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Abstract. The detailed spectral structure of symmetric, algebraic, quadratic eigenvalue prob-
lems has been developed recently. In this paper we take advantage of these canonical forms to
provide a detailed analysis of inverse problems of the form: construct the coefficient matrices from
the spectral data including the classical eigenvalue/eigenvector data and sign characteristics for the
real eigenvalues. An orthogonality condition dependent on these signs plays a vital role in this con-
struction. Special attention is paid to the cases when the leading and trailing coefficients of the
quadratic matrix polynomial are prescribed to be positive definite.
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1. Introduction. Given a quadratic matrix polynomial L()\) = LoA2+Li A+ Lo,
the direct quadratic eigenvalue problem (QEP) is to find scalars A and nonzero vectors
x satisfying L(A)xz = 0. The scalars A\ and the vectors = are called, respectively,
eigenvalues and eigenvectors of the quadratic matrix polynomial L(\).

The QEP appears repeatedly in different scientific areas including the analysis
of mechanical and acoustic systems, electrical oscillations, fluid mechanics and signal
processing. Many applications, mathematical properties, and a variety of numerical
techniques for this problem were surveyed by Tisseur and Meerbergen in [22].

In many applications properties of the underlying physical system determine real
matrix coefficients Lo, L1, Lo (frequently known as the mass, damping and stiffness
matrices of the system), while the behaviour of the system can frequently be inter-
preted in terms of the eigenvalues and eigenvectors. Thus, the process of analysing
and deriving the spectral information (eigenvalues and eigenvectors) from the ma-
trix coefficients is the direct QEP. The inverse QEP is then to validate, determine
or estimate the parameters (matrices) of the system consistent with its observed or
expected behaviour. In this general setting the “pole assignment problem” (see, for
example, [3, 4, 7, 19] and the references there) can also be seen as an inverse QEP.
An important reference for inverse eigenvalue problem is the book by Chu and Golub,
[6], where a section is dedicated to the inverse QEP.

If the matrix coefficients are not subject to symmetry constraints, a general tech-
nique for constructing families of quadratic matrix polynomials with prescribed eigen-
structure was proposed in [12]. However, as noted above, many physical systems
determine quadratic systems with symmetry constraints on their coefficients. The
inverse symmetric quadratic eigenvalue problem (ISQEP) calls for the construction of
a family of real symmetric quadratic matrix polynomials (possibly with some definite-
ness restrictions on the coefficients) from an admissible set of spectral data. Although
this notion will be extended later in this section, it will be seen that an admissible
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set of spectral data for real symmetric quadratic matrix polynomial must include a
complete family of 2n real and/or complex eigenvalues, with the property that the
non-real eigenvalues (with their associated eigenvectors) appear in conjugate pairs.

This ISQEP has received much attention because of its many applications (see
[21]). Thus, in [2, 20] the case of symmetric tridiagonal coefficients is considered and
in [5, 11] positivity restrictions are imposed on (some of) the matrix coeflicients. It
is a common feature of these references that the spectral data is partially prescribed.
In [12, 14] the problem is considered in greater generality but only partial results
were obtained. In this paper the techniques developed there will be completed and a
procedure for constructing a family of real symmetric quadratic matrix polynomials
with admissible Jordan structure (Definition 2) will be provided in the semisimple
case; i.e. when the algebraic and geometric multiplicities of the eigenvalues coincide.

By Jordan structure, or spectral data, we mean a complete family of real and
complex eigenvalues with their partial multiplicities and sign characteristics. The
sign characteristic is a collection of signs, + and —, attached to the elementary divi-
sors corresponding to the real eigenvalues of any self-adjoint matrix polynomial. The
notion of sign characteristic plays a fundamental role in the study of the self-adjoint
matrix polynomial structures ([10] and [17]) and in the solution of the ISQEP. It will
be reviewed in Section 2 (see also [12, Appen. B]). In that section we will also revisit
an orthogonality property of the eigenvectors of symmetric matrix polynomials that
is important for our developments. This property was studied in [14] for quadratic
matrix polynomials with purely non-real spectrum and then in [12] for quasi hyper-
bolic systems (only real spectrum). It was generalized in [15] to semisimple matrix
polynomials of any degree with arbitrary, but admissible, spectrum.

The assumption that the leading coefficient, Lo, is prescribed to be non-singular
will be maintained throughout this paper. We first study the ISQEP with no def-
initeness constraints on the coefficients, and then the case when Lo is required to
be positive definite. The starting point of this study is the fact (see (2.10)) that
the coeflicients of any self-adjoint matrix polynomial can be obtained from any of
its self-adjoint Jordan triples (Section 2.1). Thus, the first goal is the construction of
self-adjoint Jordan triples from the prescribed spectral data. This is also the approach
taken in the Ph.D. thesis of Maha Al-Ammari [1] - but in a broader context. Section
3 completes that study. It will be shown that, in the semisimple case, any spectral
data is admissible provided that two properties are fulfilled:

1. The non-real eigenvalues must be in conjugate pairs and

2. Half of the real spectrum must be of positive type (+1 as sign characteristic)
and the other half of negative type (-1 as sign characteristic). However, multiple real
eigenvalues of “mixed’ ’ type (some of them of positive type and some of negative
type) are admitted.

Theorem 8 of Section 3 is a central result based on recently developed orthogo-
nality properties of the eigenvectors (Theorem 3). Theorems 13, 14, 15 and 17 are
similar results, but admitting positivity constraints on the leading and/or trailing
coefficients.

A quadratic matrix polynomial is said to be diagonalizable if there is a diagonal
quadratic matrix polynomial with the same eigenvalues and partial multiplicities (or
the same elementary divisors, or the same invariant factors, or the same Smith normal
form). It turns out that semisimple real quadratic matrix polynomials (whether they
are symmetric or not) may not be diagonalizable (see [16]). However, if we confine
ourselves to semisimple real symmetric quadratic matrix polynomials with positive
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definite leading coefficient then they are all diagonalizable (Theorem 13).

2. Preliminary notions and definitions. In this section we summarize the
spectral properties of semisimple quadratic matrix polynomials required in the sub-
sequent development, namely: self-adjoint Jordan triples (including the sign charac-
teristic), orthogonality of the eigenvectors, and conditions for diagonalizability.

2.1. Selfadjoint Jordan triples. We consider n x n semisimple real quadratic
matrix polynomials,

L(X) = LoA? + L1\ + Ly, (2.1)

with real and symmetric coefficients LT = L;, i = 0,1,2, and non-singular leading
coefficient, Ls. The notions of self-adjoint Jordan triple and sign characteristic of real
symmetric matrix polynomials play a fundamental role in what follows.The reader is
referred to [17] (or [15] for a summary). An specific instance of self-adjoint Jordan
triple will be used along the paper. It is now introduced.

Assume that L(A) has 2s (s < n) non-real eigenvalues (counting multiplicities)
and 2q = 2n—2s real eigenvalues. Bearing in mind that the sign characteristic of L(\)
as a complex hermitian matrix polynomial or as a real symmetric polynomial is the
same ([15, Appen. A]) then, by Proposition 4.2 of [8], half of these real eigenvalues
have a positive sign characteristic and the other half a negative sign characteristic.

