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Chapter 1. Game Theory and Competitive Strategy 

Introduction 

 

The Theory of Non-Cooperative Games studies and models conflict situations among 

economic agents; that is, it studies situations where the profits (gains, utility or payoffs) of 

each economic agent depend not only on her own acts but also on the acts of the other agents.  

 

We assume rational players so each player will try to maximize her profit function (utility or 

payoff) given her conjectures or beliefs on how the other players are going to play. The 

outcome of the game will depend on the acts of all the players. 

 

A fundamental characteristic of non-cooperative games is that it is not possible to sign 

contracts between players. That is, there is no external institution (for example, courts of 

justice) capable of enforcing the agreements. In this context, co-operation among players only 

arises as an equilibrium or solution proposal if the players find it in their best interest.   

 

For each game we try to propose a “solution”, which should be a reasonable prediction of 

rational behavior by players (OBJECTIVE). 

 

We are interested in Non-Cooperative Game Theory because it is very useful in modeling and 

understanding multi-personal economic problems characterized by strategic interdependency. 

Consider, for instance, competition between firms in a market. Perfect competition and pure 

monopoly (not threatened by entry) are special non-realistic cases. It is more frequent in real 

life to find industries with not many firms (or with a lot of firms but with just a few of them 

producing a large part of the total production). With few firms, competence between them is 

characterized by strategic considerations: each firm takes its decisions (price, output, 

advertising, etc.) taking into account or conjecturing the behavior of the others. Therefore, 

competition in an oligopoly can be seen as a non-cooperative game where the firms are the 

players. Many predictions or solution proposals arising from Game Theory prove very useful 

in understanding competition between economic agents under strategic interaction.  
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Section 1 defines the main notions of Game Theory. We shall see that there are two ways of 

representing a game: the extensive form and the strategic form. In Section 2 we analyze the 

main solution concepts and their problems; in particular, we study the Nash equilibrium and 

its refinements. Section 3 analyzes repeated games and, finally, Section 4 offers concluding 

remarks. 

 

1.1. Basic notions 

There are two ways of representing a game: the extensive form and the strategic form. We 

start by analyzing the main elements of an extensive form game. 

 

1.1.1. Games in extensive form (dynamic or sequential games) 

An extensive form game specifies: 

1) The players. 

2) The order of the game.  

3) The choices available to each player at each turn of play (at each decision node). 

4) The information held by each player at each turn of play (at each decision node). 

5) The payoffs of each player as a function of the movements selected. 

6) Probability distributions for movements made by nature. 

 

An extensive form game is represented by a decision tree. A decision tree comprises nodes 

and branches. There are two types of node: decision nodes and terminal nodes. We have to 

assign each decision node to one player. When the decision node of a player is reached, the 

player chooses a move. When a terminal node is reached, the players obtain payoffs: an 

assignment of payoffs for each player. 
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EXAMPLE 1: Entry game 

Consider a market where there are two firms: an incumbent firm, A, and a potential entrant, 

B. At the first stage, the potential entrant decides whether or not to enter the market. If it 

decides “not to enter” the game concludes and the players obtain payoffs (firm A obtains the 

monopoly profits) and if it decides “to enter” then the incumbent firm, A, has to decide 

whether to accommodate entry (that is, to share the market with the entrant) or to start a 

mutually injurious price war. The extensive form game can be represented as follows: 

 

 

 

 

 

Players: B and A. 

Actions: E (to enter), NE (not to enter), Ac. (to accommodate), P.W. (price war). 

Decision nodes: α. 

Terminal nodes: β. 

(x, y): vector of payoffs. x: payoff of player B; y: payoff of player A. 

At each terminal node we have to specify the payoffs of each player (even though some of 

them have not actually managed to play).  

 

Assumptions: 

(i) All players have the same perception of how the game is like. 

β 

β α 

α 
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(0, 10) 
(4, 4) 

P.W. 
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NE 

E 
B 
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(ii) Complete information: each player knows the characteristics of the other players: 

preferences and strategy spaces.  

(iii) Perfect recall (perfect memory): each player remembers her previous behavior in the 

game.  

 

Definition 1: Information set 

“The information available to each player at each one of her decision nodes”.  

