient (cf. (2.11))

L0 = −P1(X)−1 = −(XJ−1PXT )−1.

The inverse of J in (2.3) is

J−1 = Diag

(
R−1+ , R−1− ,

[
M̃ Ñ

−Ñ M̃

])

where (with the notation of Section 2.1)

M̃ = Diag

(
µ1

|β1|2
, . . . ,

µ2s−1

|β2s−1|2

)
, Ñ = Diag

(
ν1
|β1|2

, . . . ,
ν2s−1
|β2s−1|2

)
.

For any n× n orthogonal matrix Θ, define

H0(Θ) =
[
In Θ

] 
R−1+ 0 0 0

0 M̃ 0 Ñ
0 0 −R−1− 0

0 Ñ 0 −M̃

[ In
ΘT

]

=

[
R−1+ 0

0 M̃

]
+ Θ

[
0 0

0 Ñ

]
+

[
0 0

0 Ñ

]
ΘT −Θ

[
R−1− 0

0 M̃

]
ΘT .

(5.1)
Then we have:

Theorem 17. Given a real self-adjoint Jordan structure (J, P ), there is a semisim-
ple, real, symmetric quadratic matrix polynomial with (J, P ) as Jordan structure and
positive definite leading and trailing coefficients if and only if 0 is not an eigenvalue
of J and there exists an orthogonal matrix Θ such that H(Θ) of (2.18) and H0(Θ)
of (5.1) are positive and negative definite, respectively.

In this case, if X1 ∈ Rn×n is any non-singular matrix and X is defined by (2.15),
then (X, J, PXT ) is a self-adjoint Jordan triple which uniquely defines a semisim-
ple real symmetric quadratic matrix polynomials with (J, P ) as Jordan structure and
positive definite leading and trailing coefficients.

Proof. Assume that L(λ) = L2λ
2+L1λ+L0 is a real symmetric matrix polynomial

with (J, P ) as Jordan structure and L0, L2 > 0. Then 0 6∈ σ(L) = σ(J) and there is
a full rank matrix X ∈ Rn×2n such that (X, J, PXT ) is a self-adjoint Jordan triple of
L(λ), XJPXT > 0 and XJ−1PXT < 0. Then (see Section 2.3) there is a non-singular
matrixX1 ∈ Rn×n and an n×n orthogonal matrix Θ such thatX = X1

[
Iq+s Θ

]
Q

where Q is the permutation matrix of (2.16). It follows from the results of Section
2.3 (cf. (2.17)) that XJPXT = X1H(Θ)XT

1 . Then a simple computation shows that

XJ−1PXT = X1H0(Θ)XT
1 .
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Since X1 is non-singular, H(Θ) > 0 and H0(Θ) < 0.
Conversely, if 0 is not an eigenvalue of J , X1 is an arbitrary non-singular matrix,

Θ orthogonal and X = X1

[
Iq+s Θ

]
Q then (X, J, PXT ) is a self-adjoint Jordan

triple that defines a real symmetric quadratic matrix polynomial whose leading and
trailing coefficients are, respectively,

L2 = (XJPXT )−1 = (X1H(Θ)XT
1 )−1, L0 = −(XJ−1PXT )−1 = −(X1H0(Θ)XT

1 )−1.

If H(Θ) > 0 and H0(Θ) < 0 then L0 and L2 are positive definite.
The second part of the Theorem follows readily from the results of Sections 2.2

and 2.3.
Assume now that matrices J, P ∈ R2n×2n of the form (2.3) and (2.4) are given

satisfying conditions (4.4), (4.5), (4.7), and 0 is not an eigenvalue of J . By Theorem
15 there is a monic diagonal quadratic matrix D(λ) with positive definite trailing
coefficient. Using the notation of the proof of Theorem 14,

D(λ) = Diag[D1(λ), D2(λ), D3(λ)]

where D1(λ), D2(λ), D3(λ) are diagonal matrices of scalar quadratics:

D1(λ) = Diag[(λ− λj1)(λ− λi1), · · · , (λ− λjr )(λ− λir )],
D2(λ) = Diag[(λ− λu1

)(λ− λv1), · · · , (λ− λuq−r )(λ− λiq−r )],
D3(λ) = Diag[λ2 − 2µ1λ+ µ2

1 + ν21 , · · · , λ2 − 2µsλ+ µ2
s + ν2s ],

with λjk > λik for k = 1, . . . , r, λuk > λvk for k = 1, . . . , q − r, λjk and λuk are of
positive type and λik and λvk are of negative type.

We can rearrange the diagonal real eigenvalues of J so that

R+ = Diag[λj1 , . . . , λjr , λu1
, . . . , λuq−r ], R− = Diag[λi1 , . . . , λir , λv1 , . . . , λvq−r ].

Then R+ − R− > 0 and R−1+ − R−1− < 0. And if we take Θ = Diag(Iq,−Is), an easy
computation shows that

H(Θ) =

[
R+ −R− 0

0 2N

]
> 0

and

H0(Θ) =

[
R−1+ −R−1− 0

0 −2Ñ

]
< 0.

Let X1 ∈ Rn×n be an arbitrary non-singular matrix and construct X using (2.15).
Then (X, J, PXT ) is a real self-adjoint Jordan triple that uniquely determines a real
symmetric quadratic matrix polynomial with positive definite leading and trailing
coefficients. In particular, with

X1 =

[
(R+ −R−)−1/2 0

0 (2N)−1/2

]
,

one can check that (X, J, PXT ) is a self-adjoint Jordan triple of D(λ).
Since the set

{Θ ∈ On|H(Θ) > 0 and H0(Θ) < 0}
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is open, we can use the same procedure of Section 5.1 to produce many real symmetric
quadratic matrix polynomials with positive definite leading and trailing coefficients,
and with (J, P ) as spectral data. The final example illustrates this procedure.