Let r1,...,74 be the real eigenvalues of positive type, 7¢41,...,724 be those of
negative type and construct diagonal matrices of size g:

R, = Diag(r1,...,rq), R_ = Diag(r¢41,...,T2q)-

Note that the same eigenvalue may appear in both R, and R_. Write the 25 conjugate
pairs of eigenvalues as follows:

6j:/14j+iyj7 /Bj+1:Bj:/“’Lj_iVj (l/j>0), 7=13,...,2s -1
and define
M = Diag(p1, 13, - - -, 2s—1), N = Diag(vi,vs,...,v25-1) > 0. (2.2)

Let X4, X_| U and V be real matrices with the property that the j-th column
of X (resp. X_, U+iV and U —iV) is an eigenvector of L(\) associated with 7;
(resp. 7¢+j, B; and ;). Now we summarize complete spectral data with a real matrix
triple:

: M -N
J = Diag <R+,R_, [ N M ]) e RInx2n (2.3)
P = Diag (I,, —1,, I, I,) € R**2" (2.4)
X=[Xy X_ V U] eRV, (2.5)
where X, X_ € R"*? and
V=v2[v - v | R, U=vV2[w - wus ] €R™, (2.6

u; +1v; and u; —iv; being the j-th column of U+iV and U —iV. Notice that U and
V are (up to the factor v/2) the real and imaginary parts of eigenvectors associated
with non-real eigenvalues. Then ([15, Thm. 1]):

THEOREM 1. With X, J, P defined as in (2.5), (2.3), (2.4), (X,J,PXT) is a
real self-adjoint Jordan triple for L(X\) of (2.1).
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2.2. Selfdajoint Jordan structures. A self-adjoint Jordan triple (X, J, P) of
the quadratic matrix polynomial L(\) of (2.1) has the properties

xXpPxT =0 (2.7)
and, for the leading coefficient of L(\) we have
XJPXT =17 (2.8)

Indeed, it is possible to express all the coefficients of L(\) in terms of a self-adjoint

Jordan triple. Specifically, define the moment functions Py acting on matrices X €
R™*27 as follows:

P.(X) := XJFPXT (2.9)

for integers k (and note that k is any integer if zero is not in the spectrum and,
otherwise, k > 0).

Then (2.7) gives Py(X) = 0 and the coefficients are defined by the moments in
the form (see [15]):

Lyt = P(X),
Ly = —LQPQ(X)LQ = —Pl(X)ilpg(X)Pl(X)il, (2 10)
Lo = _L2P3(X)L2 + L1P1(X)L1 ’
= —Pl(X)il(Pg(X) + PQ(X)Pl(X)il.PQ(X)))Pl(X)il
Alternatively, if 0 ¢ o(L) then
Lo=—-P_ (X)L (2.11)
We can also use Theorem 14.7.1 of [13] to write Ly and Lg in the form:
y 17!
[ Lo Li | =-LyXJ? { xJ } (2.12)

Notice that (see Remark 2 in [15]), given J and P as in (2.3) and (2.4), for any full
rank matrix X for which X PXT =0 and XJPX7 is invertible, (X, J, PXT) forms a
self-adjoint Jordan triple of some real symmetric quadratic matrix polynomial L(\).
In fact, the leading coefficient of such a matrix is Ly = (XJPX?)~! and L; and L
are obtained as in (2.12), for example.

Thus, given a semisimple quadratic polynomial L(\) as in (2.1), there is always
a self-adjoint Jordan triple (X,.J, PXT) for L()\) given by (2.3)-(2.5) where (J, P)
summarizes the spectral data of L(A). Conversely, given matrices (J, P) as in (2.3)
and (2.4) that prescribe the eigenvalues, partial multiplicities and sign characteristics
associated with the real eigenvalues, then for every real X satisfying conditions (2.7)
and (2.8) there is a real symmetric quadratic matrix polynomial L(A) with this pre-
scribed spectral data. In addition, the matrix X determines a matrix of eigenvectors
for L(\).

It is our goal to design a procedure to produce matrices X which determine a
viable set of right eigenvectors and also satisfy conditions (2.7) and (2.8) for given
matrices J and P. It will be shown that if J and P are as in (2.3) and (2.4), and no
definiteness condition is imposed on the coefficients, such a matrix X always exists.
However, if it is required that Lo is positive definite, then it may happen that, for
some specific matrices J and P, there is no such matrix X.
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For example, there is no 2 x 2 quadratic matrix polynomial with positive definite
leading coefficient and Jordan structure

J = Diag(1,2,3,4), P = Diag(1,1,—1-1).

The reason is that, by Example 1.5 of [9], for all matrix polynomials of even degree
with positive definite leading coefficient, the sign characteristic of the largest real
eigenvalue must be positive and that of the smallest real eigenvalue must be negative.
Hence, for these matrices J and P, there is no matrix X satisfying (2.7) and (2.8)
and Ly >0 .
DEFINITION 2.
(a) A real self-adjoint Jordan structure (for a QEP) is a pair of malrices
(J, P) € R#X2n 5 R2X20 with the form (2.3), (2.4) for four real diagonal
matrices Ry, R_ € R"? and M, N € R**® (q+ s =n) with N > 0.
(b) A real self-adjoint Jordan structure (J, P) is said to be admissible if there is
an X € R™ 2" for which equations (2.7) holds and X JPXT is non-singular

(see (2.8)) .

Example 1. Consider the real self-adjoint structure with n =1,
A 0 |10
SR S
and Ay # A;. With X = [ T To ] and xo = t+x1 # 0, we have

XPXT =2t —23=0, XJPX" = X\ai— a3 #0.

So (J, P) is admissible because we can take xo = +x1 # 0 and A1 # . If, in addition,
we require A\; > Ao then XJPXT > 0. O

2.3. Orthogonality. The eigenvectors of a semisimple matrix polynomial satisfy
an orthogonality property derived from (2.7) and the form of the matrix P in (2.4)
(see [15]).

Assume that J and P are given by (2.3) and (2.4), respectively. Let X € R®*2n
be an arbitrary matrix and partition it as in (2.5); i. e.

X=[Xy X_ V U],

where X, X_ € R"*? and U,V € R"**. Tt follows from Theorem 2 of [15] that
(X,J,PXT) is a self-adjoint Jordan triple if and only if XJPX7 is invertible and
there exists an orthogonal matrix © € R™*" such that

[ X_ Vv ]=[Xy U]e (2.13)
and, in particular,
rank [ X_ V |=rank| X, U |=n. (2.14)

These are conditions that any matrix X must satisfy for (X,J, PXT) to be a self-
adjoint Jordan triple.
Observe that, using (2.13), X can be written as

X=[Xy Ul[l4s ©]Q (2.15)
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where

I, 0 0 0
0 0 0 I
_ sl 2.16
@ 0 I, 0 0 (2.16)
0 0 I, 0
and then
XT
XJPX"=[ Xy U ]H(®) [ - } , (2.17)
where
Ry 0 0 0
0 M 0 -—N I
H©O):=[1, ©] 0 0 -R. 0 [ @’} ] (2.18)
0 -N 0 -M

Since [ X, U ] is non-singular, X JPX7” is non-singular or positive definite accord-
ing as H(O) is non-singular or positive definite, respectively. In conclusion:

THEOREM 3. Given a real self-adjoint Jordan structure (J, P), there is a semisim-
ple, real, symmetric quadratic matriz polynomial with (J, P) as Jordan structure and
non-singular (or positive definite) leading coefficient if and only if there exists an or-
thogonal matriz © such that H(O) of (2.18) is non-singular (resp. positive definite).

In this case, if [ X, U ] € R™ ™ 4s any non-singular matriz and X is defined
by (2.15), then (X, J, PXT) is a self-adjoint Jordan triple which uniquely defines a
semisimple real symmetric quadratic matriz polynomial with (J, P) as Jordan structure
and non-singular (resp. positive definite) leading coefficient.

The theorem implies that, once © is found for which H(©) is non-singular or
positive definite, half of the eigenvectors corresponding to real eigenvalues and the real
parts of the eigenvectors of the non-real eigenvalues can be freely chosen (provided
that they are linearly independent). Then the other half of the real eigenvectors, and
the imaginary parts of the non-real ones, are completely determined by the choice of
O in (2.13).

This orthogonality property was also observed in [1] for general (not necessar-
ily semisimple) complex hermitian or real symmetric quadratic matrix polynomials.
However, the expression derived in [1] for the inverse of the leading coefficient is less
explicit than that given in (2.8) and (2.17). Our formulation will be convenient in
proving that the set of matrices [ X4 U | and © such that XJPX” in (2.17) is
invertible is not empty and consequently (as mentioned in [1]), is open and dense (see
Section 3).

In other words, in the semisimple case, det X JPXT # 0 is a generic property for
matrices J and P of (2.3) and (2.4). Proving this property for general real symmetric
quadratic matrix polynomials may require a generalization of (2.17) for arbitrary
Jordan matrices and sign characteristics.