 

 

 

 

 

Game 1    Game 2    

In game 1, player 2 has different information at each one of her decision nodes. At node A, if 

she is called upon to play she knows that the player 1 has played  I and at B she knows that 

player 1 has played D. We say that these information sets are singleton sets consisting of only 

one decision node. Perfect information game: a game where all the information sets are 

singleton sets or, in other words, a game where all the players know everything that has 

happened previously in the game. In game 2, the player 2 has the same information at both 

her decision nodes. That is, the information set is composed of two decision nodes. Put 

differently, player 2 does not know which of those nodes she is at. A game in which there are 

information sets with two or more decision nodes is called an imperfect information game: at 

A 
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least one player does not observe the behavior of the other(s) at one or more of her decision 

nodes. 

 

The fact that players know the game that they are playing and the perfect recall assumption 

restrict the situations where we can find information sets with two or more nodes. 

 

 

 

 

Game 3    Game 4 

 

Game 3 is poorly represented because it would not be an imperfect information game. 

Assuming that player 2 knows the game, if she is called on to move and faces three 

alternatives he/she would immediately deduce that the player 1 has played I. That is, the game 

should be represented like game 4. Therefore, if an information set consists of two or more 

nodes the number of alternatives, actions or moves at each one should be the same. 
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The assumption of perfect recall avoids situations like that in game 5. When player 1 is called 

on to play at her second decision node perfectly recalls her behavior at her first decision node. 

The extensive form should be like that of game 6.  

 

Definition 2: Subgame 

“It is what remains to be played from a decision node with the condition that what remains to 

be played does not form part of an information set with two or more decision nodes. To build 

subgames we look at parts of the game tree that can be constructed without breaking any 

information sets. A subgame starts at a singleton information set and all the decision nodes of 

the same information set must belong to the same subgame.” 

 

 

EXAMPLE 2: The Prisoner’s Dilemma 

Two prisoners, 1 and 2, are being held by the police in separate cells. The police know that 

the two (together) committed a crime but lack sufficient evidence to convict them. So the 

police offer each of them separately the following deal: each is asked to implicate his partner. 

Each prisoner can “confess” (C) or “not confess” (NC). If neither confesses then each player 

goes to jail for one month. If both players confess each prisoner goes to jail for three months. 

If one prisoner confesses and the other does not confess, the first player goes free while the 

second goes to jail for six months.  
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- Simultaneous case: each player takes her decision with no knowledge of the decision of the 

other.  

 

 

 

 

   PD1 

There is an information set with two decision nodes. This is an imperfect information game. 

There is a subgame which coincides with the proper game. 

 

- Sequential game: the second player observes the choice made by the first. 

 

 

 

 

 

   PD2 

Game PD2 is a perfect information game and there are three subgames. “In perfect 

information games there are as many subgames as decision nodes”.  
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Definition 3: Strategy 

“A player’s strategy is a complete description of what she would do if she were called on to 

play at each one of her decision nodes. It needs to be specified even in those nodes not 

attainable by her given the current behavior of the other player(s). It is a behavior plan or 

conduct plan”. 

(Examples: consumer demand, supply from a competitive firm.). It is a player’s function 

which assigns an action to each of her decision nodes (or to each of her information sets). A 

player’s strategy has as many components as information sets the player has.  

 

Definition 4: Action 

“A choice (decision or move) at a decision node”. 

Actions are physical while strategies are conjectural.  

 

Definition 5: Combination of strategies or strategy profile 

“A specification of one strategy for each player”.  The result (the payoff vector) must be 

unequivocally determined. 

 
EXAMPLE 1: The entry game 

This is a perfect information game with two subgames. Each player has two strategies: 

{ },BS NE E=  and                         . Combinations of strategies: (NE, Ac.), (NE, P.W.), (E, Ac.) 

and (E, P.W.). 

 
 

 

{ }., . .AS Ac PW=
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EXAMPLE 2: The Prisoner’s Dilemma 

PD1: This is an imperfect information game with one subgame. Each player has two 

strategies: { }1 ,S C NC=  and { }2 ,S C NC= . Combinations of strategies: (C, C), (C, NC), (NC, 

C) and (NC, NC). 

 

PD2: This is a perfect information game with three subgames. Player 1 has two strategies 

{ }1 ,S C NC=  but player 2 has four strategies { }2 , , ,S CC CNC NCC NCNC= . Combinations 

of strategies: (C, CC), (C, CNC), (C, NCC), (C, NCNC), (NC, CC), (NC,CNC), (NC, NCC) 

and (NC, NCNC). 

 
EXAMPLE 3 

 

 

 

 

Player 1 at his/her first node has two possible actions, D and I, and two actions also at her 

second: s and r. S1 = Ds, Dr, Is, Ir{ } and S2 = R, S{ }. 
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1.1.2. Games in normal or strategic form (simultaneous or static games) 

 
A game in normal or strategic form is described by: 

1) The players. 