Example 18. Spectral data:

Elementary divisors λ+ 2 λ+ 1 λ− 1 λ− 1 λ− 2 λ− 2 λ2 + λ+ 1
Sign characteristic −1 +1 −1 −1 +1 +1

A monic diagonal matrix with this spectral data and positive definite leading and
trailing coefficients is:

D(λ) = Diag[(λ+ 1)(λ+ 2), (λ− 2)(λ− 1), (λ− 2)(λ− 1), λ2 + λ+ 1].

Then define

J = Diag

(
−1, 2, 2,−2, 1, 1,

[
1 −1
1 1

])
, P = Diag(I3,−I3,−1, 1) Θ = Diag(I3,−1)

and Q as in (2.16).
The following MATLAB code implements the procedure of Section 5.1 starting

with the above matrices J , P , Θ and Q and using random matrices to define X1 and
the perturbation applied to Θ. It concludes with the corresponding coefficient matrices
L2, L1, L0, and verification that L2 > 0 and L0 > 0. Different choices of matrices
X1 and Θ̃ yield (possibly) different real symmetric quadratic matrix polynomials with
the same spectral data (J, P ) and positive definite leading and trailing coefficients.
>> J=blkdiag(diag([-1 2 2 -2 1 1]),[1 -1;1 1]);P=diag([ 1 1 1 -1 -1 -1 -1 1]);

>> Th=diag([ 1 1 1 -1]);

>> Tht=Th+randn(4)*10^(-6); [Tht,R]=qr(Tht); Tht

Tht =

-0.999999999998082 -0.000001750211010 -0.000000285651951 0.000000831370244

0.000001750212827 -0.999999999996321 -0.000000533557936 0.000002002638884

0.000000285651046 0.000000533558506 -0.999999999999816 0.000000034769244

0.000000831366729 0.000002002640321 0.000000034770550 0.999999999997649

>> Tht=Tht*diag([ -1 -1 -1 -1]); norm(Th-Tht)

ans =

2.851650141736129e-06

>> Q=[eye(3) zeros(3,5);zeros(1,7) 1;zeros(3) eye(3) zeros(3,2); zeros(1,6) 1 0];

>> X1=randn(4);X=X1*[eye(4) Tht]*Q;

>> L2=(X*J*P*X’)^(-1), L=-L2*X*J^2*[X;X*J]^(-1); L1=L(:,5:8),L0=L(:,1:4)

L2 =

0.806078129692617 -0.047114715779428 0.715847669446776 -0.652914707844277

-0.047114715779427 0.305242250370710 -0.810198431080349 1.165667206325252

0.715847669446772 -0.810198431080350 5.295595009791147 -7.764360871474528

-0.652914707844271 1.165667206325254 -7.764360871474526 11.766117910855193

L1 =

2.124603814029641 0.164872355925945 -0.547271377584461 1.859722461853190

0.164872355925948 -0.795263736097922 2.160985233380643 -2.992066022738981

-0.547271377584480 2.160985233380648 -14.681332172684314 22.090992709697556

1.859722461853216 -2.992066022738989 22.090992709697566 -33.173246389369389

L0 =
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1.612154192699047 -0.094220353845558 1.431681912840817 -1.305814935090748

-0.094220353845555 0.610485373804359 -1.620395343425297 2.331336709710245

1.431681912840803 -1.620395343425304 10.591184113801775 -15.528721174414684

-1.305814935090727 2.331336709710254 -15.528721174414677 23.532241779620332

One can check that the eigenvalues of L2 and L0 are all positive. 2

6. Conclusions. In this paper the inverse symmetric quadratic eigenvalue prob-
lem (ISQEP) has been considered under the generic assumption that the prescribed
eigenvalues are semisimple but with the additional constraint that the sign charac-
teristic associated with the real eigenvalues is also prescribed. The general theory
imposes the basic restriction that half of the real eigenvalues (if any) must be of
positive type and the other half of negative type. It has been shown that if the pre-
scribed eigenvalues and sign characteristics satisfy this condition and no definiteness
restriction is imposed on the coefficients, then there always exists a real symmetric
quadratic matrix polynomial with these assigned spectral properties; i.e. the ISQEP
always has a solution.

A procedure similar to that proposed in [1] has been designed for the construction
of a broad family of real symmetric quadratic matrix polynomials with prescribed
eigenvalues and sign characteristics.

The case when the leading and/or the trailing coefficient are prescribed to be pos-
itive definite has also been studied. First, it has been shown that all real symmetric
quadratic matrix polynomials with positive definite leading coefficient are diagonaliz-
able. This imposes an important restriction on the admissible geometric multiplicities
of the eigenvalues (Section 2.5). Nevertheless, the main constraint is on the sign char-
acteristic.

With the help of results from [18] (Theorems 11 and 12 above), where the dis-
tribution of eigenvalues with respect to their sign characteristic is studied, necessary
and sufficient conditions have been given for the solution of the ISQEP when the
leading and/or trailing coefficients are prescribed to be positive definite. When those
conditions are satisfied, explicit monic quadratic diagonal matrix polynomials have
been constructed with the desired eigenvalues and sign characteristic.

Then, with the information provided by such diagonal matrices, a procedure has
been proposed to obtain many different real symmetric quadratic matrix polynomials
with prescribed eigenvalues and characteristic signs, and with positive definite leading
and trailing coefficients.

Additional conditions can be expected if also the middle coefficient is prescribed
to be positive definite. This is a research project for the near future.
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