2.4. Computing the sign characteristic. As introduced in Section 2.1, the
sign characteristic attached to the elementary divisors associated with the real eigen-
values of self-adjoint matrix polynomials is not suitable for computations. Two other
characterizations were proposed in [10] and [9] for matrices with monic and non-
singular leading coefficient, respectively. For computational purposes the so-called
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third characterization is most convenient. We present a brief summary of the results
in Section 3.4 of [9]'.
Let L(\) be an n x n self-adjoint matrix polynomial. We may see L(\) as a real
or complex valued matrix function of the real parameter A. The eigenfunctions (),
.oy n(A) of L(X) are the roots of the characteristic equation of L(\):

det(uln — L(A)) = 0,

and they are real analytic functions of real A. Clearly, \¢ is an eigenvalue of L(\)
if and only if Ay is a zero of p;(A\) for some j = 1,...,n. Moreover, dimKerL(\o)
is exactly the number of eigenfunctions with a zero at A\g. The important Theorem
3.7 of [9] (see also [8, Th. 6.10] and [10, Th. 12.5] for the monic case) relates the
elementary divisors of the real eigenvalues of L(A) and their sign characteristics to
the eigenfunctions.

THEOREM 4. Let L()\) be an n X n self-adjoint matriz polynomial with non-
singular leading coefficient and let 1 (N), ..., pn(X) be real analytic functions of real A
such that det(p;(A) I, —L(X)) =0, forj=1,...,n. Let Ay <--- <\, be the different
real eigenvalues of L(N). For every i = 1,...,r, write p1j(A) = (A — X;)™ v (N),
where v;;(X\;) # 0 is real.

Then the non-zero numbers among m;1,. .., My, are the partial multiplicities of
L(\) associated with X;, and the sign of v;;(\;) (for my; # 0) is the sign characteristic
associated with the elementary divisors (A — X\;)™i3 of L(\).

Here, we examine the limiting behaviour of the eigenfunctions as A — oo and
as A — 0. These properties will lead to a simpler characterization of the sign char-
acteristics in the semisimple case with either positive definite leading coefficient, or
positive definite trailing coefficient.

2.5. Diagonalizable quadratic matrix polynomials. As mentioned in the
introduction, L(\) = LaA? + L\ + Lo is said to be diagonalizable over C or R if
there is, respectively, a complex or real diagonal quadratic matrix polynomial with
the same Jordan structure as L(A). The diagonalizable real and complex quadratic
matrix polynomials with non-singular leading coefficient were characterized in [16].
The following results will be needed in the sequel. The first is a re-phrasing of Theorem
6 of that paper.

THEOREM 5. Let L(X) be an n x n quadratic matriz polynomial over C with
non-singular leading coefficient, let A1,..., Ay € C be its distinct eigenvalues and for
i=1,...,t let the partial multiplicities of A; be ng > -+ > N, > 0, where pg; is
the geometric multiplicity of A;. Then L(X) is diagonalizable over C if and only if the
following conditions hold:

t HMg,i
> nij=2n, (2.19)
i=1j=1
1<n; <2, for 1<i<t, 1<75< gy, (2.20)
and
fgi—Ti Sn—r, 1=1,2,...,1, (2.21)

1See also Section VI.5 of [8]. Appendix B of [12] provides an account of the main facts for
semisimple quadratic matrix polynomials.



where r; is the number of partial multiplicities n;1,. .., N, , equal to 2,1 =1,...,t,
andr=nry+---+ 1.

In contrast, for the real case we have ([16, Th. 7]):

THEOREM 6. Let L(\) be an n x n real quadratic matriz polynomial with non-
singular leading coefficient and let A1,..., My € R and a1, &y, ..., as, as € C\ R be
its eigenvalues. Fori=1,... t let nyg > -+ >mn;,, >0 be the partial multiplicities
of Ai. Then L(X) is diagonalizable over R if and only if the partial multiplicities of
a; and &; are equal to 1, 1 <14 < s, and conditions (2.19), (2.20), (2.21) hold with n
replaced by n — s.

Thus, for a semisimple quadratic matrix polynomial it is important to recognise
whether it is defined over C or R. While all complex semisimple matrices are diag-
onalizable, this may not be the case for real matrix polynomials. For example, the
following quadratic matrix polynomial (to reappear in Example 9)

0 —1/4 1/8 /4 —1/8 1/16 00 0
LN =| —-1/4 1/4 —1/8 |N4+| —1/8 —3/16 3/32 |[A+| 0 0 0
1/8 —1/8 —1/16 1/16  3/32 —3/64 00 —1/8

has A; = 0 as a real eigenvalue with partial multiplicities n;; = n12 = 1, and two
semsimple non-real conjugate eigenvalues oy = i @ = —i of multiplicity 2.
Over the complex field

D()\) = Diag[A(A +1i), AA—1i), A\*+1]

has the same elementary divisors as L(\), but there is no real diagonal quadratic
matrix polynomial with the same elementary divisors as L(\). For example,

Diag[\?, A +1, A\ +1]

has the same eigenvalues, but the partial multiplicity of Ay = 0 is n1; = 2. The fact
is that condition (2.21) is violated: for Ay =0 we have 2—0=pg; — 7, >n—s—r =
3—2-0=1.

3. Non-singular leading coefficient. Not all 2n x 2n matrices in Jordan form
can be the canonical Jordan matrix of a quadratic matrix polynomial. For example,
J = Aolay is in Jordan form but there is no quadratic matrix polynomial with this
matrix as its Jordan form. The reason is that the maximal geometric multiplicity of
the eigenvalues of any n x n matrix polynomial is n. Thus, if L()) is semisimple and
p is the maximal multiplicity of any real eigenvalue, then p < n.

Now assume that L()) is real and symmetric and let s be the number of conjugate
pairs of non-real eigenvalues of L(\). If this matrix is semisimple then n = s + ¢,
where ¢ is the number of real eigenvalues of positive type (or of negative type) counting
multiplicities. Consequently,

s>p—q (3.1)

is a condition that must be satisfied by any semisimple real symmetric quadratic
matrix polynomial. In particular, if all eigenvalues are distinct then p = 1 and (3.1)
is always satisfied.
It should be noticed that p — ¢ can be either positive or negative. However:
PROPOSITION 7. With the above notation, assume that L(X\) is a semisimple
real symmetric quadratic matriz polynomial with non-singular leading coefficient. It
is diagonalizable over R[A] if and only if p—q < 0.
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Proof. If L()) is semisimple then, by definition, all partial multiplicities are equal
to 1 and conditions (2.19) and (2.20) are satisfied with n replaced by n —s. For
condition (2.21) we have r; =0fori=1,...,2¢,r =0, pg;, <pfori=1,...,2¢ and
there is an index ¢ such that ug; = p. Thus

Ng,i_rign—s—r,i:].,...72q & p<n—s=q.
By Theorem 6, L()) is diagonalizable if and only if p < g as claimed. O

The basic condition (3.1) is also sufficient for the existence of semisimple real
quadratic matrix polynomials with prescribed Jordan structure.

THEOREM 8. Let J, P € R**2" be matrices of the form (2.3) and (2.4). Then
there exists a semisimple real symmetric quadratic matriz polynomial L(X\) for which
(J, P) is an admissible real self-adjoint Jordan structure (Definition 2) if and only if
condition (3.1) holds.

Proof. We have already seen that (3.1) is necessary for the existence of a semisim-
ple real symmetric quadratic matrix polynomial.

Conversely, assume that (3.1) holds and J € R?"*2" is given as in (2.3). We
divide the proof into two parts according as

p—q<0 or p—qg>0.

(i) p—q < 0. If there is a real symmetric quadratic matrix polynomial with a
Jordan structure (J, P) for which p < ¢ then it is diagonalizable (Proposition 7). Let
us confirm that a diagonal quadratic matrix polynomial can be constructed with the
desired spectral data. First, recall that Ry = Diag(ry,...,7,) collects the eigenvalues
of J of positive type, R_ = Diag(rq+1,...,72) those of negative type and p; £ iv;,
7=1,3,...,2s — 1, are the non-real complex conjugate eigenvalues of J.

If p < q then it is not difficult to see that the diagonal entries of R_ can be
arranged in such a way that r; # r¢44, 1 <i<g¢q. Fori=1,...,¢ put

az(/\) = (/\ — ’I“i)()\ — rq-i-i) if Ti > Tqtis
ai(N) = —(A=71) (A —rgs) i 1 <rgys,

and fori=1,...,s put

gyi = N = 2\ + i + V7.