2) The set (or space) of strategies for each player.  

3) A payoff function which assigns a payoff vector to each combination of strategies.  

 
The key element of this way of representing a game is the description of the payoffs of the 

game as a function of the strategies of the players, without explaining the actions taken during 

the game. In the case of two players the usual representation is a bimatrix form game where 

each row corresponds to one of the strategies of one player and each column corresponds to 

one strategy of the other player.   

 
EXAMPLE 1: The entry game 

 
 
 
 
 
 
 
 
 
EXAMPLE 2: The Prisoner’s Dilemma  
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EXAMPLE 3 

 

 

 

 

 

 

 

Link between games in normal form and games in extensive form  

a) For any game in extensive form there exists a unique corresponding game in normal form. This 

is due to the game in normal form being described as a function of the strategies of the players.  

b) (Problem) Different games in extensive form can have the same normal (or strategic) form. 

(Example: in the prisoner’s dilemma, PD1, if we change the order of the game then the game in 

extensive form also changes but the game in normal form does not change). 
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1.2. Solution concepts (criteria) for non-cooperative games  

The general objective is to predict how players are going to behave when they face a particular 

game. NOTE: “A solution proposal is (not a payoff vector) a combination of strategies, one for 

each player, which leads to a payoff vector”. We are interested in predicting behavior, not gains.  

 
Notation 

i: Representative player, i = 1,…, n  

Si : set or space of player i’s strategies. 

si ∈Si : a strategy of player i. 

s−i ∈S−i : a strategy or combination of strategies of the other player(s). 

Πi (si ,s−i ) : the profit or payoff of player i corresponding to the combination of strategies 

s ≡ (s1,s2,.....,sn) ≡ (si ,s−i ). 

 

 
1.2.1. Dominance criterion 

 
Definition 6: Dominant strategy 

“A strategy is strictly dominant for a player if it leads to strictly better results (more payoff) than 

any other of her strategies no matter what combination of strategies is used by the other players”. 

“If ( , ) ( , ), , ;D D
i i i i i i i i i i i is s s s s S s s s S− − − −Π > Π ∀ ∈ ≠ ∀ ∈  then D

is  is a strictly dominant strategy for 

player i”. 
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EXAMPLE 2: The Prisoner’s Dilemma 

In game PD1 “confess”, C, is a (strictly) dominant strategy for each player. Independently of the 

behavior of the other player the best each player can do is “confess”.  

The presence of dominant strategies leads to a solution of the game. We should expect each player 

to use her dominant strategy. The solution proposal for game DP1 is the combination of strategies 

(C, C). 

 

Definition 7: Strict dominance 

“One strategy strictly dominates another when it leads to strictly better results (more payoff) than 

the other no matter what combination of strategies is used by the other players”. 

 “If  ( , ) ( , ), ,  then  strictly dominates d dd d dd
i i i i i i i i i is s s s s S s s− − − −Π > Π ∀ ∈ ”.  

 

Definition 7’: (Strictly) Dominated strategy 

“One strategy is strictly dominated for a player when there is another strategy which leads to 

strictly better results (more payoff) no matter what combination of strategies is used by the other 

players”. 

 “  is a strictly dominated strategy if  such that ( , ) ( , ) dd d d dd
i i i i i i i i i is s s s s s s S− − − −∃ Π > Π ∀ ∈ ”.  

 
The dominance criterion consists of the iterated deletion of strictly dominated strategies. 
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EXAMPLE 4 

 

 

 

 

 

In this game there are no dominant strategies. However, the existence of dominated strategies 

allows us to propose a solution. We next apply the dominance criterion. Strategy t3 is strictly 

dominated by strategy t2  so player 1 can conjecture (predict) that player 2 will never use that 

strategy. Given that conjecture, which assumes rationality on the part of player 2, strategy s2 is 

better than strategy s1 for player 1. Strategy s1 would be only used in the event that player 2 used 

strategy t3. If player 1 thinks player 2 is rational then she assigns zero probability to the event of 

player 2 playing t3. In that case, player 1 should play s2 and if player 2 is rational the best she can 

do is t1. The criterion of iterated deletion of strictly dominated strategies (by eliminating 

dominated strategies and by computing the reduced games) allows us to solve the game. 

 

EXAMPLE 5 

 
 
 
 
 
 
 
In this game there are neither dominant strategies nor (strictly) dominated strategies. 