It is clear that L(A) = Diag(ai()),...,an(N)) is real symmetric, quadratic and J
is a Jordan matrix for L(A). Now, using Theorem 4, we conclude that the sign
characteristics of the real eigenvalues of L(\) are as prescribed.

However, a general technique can be designed that provides infinitely many quadratic
matrix polynomials with (.J, P) as their real self-adjoint Jordan structure.

Since the diagonal elements of R_ can be arranged in such a way that r; # rqy,
1 < i < g, there is a permutation matrix © € R such that R, — OR_OT is
non-singular.

Take any n x n non-singular matrix and write it in the form [ X, U ], where
X1 e R"*% and U € R™"*®. Define the permutation matrix

@:[%’ ?] (3.2)
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and a matrix X as in (2.15). Then, with P of (2.4), XPXT =0 and (cf. (2.17))

XJPXT =] X, U]H(@){)é;},

where H(O) is defined in (2.18) and can be written in the form

H(@):[}B+ 1\04]_@[8 JH_[S ]H@T—@[%— AH@T, (3.3)

where M and N are the diagonal matrices of (2.2). With © of (3.2),

R, —OR_ OT 0
H(@):[ + =0 _QN]

But © has been chosen so that R, — ©R_O7 is non-singular. Thus, H(©) is non-
singular and, since [ X U | is also non-singular, so is X JPX” of (2.17).

We conclude that (X,J, PXT) is a real self-adjoint Jordan triple generating a
semisimple quadratic matrix polynomial whose coefficients are given by (2.10) and,
in particular, Lo is non-singular.

(ii) p — ¢ > 0. This case is more involved because there is no diagonal quadratic
matrix polynomial with the prescribed real self-adjoint Jordan structure (J, P) (Propo-
sition 7).

Let Ag be an eigenvalue of J of highest algebraic multiplicity p and let p4 and p_
be the number of times that \g appears in the diagonal of Ry and R_, respectively.
Let rlﬁ .. .r;Zm and ri,...,7,_, be the remaining elements of Ry and R_. Since
P+ + p— = p > q the diagonal elements of R, and R_ can be paired as follows:

()\0, Tf)7 ey ()\0,7“;7;07), (’I“;r, )\Q)7 ey (T;7p+,/\0), ()\0, )\0), ceey ()\0, )\0),

where (Ao, Ag) appears ¢ — (¢ —p—) — (¢ — p+) = p — g times. Thus, we can assume
without lost of generality that

Ry =Diag(Xoly—p_,71 .- . iri_, s Aolp—q), R— =Diag(ri,...,ro_, ,dolg—p., dolp—yg).

»lg—pyo »lg—p->

Recalling (3.3), we aim to find an orthogonal matrix O such that

wor=[ % ]88 2]-[2 o] -s[% o]e

is non-singular. Given that Ao # r; and Ao # r;" it is enough to find an orthogonal
matrix © such that

e T hdpy 0] [0 07 T0 0700 o[ Nlpey 0]z
H(@)_{ 0 M} @{0 N] {o N]@ @[ o m|®

is non-singular. For, if such a matrix © is found and © = Diag(l2g—p, —p_,©O), then

det H(©) # 0.
Now condition (3.1) (s > p — q) enters the scene. Write

N = Diag(N1, Na), M = Diag(Mi, M>),
10



with Ny and M; of size (p — ¢) X (p — ¢) and define

Then
. )\OIpfq - Ml _Nl 0
H(©) = ~-N My —Xlpy O
0 0 —2Ny

Bearing in mind that the diagonal elements of N are all different from zero we conclude
that the eigenvalues of H(©) are those of —2N, and +|z;| where

Zj:(A()—uj):l:iVj, ]:1,7p—q

Hence H(©) is a non-singular matrix as claimed.
We complete the proof as in the first case: Take any n xn non-singular real matrix
and write it as [ X+ U }, where X, € R"*% an U € R"*%. Define

[X_ V]=[X, U]O, X=XO©)=[X, X_ V U]

as in (2.13). Then XPXT =0 and XJPX7 is non-singular. Therefore (X, J, PXT)
is a real self-adjoint Jordan triple that generates a unique semisimple real symmetric
quadratic matrix polynomial whose coefficients are given by (2.10) or, alternatively,
Ly = (XJPXT)=! and L; and Lg are given by (2.12). O

Let us illustrate these techniques with two examples:

EXAMPLE 9. : (a) Assume that

J = Diag (-2,—1,{ *12 :; D P = Diag(1,—1,—1,1)

(with the structure of (2.3) and (2.4)) and we are to find a quadratic matrix polyno-
mial with (J, P) as the real self-adjoint Jordan structure. In other words, we are to
construct a real, symmetric and quadratic L(\) with eigenvalues 1y = —2, ro = —1,
B1 = —241 and Bl = —2 — ¢ and such that the sign characteristic of r; = —2 is +1
and that of ro = —1 is —1.

Since there are no repeated real eigenvalues we can follow the proof of Theorem
8 Ry =[-2], R- =[-1] and © = [1]. Thus © =I5 and

-1 0
mor-[ 7 %],
Now let [ X, U ] be any invertible matrix; say
21
(X, U= { 2! } .
We use (2.10) to compute coefficients Ly and Lj. Thus,

Peo =[x v e | i =] 2 5

11



and

1 -1/4  1/8
Ly = A(X) :[ 1/8 —3/16]

Now we compute L. First,

Py(X)=XJ?PXT = { 2016 }

16 32

and so (2.10) gives

—3/4  3/8
Ly = —LyPy(X)Ly = [ 3/8 —11/16 } ’

Finally, since 0 is not a prescribed eigenvalue, (2.11) gives Ly = (—P_1(X)) ™"
where

P (X)=XJ'PXT = { 142//55 3?2 }

Thus

[ =12 1/4
Lo = =P (X) —{ 1/1 _4/4}

and therefore

R Ry Y Ei Ry P S v vl

It is easily seen that, as prescribed, the eigenvalues of L(A) are —1, —2, —2 + ¢ and
—2—14. The sign characteristics of the real eigenvalues can be computed using Theorem
4. Tt is found that the sign characteristic of —1 is —1 and that of —2 is +1, as desired.
Notice that © = I, and so
2 2 11
X = [ 00 2 2 }

is a matrix of eigenvectors of L(A). Thus, we have determined a real symmetric
quadratic matrix polynomial with prescribed real self-adjoint Jordan structure and,
by choosing [ X, U } and O, a matrix of eigenvectors for that matrix. o

(b) Assume that

0000 0 0
0000 0 0
0000 —1 0 ,

J=19 000 o -1|° P=Dbiasl-1-1-111) (3.5)
0010 0 0
0001 0 0

so that the prescribed elementary divisors are A, A\, A2 + 1 and A? + 1 and the sign
characteristic associated with the eigenvalue 0 is both +1 and —1. According to
Theorem 6 (see the example following this theorem) there is no diagonal quadratic

12



matrix polynomial with these elementary divisors. Taking into account that s =
2 > p— g = 1 there is a real symmetric quadratic matrix polynomial with (J, P) as
self-adjoint Jordan structure, but that matrix polynomial cannot be diagonal. Let
us apply the technique developed in the proof of Theorem 8 to find one such matrix
polynomial.

01 0
Asp—g=lands—(p—q)=1matrix O of (3.4)is©=| 1 0 0 |, and then
0 0 1

(3.3) gives
00 0 00 0 00 0 00 0
H®O®)=]000|-6|0 1 0|-|01o0|6T-0]|0 0 0|67,
00 0 00 1 0 0 1 00 0
so that
0 -1 0 ]
HO®)=| -1 0 0
0 0 -2 |
which is non-singular. If, for example
2 1 0]
[ Xy U]=]0 2 1],
00 2|
then
—4 -4 0 0 —1/4 1/8
P(X)=| -4 -2 —4 and Ly=P (X)) '=]| —-1/4 1/4 -1/8
0 -4 -8 1/8 —1/8 —1/16

As 0 is a prescribed eigenvalue we use (2.12) to compute coefficients Ly and Lg. First,

21 01 20
[X+ U][Ig 6]: 021 2 01 :[X+UX_ V].
00 2 00 2
Then
21 2 010
X=[Xy X_ VU]=[020121],
0 00 2 0 2
and
v 17! 0 0 0 1/4  -1/8 1/16
[LO Ly ]:—LQXJQ[XJ} =100 0 -1/8 -3/16 3/32
0 0 -1/8 1/16 3/32 —3/64
In conclusion,
0 -1/4 1/8 1/4  -1/8 1/16 0 0 0
L) =| —-1/4 1/4 —1/8 | N+| —1/8 —=3/16 3/32 |AX+| 0 0 0
1/8 —-1/8 —1/16 1/16  3/32 -3/64 0 0 —-1/8

is a real symmetric quadratic matrix polynomial with the prescribed self-adjoint Jor-
dan structure (J, P) of (3.5). O
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3.1. Constructing infinitely many symmetric quadratic matrix polyno-
mials. We have seen in Theorem 8 that, given J and P of the form (2.3) and (2.4)
and provided that the basic condition (3.1) is satisfied, there is always a full rank ma-
trix X such that det(XJPXT) # 0. This matrix X is a matrix of eigenvectors for the
unique semisimple real symmetric quadratic matrix polynomial having (X, J, PXT)
as self-adjoint Jordan triple. It is obtained from an arbitrary non-singular matrix
X; = [ X4y U ] and an orthogonal matrix © for which det H(©) # 0, and H(©)
is defined by (2.18). As announced in [1], det(XJPXT) # 0 for “almost all” ma-
trices X provided that condition (3.1) is satisfied. This can be explained as follows:
Let S be the set of orthogonal matrices © such that det H(©) # 0 and let Gl,(R)
denote the set of n x n real invertible matrices. Any matrix X € R™*2" obtained
by formula (2.15) from matrices X; = [ X3 U | € Gl,(R) and © € S satisfies
det(XJPXT) # 0. Now, Gl,(R) and S are open and dense sets in R"*" and O,
(the set of n x n real orthogonal matrices), respectively. Thus, “almost” all matrices
X1 € R"™ and © € O, produce matrices X such that det(XJPXT) # 0. Hence, a
procedure of constructing infinitely many semisimple real symmetric quadratic matrix
polynomials with prescribed spectral data (J, P) is as follows:

1. Let X; € GI,(R), ©® € S, and split X; into submatrices X; = [ X, U ]
with X € R"*? and U € R"*? (recall that 2q and 2s are the number of real
and non-real eigenvalues, respectively).

2. With X; and © construct a full rank matrix X as in (2.13).

3. Define Ly = (XJPXT)~! and L; and Lg as in (2.12).

Then the matrix polynomial L()\) = LaA?+ L1 A+ Lg is semisimple, real and symmetric
with (J, P) as Jordan structure (eigenvalues and sign characteristic). The matrix X
is a matrix of eigenvectors for L(\).

ExaMPLE 10. Consider the following spectral data:

Elementary divisors ‘ A=1 A—=1 A=1 X4+1 XN +A+1

Sign characteristic ‘ +1 -1 -1 +1

The corresponding Jordan structure is:

J = Diag (1,—1,1,17[ }1 _11 D P = Diag(1,1,—1,-1,-1,1).

Define (cf. (2.16))

100000
I, 0 0 0 010000
1o 0o 0o L] 000001
@=10o 1, 0 0| oo 1000
0 0 I, 0 000100
000010

There is no diagonal quadratic matrix polynomial with this Jordan structure. How-
ever, for almost any X; = [ Xy U | € R™™ and © € O, we can use (2.15)
to construct a real self-adjoint Jordan triple that defines a unique real symmetric
quadratic matrix polynomial with the desired Jordan structure.

This technique can be implemented numerically using (2.12) and MATLAB code
to obtain coefficients Lo and L;. An example follows where X is chosen as a random
matrix (along this paper random matrix will mean a matrix containing pseudorandom
values drawn from the standard normal distribution) and © is the Q-factor of a QR
factorization of a random matrix:

14



>> X1=randn(3); Th=randn(3); [Th,R]I=qr(Th); X=X1x*[eye(3) Thl*Q;
>> L2=(X*J*P*X’) " (-1) ,L=-L2*X*J 2% [X;X*J]~(-1); Li1=L(:,4:6), LO=L(:,1:3)

L2 = L1 =
-44.4598 21.9310 25.6340 72.2346 -27.1021 -49.2375
21.9310 -12.1663 -13.0700 -27.1021 9.7963 19.6616
25.6340 -13.0700 -13.2789 -49.2375 19.6616  29.7717
LO =

-27.7748 5.1711 23.6035
5.1711 2.3700 -6.5916
23.6035 -6.5916 -16.4928

4. Positive definite leading coefficient. The real self-adjoint Jordan struc-
tures prescribed in the two cases of Example 9 are admissible but the leading coeffi-
cients of the real symmetric quadratic matrix polynomials with that Jordan structure
cannot be positive definite. In fact, in the first case the sign characteristics assigned
to the real eigenvalues —1 and —2 are, respectively, —1 and +1 and, for all matrix
polynomials of even degree with positive definite leading coefficient, the largest and
smallest real eigenvalues must be of positive and negative type, respectively. In the
second case of Example 9, the prescribed spectral data satisfies this condition but, as
we will see in a moment, all semisimple real symmetric quadratic matriz polynomials
with positive definite leading coefficient are diagonalizable and there is no diagonal
real quadratic matrix polynomial with A, A\, A2 +1 and A% + 1 as elementary divisors.
This diagonalizability property follows from careful analysis of the sign characteris-
tics admissible for semisimple self-adjoint matrix polynomials; the topic of the next
section.

4.1. Distribution of characteristic signs; general degree. We now examine
the distribution of the real eigenvalues of L(\) with respect to their sign character-
istics. For this purpose we quote two results from [18] concerning polynomials of
general degree, £.

THEOREM 11. Let L(\) be an nxn semisimple symmetric matriz polynomial with
Ly > 0 and maximal and minimal real eigenvalues Apax and Amin, respectively. For
any @ < Amax, let p(@) denote the number of real eigenvalues (counting multiplicities)
of L(\) of positive type in (o, +00) and n(a) the number of real eigenvalues (counting
multiplicites) of L(\) of negative type in [a,400). Then n(a) < p(a) for all a €
[)\miny )\max]-

This theorem implies that, if L, > 0 then, for each real eigenvalue of negative
type, there is at least one larger real eigenvalue of positive type.

THEOREM 12. Let L(\) be an n X n semisimple symmetric matriz polynomial
with Ly > 0 and mazimal and minimal real eigenvalues Amax and Amin, respectively.
For a < 0 let p_(«) denote the number of real eigenvalues (counting multiplicities)
of L(\) of positive type in (a,0] and n_(a) the number of real eigenvalues (counting
multiplicites) of L(\) of negative type in [a,0). For o > 0 let pi(«) denote the
number of real eigenvalues (counting multiplicities) of L(X\) of positive type in (0, o
and ny (a) the number of real eigenvalues (counting multiplicites) of L(\) of negative
type in [0,«). Then n_(a) < p_(a) for all & € [Amin,0) and ny(a) > pi(a) for all
a € (0, Amax]-

We also note that, when L, > 0, the largest real eigenvalue (if any) has positive
type. Similarly, if Ly > 0 and ), is the positive eigenvalue of L(\) closest to zero
(provided that L(A) has a positive real eigenvalue) then it must be of negative type
because n4(A\,) > pi(Az).
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4.2. The ISQEP with positive definite leading coefficient. Now we have
a condition that all semisimple real symmetric quadratic matrix polynomials with
positive leading coefficient must satisfy:

n(a) <p(a) for all a € [Amin, Amax)- (4.1)
On the other hand, we recall that (Proposition 7)
P—q=<0, (4.2)

is a necessary and sufficient condition for a semisimple real symmetric quadratic ma-
trix polynomial be diagonalizable. It turns out that condition (4.1) implies (4.2).
Thus, (4.1) is sufficient for the existence of a semisimple real symmetric quadratic
matrix polynomials with positive definite leading coefficient. All this will be shown in
the next Theorem. Notice first that if p — ¢ < 0 then condition (3.1) is automatically
satisfied.

THEOREM 13. Let J, P € R?"*2" be matrices of the form (2.3) and (2.4). Then
there exists a semisimple real symmetric quadratic matriz polynomial L(X\) with (J, P)
as real self-adjoint Jordan structure and positive definite leading coefficient if and
only if condition (4.1) holds. In particular, all these quadratic matriz polynomials are
diagonalizable.