 

2s  

3t  2t  1t  
2 

(-4, -2) 

(2, 7) (0, 4) 

(5, 5) 

(4, 3) 1s  

1 

(5, -1) 

(10, 1) 

2t  1t  2 

(5, 2) (10, 0) 1s  

1 

(2, 0) 
2s  
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Definition 8: Weak dominance 

“One strategy weakly dominates another for a player if the first leads to results at least as good as 

those of the second for any combination of strategies of the other players and to strictly better 

results for some combination of strategies of the other players”.  

 “If ( , ) ( , ), ,  wd wdd
i i i i i i i is s s s s S− − − −Π ≥ Π ∀ ∈ and  such thatis−∃ ( , ) ( , ),  wd wdd

i i i i i is s s s− −Π > Π then 

wd
is weakly dominates wdd

is ”.  

 

Definition 8’: Weakly dominated strategy 

“One strategy is weakly dominated for a player if there is another strategy which leads to results at 

least as good as those of the first one for any combination of strategies of the other players and to 

strictly better results for some combination of strategies of the other players”.  

 “ wdd
is  is a weakly dominated strategy if there is a strategy wd

is  such that   

( , ) ( , ), ,  wd wdd
i i i i i i i is s s s s S− − − −Π ≥ Π ∀ ∈ and  such thatis−∃ ( , ) ( , )wd wdd

i i i i i is s s s− −Π > Π ”.  

 

Thus, a strategy is weakly dominated if another strategy does at least as well for all is−  and strictly 

better for some is− . 

 

In example 5, strategy s1 weakly dominates s2. Player 2 can conjecture that player 1 will play s1 

and given this conjecture the best she can do would be to play t2 . By following the criterion of 

weak dominance (iterated deletion of weakly dominated strategies) the solution proposal would be 

(s1, t2 ). 
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However, the criterion of weak dominance may lead to problematic results, as occurs in example 6, 

or to no solution proposal as occurs in example 7 (because there are no dominant strategies, no 

dominated strategies and no weakly dominated strategies). 

 
 
EXAMPLE 6 
 
 

 
 
 
 
 
 
 
 
 
EXAMPLE 7 
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(0, 0) 

(10, 100) 

3t  2t  1t  
2 

(0, -100) 

(5, 1) (4, -200) (10, 0) 1s  
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3t  2t  1t  
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(2, 10) 2s  
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1.2.2. Backward induction criterion 

We next use the dominance criterion to analyze the extensive form. Consider example 1. 

 

EXAMPLE 1: The entry game 

 
 
 
 
 
 
 
 
 

 

In the game in normal form, player A has a weakly dominated strategy: P.W.. Player B might 

conjecture that and play E. However, player B might also have chosen NE in order to obtain a 

certain payoff against the possibility of player A playing P.W.. 

In the game in extensive form, the solution is obtained more naturally by applying backward 

induction. As she moves first, Player B may conjecture, correctly, that if she plays E then player A 

(if rational) is sure to choose Ac.. Price war is therefore an incredible threat and anticipating that 

player A will accommodate entry, the entrant decides to enter. By playing before A, player B may 

anticipate the rational behavior of player A.  

 

In the extensive form of the game we have more information because when player A has to move 

she already knows the movement of player B.  
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(4, 4) 

P.W. 

Ac. 

NE 

E 
B 

A 

P.W. Ac. 

E 

NE 

B 

A 
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The criterion of backward induction lies in applying the criterion of iterated dominance backwards 

starting from the last subgame(s). In example 1 in extensive form the criterion of backward 

induction proposes the combination of strategies (E, Ac.) as a solution. 

 

Result: In perfect information games with no ties, the criterion of backward induction leads to a 

unique solution proposal. 

 
Problems 

(i) Ties. 

(ii) Imperfect information. Existence of information sets with two or more nodes.  

(iii) The success of backward induction is based on all conjectures about the rationality of agents 

checking out exactly with independence of how long the backward path is. (It may require 

unbounded rationality). 

 
EXAMPLE 8 

 

 

 

 

Backward induction does not propose a solution because in the last subgame player 1 is indifferent 

between s and r. In the previous subgame, player 2 would not have a dominated action (because 

she is unable to predict the behavior of player 1 in the last subgame). 
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EXAMPLE 9 

 

 

 

 

 

We cannot apply the criterion of backward induction. 

 

EXAMPLE 10: Rosenthal’s (1981) centipede game 

 

 

 

 

In the backward induction solution the payoffs are (1, 1). Is another rationality possible? 
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1.2.3. Nash equilibrium 

Player i, i = 1,…, n, is characterized by: 

(i) A set of strategies: Si . 