Proof. The necessity of condition (4.1) is already established. Let us show that it
is also sufficient for the construction of a monic diagonal quadratic matrix polynomial
with (J, P) as Jordan structure. Let Aj,..., Ao, be the prescribed eigenvalues and
assume, without lost of generality, that A\; > Ay > --- > Ay, are the real eigenvalues
and >\2q+2j—1 = Wy + iljj, )‘2q+2j = Hj — iVj, ] = 1, .., 8 with v > 0. Recall that q
real eigenvalues are of positive type and ¢ of negative type.

Condition (4.1) guarantees that the real eigenvalues of L(\) can be split into two
groups: Ay > --- > );, of positive type, and Aj; > --- > \;_ of negative type, with
Air > Aj., k=1,...,¢q. This implies that ¢ > p and (4.2) follows.

Now define

w) = (- ANy, k=1l 0
aq+k()= 2Hk)\+uk+l/k, k=1,...,s
and then L(A\) = Diaglai(}),...,a,(\)]. This matrix is a monic semisimple real

symmetric quadratic matrix polynomial with the desired eigenvalues. Using Theotem
4, it is easily seen that L(A) also has the prescribed sign characteristic. O

4.3. Positive definite trailing coefficient. Theorem 12 provides two condi-
tions that the sign characteristic of any semisimple real symmetric quadratic matrix
polynomial with positive definite trailing coefficient must satisfy, namely,

n_(a) <p_(a), forall « € [Anin,0) (4.4)
and
ni(a) > py(a), forall « € (0, Apax)- (4.5)

As in the case of positive definite leading coefficient, these conditions are also sufficient
for the existence of a diagonal real quadratic matrix polynomial with positive definite
trailing coefficient.
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THEOREM 14. Let J, P € R?"*2" be matrices of the form (2.3) and (2.4). Then
there exists a semisimple real symmetric quadratic matriz polynomial L(X\) with (J, P)
as Jordan structure and positive definite trailing coefficient if and only if (4.4) and
(4.5) hold.

Proof. Let

A > > A > 0> Appg >0 > Ay

be the real eigenvalues of J, and let {i1,...,ir} C {f + 1,...,2¢} be the set of
indices such that A, is of negative type for 3 = 1,...,7. By (4.4) there are indices
{J1,--,0r} S{f+1,...,2¢} such that, for 3 =1,...,r, A;, is of positive type and
Ajs > Aiy. The remaining real negative eigenvalues are of positive type. That is
to say, if {k1,...,koq—sor} = {f+1,...,2¢} \ {41,...,4r,J1,. .., s} then g, is of
positive type for 8 =1,...,2¢ — f — 2r.

Similarly, let {u1,...,us} C {1,..., f} be the set of indices such that A, is of
positive type. It follows from condition (4.5) that there is a set of indices {vy,...,v:} C
{1,..., f}suchthat, for 3 = 1,...,t, A, is of negative type and A,, < A,,. Moreover,
if {wi,..., w0} = {1,..., [} \{ur,...,us,v1,...,v:} then Ay, is of negative type
for B=1,...,f —2t.

Since the number of prescribed eigenvalues of positive type equals the number of
negative type, we conclude that 2g — f — 2r = f — 2¢. Let h denote this number and

let Aggti,. .., A2g+2s be the non-real eigenvalues of J - in conjugate pairs. Assume,
without loss of generality, that Aogi0;—1 = p;+iv; and Aggio; = pj—iv;, 7 =1,...,5,
and define
aﬂ:()\—)\jﬁ)()\—)\iﬁ), 621,...,7“,
ag = (A= Aus) (A = Auy), B=1,...,t, (4.6)
aB:_(A_AkB)(A_Aw5)7 ﬁzlv"'ah7 '
a[;:/\QfQulgAjLu%qug, B=1,...,s,

and L(A) = Diagla1(N),...,an(A\)]. Clearly, this is a semisimple real symmetric
quadratic matrix polynomial with the desired eigenvalues. Using Theotem 4, it is
easily verified that L(\) also has the desired sign characteristic. O

By combining the previous results we can provide a characterization of the sign
characteristics of all semisimple real symmetric quadratic matrix polynomials with
both positive definite leading and trailing coefficients:

THEOREM 15. Let J, P € R**2" pe matrices of the form (2.3) and (2.4). Then
there exists a semisimple real symmetric quadratic matriz polynomial L(N\) with (J, P)
as Jordan structure, positive definite leading coefficient and positive semidefinite trail-
ing coefficient if and only if conditions (4.4), (4.5), and the following conditions hold:

n_(a) =p_(a) for a« < Apin and ni(a) =pi(a) for o> Anax- (4.7

Proof. We already know that conditions (4.4) and (4.5) are necessary. The ne-
cessity of (4.7) follows from Theorem 6 of [18].

In order to prove the sufficiency of (4.4), (4.5) and (4.7), notice that the first two
conditions allow us to define n quadratic polynomials a;(A) as in (4.6). But it follows
from (4.7) that h = 0. Hence L(X\) = Diag(a1(A),...,a,())) is monic and its trailing
coefficient is diagonal with positive elements. O
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5. Quadratic matrix polynomials with Ly, Lo > 0. The matrix polynomials
constructed in the main theorems of the previous sections are diagonal matrices.
There is however a procedure that, starting from those diagonal matrices, allows us
to construct families of non-diagonal real symmetric quadratic matrix polynomials
with the same Jordan structure (J, P) and different eigenvectors.

5.1. The case Ly > 0. Let us start with the case when the leading coefficient
is prescribed to be positive definite The procedure to construct broad families of
symmetric, quadratic matrix polynomials with Lo > 0 and prescribed spectral data
is based on the following observation: Assume that (J, P) is a given Jordan structure
that satisfies condition (4.1), and let

P ={6 € 0,|H(O) is positive definite}

where, as before, O,, is the orthogonal group of order n and H(©) is the matrix of
(2.18) for the given J and P. Since these two matrices are fixed, the eigenvalues of
H(0O) depend continuously on © and so P is an open set of O,, with the usual relative
topology. In order to obtain matrices of P for a given Jordan structure (J, P), we can
use the proof of Theorem 13 to construct a monic diagonal real symmetric quadratic
matrix polynomial with that Jordan structure. We will see that from that diagonal
matrix we can extract an orthogonal matrix © such that H(©) > 0. Since P is open,
all matrices in a small enough neighborhood of © in O,, will be in P. Any of those
matrices will allow us to construct a quadratic matrix polynomial L(\) which is real,
symmetric and with (.J, P) as spectral data.

Let D(A) be a monic diagonal matrix with (J, P) as spectral data obtained by
the procedure described in the proof of Theorem 13. Using (2.10) we know that, for
D()), there is a matrix of eigenvectors X such that X JPX?T = I,,. We also know (see
(2.18)) that XJPXT = X, H(©)XT where X is the submatrix of X corresponding to
the eigenvectors of eigenvalues of positive type and the real parts of the eigenvectors
of non-real complex conjugate eigenvalues, and H(O) is given by (3.3).

Let us show explicit matrices © and X; such that I,, = X; H(©)X{: with the
notation of the proof of Theorem 13 and (4.3), we define R, = Diag(\;;,..., A, ),
R_ = Diag(\;,,...,A;,) and

© = Diag(l,y, —1s).

This is an orthogonal matrix and the corresponding H(©) is diagonal and positive
definite. Let H(©) = Diag(h1,...,hy,) and take

1 1
X, = Di T s
! lag<¢h1 ¢hn>

then X, H(©)X{ =1I,. If we put X; = [ Xy U | and use (2.15) to define X, then
(X, J, PXT) is a real self-adjoint Jordan triple that uniquely defines a real symmetric
quadratic matrix polynomial with (J, P) as Jordan structure and monic leading coef-
ficient. It can be seen that, actually, (X,.J, PXT) is a real self-adjoint Jordan triple
of D(A) and so, X is a basic matrix of eigenvectors for D(A).

Now, since P is open, any orthogonal matrix © close enough to © = Diag(l,, —I;)
will be in P; that is to say, H(©) > 0. Take any non-singular matrix X; and use
(2.15)- (2.16) to construct X = X; [ Iws © } Q. By (2.17), XJPXT is positive
definite and so is Ly = (XJPXT)~1. Furthermore, (X,.J, PXT) is a real self-adjoint
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Jordan triple of a real symmetric quadratic matrix polynomial with positive definite
leading coefficient Lo. The remaining coefficients can be obtained via (2.10) or (2.12).

There is still a point that should be clarified: How do we obtain an orthogonal
matrix © close enough to © so that H(©) > 07

In practice, one can proceed as follows: For any given matrix A € R"*™ the
Gram-Schmidt orthogonalization process produces an n X n orthonormal matrix @
and an n X n upper triangular matrix R such that A = QR (a QR factorization
of A). It turns out that the @ and R depend continuously on A. Furthermore,
this orthogonalization process can be implemented through Householder or Givens
transformations. Then, if A = © + E is a sufficiently small perturbation of © =
Diag(I,,—I), and A = OR is a QR factorization of A then © is in P. Notice that E
can be taken such that © 4+ F is invertible and so its QR factorization is unique up
to the signs in the diagonal elements of R. This means that the QR factorization of
© + E must be implemented in such a way that the signs of the diagonal elements of
© and © coincide in order to be close to one-another.

In summary:

1. For the given admissible positive spectral data (J, P), reorder the diagonal
elements in R4 and R_ in such a way that Ry — R_ > 0. According to The-
orem 13 this is always possible provided that the prescribed Jordan structure
satisfies condition (4.1).

2. Put © = Diag(l,,—I,) and take any small matrix E such that © + E is
invertible and if © + E = OR is a QR factorization of © + E then H(0) > 0
and © is close enough to O to ensure that OcP.

3. Take any n X n non-singular matrix X; and define X = X, [ Tgss 5) } Q,

where @ is the matrix of (2.16).
4. Define Ly = (XJPXT)~! and obtain L; and Lo using (2.10) or (2.12).
Item 2 above is optional in the sense that with © = Diag(I,, —1Is), X, arbitrary
and X as in item 3 (with © replaced by ©), (X, J, PXT) is, in general, a real self-
adjoint Jordan triple of a non-diagonal real symmetric quadratic matrix polynomial.
We illustrate this procedure in the following example.

ExaMPLE 16. Consider the problem of producing real symmetric quadratic ma-
trix polynomials with positive definite leading coefficient, and the following spectral

data:
Elementary divisors | A=1 A—=1 X  X+2 X +1

Sign characteristic ‘ +1 +1 -1 -1
This spectral data is consistent with (4.1), so there exist 3 x 3 real symmetric
quadratic matrix polynomials with positive leading coefficient and this spectral data.
Using Theorem 13, a monic diagonal matrix polynomial with these properties is

D(\) = Diag[(A — 1)(A+2), (A — DA, A2 + 1]

The Jordan structure corresponding to D()) is

J = Diag (1,1,—2,0, { (1) Bl D P = Diag(1,1,-1,—1,—1,1).
Then
1 00 00 0 00 0 -2 0 0
HO)=|010|-6{000|-|000|6"-60] 0 00|67
00 0 0 0 1 0 0 1 0 00
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and taking

X1

O = O

o O
o o5
o = O
sho o

we have
X, H©)X] =I.

We can confirm that, with this selection of © and X3, and with X as in item 3,
(X, J,PXT) is a real self-adjoint triple of D()):

1/vV3 0 1/V/3 0 0 0
X=X[I; ©0]Q= 0o 1 o0 1 0 0
0 0 0 0 —1/v2 1/V2

x 17! -2 0 0 1 O
Ly=(XJPX") ' =15, [Lo L1 |=-LyXJ? { XJ] =/ 0 000 -1
0 01 0 O
We implement now the procedure described above with a random matrix X; and a
random small perturbation of ©. Recall that we must check whether the original ©
and the perturbed © have the same diagonal signs and modify it accordingly.
>> Tht=Th+randn(3)*10~(-5); [Tht,R]=qr(Tht); Tht
Tht =
-0.999999999996505 -0.000001773746785 0.000001960521798
0.000001773742907 -0.999999999996470 -0.000001978132593
0.000001960525307 -0.000001978129115 0.999999999996122
>> Tht=Tht*diag([ -1 -1 -11); norm(Th-Tht)
ans =
3.301942618213596e-06
>> X1=randn(3) ;X=X1x*[eye(3) Tht]*Q;
>> L2=(X*J*P*X’) " (-1), L=-L2xX*J 2% [X;X*J]"(-1); L1=L(:,4:6),L0=L(:,1:3)
L2 =
0.564734314916456 -0.092862337573416  0.013582910394543
-0.092862337573416 0.331961656422359 0.026598490231148
0.013582910394543 0.026598490231148 0.082894057875177
L1 =
0.017935233658507 -0.062356775774305 -0.040710761385933
-0.062356775774305 -0.255953801201674  0.054644110708787
-0.040710761385933 0.054644110708787 0.076435459806833
LO =
0.491427835797938 -0.054563569267843 0.140172380028954
-0.054563569267843 -0.035035058372216 -0.103321403943779
0.140172380028954 -0.103321403943779 -0.147432025209495
Thus, a non-diagonal real symmetric quadratic matrix polynomials is obtained
whose leading coefficient, Lo, is positive definite (this can be seen by computing its
eigenvalues, for example). Many quadratic matrix polynomials (real and symmetric)
can be constructed by different choices of 5) and/or X71; all of them with same pre-
scribed spectral data and positive definite leading coefficient. O
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5.2. The case Ly, > 0 and Ly > 0. The prescribed matrices J and P in
the previous example do not satisfy conditions (4.4) and (4.5) and so Ly cannot be
constructed to be positive semidefinite. It will be shown that, given the hypotheses
of Theorem 15, a procedure similar to that of the previous section, can be designed
to produce a family of semisimple symmetric quadratic matrix polynomials with both
Ly > 0 and Lg > 0, and with the same prescribed spectral data.

First of all, we extend Theorem 3 to cover the case when the trailing coeflicient
is also positive definite. Recall that if (X,.J, PXT) is a self-adjoint Jordan triple and
0 & o(L), then this triple defines a unique self-adjoint matrix polynomial, L()), with
trailing coefficient (cf. (2.11))

Lo=—-P(X)' = —(xJ'PXT)"L.

The inverse of J in (2.3) is

J~! =Diag [ R{',R_", Mo N
~N M

where (with the notation of Section 2.1)

= . M1 H2s—1 > . 1 V2s—1
M = Dia, e , N = Dia ey .
& <|612 |ﬁzsl|2> g (|/31|2 |5281|2>

For any n x n orthogonal matrix O, define

RZ' 0 0 0
o M 0 N I,
Hy®©) = [In ©] 0 0 -R! o |:®T]
o N 0 -M
[ R:' 0 0 0 0 01,7 RZY 0 7 1
- { 0 M}+@{o N}Jr{o KZ]@ 6{ o )9

(5.1)
Then we have:

THEOREM 17. Given a real self-adjoint Jordan structure (J, P), there is a semisim-
ple, real, symmetric quadratic matriz polynomial with (J, P) as Jordan structure and
positive definite leading and trailing coefficients if and only if 0 is not an eigenvalue
of J and there exists an orthogonal matriz © such that H(©) of (2.18) and Hy(O)
of (5.1) are positive and negative definite, respectively.

In this case, if X1 € R™*"™ is any non-singular matriz and X is defined by (2.15),
then (X,J, PXT) is a self-adjoint Jordan triple which uniquely defines a semisim-
ple real symmetric quadratic matriz polynomials with (J, P) as Jordan structure and
positive definite leading and trailing coefficients.

Proof. Assume that L(\) = LoA?4 Ly AL is a real symmetric matrix polynomial
with (J, P) as Jordan structure and Lo, Ly > 0. Then 0 ¢ o(L) = o(J) and there is
a full rank matrix X € R™*?" such that (X, J, PX7T) is a self-adjoint Jordan triple of
L(A\), XJPXT > 0and XJ !PXT < 0. Then (see Section 2.3) there is a non-singular
matrix X1 € R™ " and an nxn orthogonal matrix © such that X = X1 [ I,4+s © ] Q
where @ is the permutation matrix of (2.16). It follows from the results of Section
2.3 (cf. (2.17)) that XJPXT = X; H(©)X{. Then a simple computation shows that

XJ'PXT = X Hy(0)X].
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Since X; is non-singular, H(©) > 0 and Hy(0) < 0.

Conversely, if 0 is not an eigenvalue of J, X is an arbitrary non-singular matrix,
O orthogonal and X = X3 [ Iyvs © ] Q then (X, J,PX7T) is a self-adjoint Jordan
triple that defines a real symmetric quadratic matrix polynomial whose leading and
trailing coefficients are, respectively,

Ly = (XJPXT)"! = (X HO©)X)™!, Loy=—(XJ'PXT)™' = (X Ho(©)XT)~L.

If H(O) > 0 and Hyp(©) < 0 then Lo and Ly are positive definite.

The second part of the Theorem follows readily from the results of Sections 2.2
and 2.3. 0

Assume now that matrices J, P € R?"*2" of the form (2.3) and (2.4) are given
satisfying conditions (4.4), (4.5), (4.7), and 0 is not an eigenvalue of J. By Theorem
15 there is a monic diagonal quadratic matrix D(\) with positive definite trailing
coefficient. Using the notation of the proof of Theorem 14,

D(A) = Diag[D1(}), D2(A), D3(A)]
where D1 (\), Da()), D3()) are diagonal matrices of scalar quadratics:

Di(A) = Diag[(A = Aj ) (A = Ai)y -+ (A= A5 ) (A = A )],
Dsy(A) = Diag[(A = Auy JOAN = Apy), 5 (A= Ay ) (A = i )],
D3(\) = Diag[\? = 2pu A + pf +vf, -+ s A% = 2us\ + i + 3],

with Aj, > X, for b =1,...,r, Ay, > Ay, for k=1,...,¢—r, A;, and \,, are of
positive type and A;, and A,, are of negative type.
We can rearrange the diagonal real eigenvalues of J so that

R+ = Diag[A;jla-~-a)‘jraAu17--~7Auq7T]a R_= Diag[/\il,...,)\”,)\vl,... A ]

y NUg—p

Then Ry — R_ >0and R;' — RZ' < 0. And if we take © = Diag(I,, —I;), an easy
computation shows that

H(@)—[R+6R 2?\]]>0

and

-1 p-1
me) = )

0 _2j\7,:|<0.

Let X; € R™*"™ be an arbitrary non-singular matrix and construct X using (2.15).
Then (X, J, PXT) is a real self-adjoint Jordan triple that uniquely determines a real
symmetric quadratic matrix polynomial with positive definite leading and trailing
coefficients. In particular, with

X, — [ (Ry — R_)™1/2 0 } 7

0 (2N)~1/2

one can check that (X, J, PX7T) is a self-adjoint Jordan triple of D(X).
Since the set

{© € 0,|H(®) >0 and Hy(O) <0}
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is open, we can use the same procedure of Section 5.1 to produce many real symmetric
quadratic matrix polynomials with positive definite leading and trailing coefficients,
and with (J, P) as spectral data. The final example illustrates this procedure.

EXAMPLE 18. Spectral data:

Elementary divisors ‘ A4+2 A+1 A—=1 A—=1 X=2 X—=2 A2+ )r+1
Sign characteristic ‘ -1 +1 -1 -1 +1 +1

A monic diagonal matrix with this spectral data and positive definite leading and
trailing coefficients is:

D(X\) = Diag[(A+ 1A +2), A =2)(A = 1), (A= 2)(A = 1), A2 + A + 1].

Then define

-2,1,1

J = Dlag <_17272a y Ly Ly |: 1 711 :|) ) P = Diag(l37 _I3a -1, 1) 0= Diag(I?n _1)

and @Q as in (2.16).

The following MATLAB code implements the procedure of Section 5.1 starting
with the above matrices J, P, © and @ and using random matrices to define X; and
the perturbation applied to ©. It concludes with the corresponding coefficient matrices
Ly, Ly, Lo, and verification that Ly > 0 and Ly > 0. Different choices of matrices

X1 and O yield (possibly) different real symmetric quadratic matrix polynomials with
the same spectral data (J, P) and positive definite leading and trailing coefficients.

>> J=blkdiag(diag([-1 2 2 -2 1 1]1),[1 -1;1 1]);P=diag([ 1 1 1 -1 -1 -1 -1 1]);
>> Th=diag([ 1 1 1 -11);

>> Tht=Th+randn(4)*10~(-6);

Tht =

>>

-0.999999999998082
0.000001750212827
0.000000285651046
0.000000831366729
Tht=Tht*diag([ -1

ans =

-0.000001750211010
-0.999999999996321
0.000000533558506
0.000002002640321

-1 -1 -11); norm(Th-

2.851650141736129e-06
>> Q=[eye(3) zeros(3,5);zeros(1,7) 1;zeros(3) eye(3) zeros(3,2); zeros(1,6) 1 0];
>> Xl=randn(4) ;X=X1*[eye(4) Tht]*Q;

[Tht,R]=qr(Tht); Tht

-0.000000285651951
-0.000000533557936
-0.999999999999816
0.000000034770550
Tht)

0.000000831370244
0.000002002638884
0.000000034769244
0.999999999997649

>>  L2=(X*J*P*X’) " (-1), L=-L2*X*J"2*[X;X*J]"(-1); L1=L(:,5:8),L0=L(:,1:4)
L2 =
0.806078129692617 -0.047114715779428  0.715847669446776 -0.652914707844277
-0.047114715779427  0.305242250370710 -0.810198431080349 1.165667206325252
0.715847669446772 -0.810198431080350  5.295595009791147 -7.764360871474528
-0.652914707844271 1.165667206325254 -7.764360871474526 11.766117910855193
L1 =
2.124603814029641  0.164872355925945 -0.547271377584461 1.859722461853190
0.1648723556925948 -0.795263736097922  2.160985233380643 -2.992066022738981
-0.547271377584480  2.160985233380648 -14.681332172684314 22.090992709697556
-2.992066022738989 22.090992709697566 -33.173246389369389

1.859722461853216
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1.612154192699047 -0.094220353845558  1.431681912840817 -1.305814935090748
-0.094220353845555 0.610485373804359 -1.620395343425297 2.331336709710245
1.431681912840803 -1.620395343425304 10.591184113801775 -15.528721174414684
-1.305814935090727 2.331336709710254 -15.528721174414677 23.532241779620332
One can check that the eigenvalues of Lo and L are all positive. O

6. Conclusions. In this paper the inverse symmetric quadratic eigenvalue prob-
lem (ISQEP) has been considered under the generic assumption that the prescribed
eigenvalues are semisimple but with the additional constraint that the sign charac-
teristic associated with the real eigenvalues is also prescribed. The general theory
imposes the basic restriction that half of the real eigenvalues (if any) must be of
positive type and the other half of negative type. It has been shown that if the pre-
scribed eigenvalues and sign characteristics satisfy this condition and no definiteness
restriction is imposed on the coefficients, then there always exists a real symmetric
quadratic matrix polynomial with these assigned spectral properties; i.e. the ISQEP
always has a solution.

A procedure similar to that proposed in [1] has been designed for the construction
of a broad family of real symmetric quadratic matrix polynomials with prescribed
eigenvalues and sign characteristics.

The case when the leading and/or the trailing coefficient are prescribed to be pos-
itive definite has also been studied. First, it has been shown that all real symmetric
quadratic matrix polynomials with positive definite leading coefficient are diagonaliz-
able. This imposes an important restriction on the admissible geometric multiplicities
of the eigenvalues (Section 2.5). Nevertheless, the main constraint is on the sign char-
acteristic.

With the help of results from [18] (Theorems 11 and 12 above), where the dis-
tribution of eigenvalues with respect to their sign characteristic is studied, necessary
and sufficient conditions have been given for the solution of the ISQEP when the
leading and/or trailing coefficients are prescribed to be positive definite. When those
conditions are satisfied, explicit monic quadratic diagonal matrix polynomials have
been constructed with the desired eigenvalues and sign characteristic.

Then, with the information provided by such diagonal matrices, a procedure has
been proposed to obtain many different real symmetric quadratic matrix polynomials
with prescribed eigenvalues and characteristic signs, and with positive definite leading
and trailing coefficients.

Additional conditions can be expected if also the middle coefficient is prescribed
to be positive definite. This is a research project for the near future.
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