(ii) A profit function, Πi (si ,s−i )  where si ∈Si  and s−i ∈S−i . 

 

Each player will try to maximize her profit (utility or payoff) function by choosing an appropriate 

strategy with knowledge of the strategy space and profit functions of the other players but with no 

information concerning the current strategy used by rivals. Therefore, each player must conjecture 

the strategy(ies) used by her rival(s).  

 

Definition 9: Nash equilibrium 

“A combination of strategies or strategy profile s* ≡ (s1
*, ...,sn

* )  constitutes a Nash equilibrium if 

the result for each player is better than or equal to the result which would be obtained by playing 

another strategy, with the behavior of the other players remaining constant.  

s* ≡ (s1
*, ...,sn

* )  is a Nash equilibrium if: Πi (si
*, s−i

* ) ≥ Πi (si, s−i
* ) ∀si ∈Si ,∀i,i = 1,...,n .” 

 

At equilibrium two conditions must be satisfied: 

(i) The conjectures of players concerning how their rivals are going to play must be correct.  

(ii) No player has incentives to change her strategy given the strategies of the other players. This is 

an element of individual rationality: do it as well as possible given what the rivals do. Put 

differently, no player increases her profits by unilateral deviation. 
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Being Nash equilibrium is a necessary condition or minimum requisite for a solution proposal to be 

a reasonable prediction of rational behavior by players. However, as we shall see it is not a 

sufficient condition. That is, being Nash equilibrium is not in itself sufficient for a combination of 

strategies to be a prediction of the outcome for a game. 

 

Definition10: Nash equilibrium 

“A combination of strategies or strategy profile s* ≡ (s1
*, ...,sn

* )  constitutes a Nash equilibrium if 

each player’s strategy is a best response to the strategies actually played by her rivals.  

That is, s* ≡ (s1
*, ...,sn

* )  is a Nash equilibrium if:  

                                           * *( )   , 1,...,i i is BR s i i n−∈ ∀ =   

where { }* ' ' * * '( ) : ( , ) ( , ),  ,  i i i i i i i i i i i i i iBR s s S s s s s s S s s− − −= ∈ Π ≥ Π ∀ ∈ ≠ ”. 

 

A simple way of obtaining the Nash equilibria for a game is to build the best response sets of each 

player to the strategies (or combinations of strategies) of the other(s) player(s) and then look for 

those combinations of strategies being mutually best responses. 

 

EXAMPLE 11 
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The strategy profile (b, h) constitutes the unique Nash equilibrium. 

 

EXAMPLE 7 

 

 

 

 

 

 
Note that the dominance criterion did not propose any solution for this game. However, the 

combination of strategies (s1,t1) constitutes the unique Nash equilibrium. 

 

3t  2t  1t  
2 

(10, 3) 

(3, 0) (1, 3) 

(0, 0) 

(4, 10) 1s  
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(2, 10) 2s  
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1.2.4. Problems and refinements of the Nash equilibrium 

 
1.2.4.1. The possibility of inefficiency 

It is usual to find games where Nash equilibria are not Pareto optimal (efficient).  

 
EXAMPLE 2: The Prisoner’s Dilemma 

 

 

 

 

 

 

(C, C) is a Nash equilibrium based on dominant strategies. However, that strategy profile is the 

only profile which is not Pareto optimal. In particular, there is another combination of strategies, 

(NC, NC), where both players obtain greater payoffs. 

 

 1.2.4.2. Inexistence of Nash equilibrium (in pure strategies) 

EXAMPLE 12 

 

 

 

 

NC C 

NC 

C 
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2 

(0, 3) 

(1, 1) (3, 0) 
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NC 

NC 

C 
NC 

C 
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C 

1 

(3, 0) 

(0, 3) 

(2, 2) 

2t  1t  
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(1, 0) 
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This game does not have Nash equilibria in pure strategies. However, if we allow players to use 

mixed strategies (probability distributions on the space of pure strategies) the result obtained is that 

“for any finite game there is always at least one mixed strategy Nash equilibrium”.   

   

1.2.4.3. Multiplicity of Nash equilibria 

We distinguish two types of games. 

 

1.2.4.3.1. With no possibility of refinement or selection 

 

EXAMPLE 13: The Battle of the Sexes 

 

 

 

 

 

 

This game has two Nash equilibria: (M, M) and (P, P). There is a pure coordination problem. 

 

1.2.4.3.2. With possibility of refinement or selection 

a) Efficiency criterion 

This criterion consists of choosing the Nash equilibrium which maximizes the payoff of players. In 

general this is not a good criterion for selection. 

 

P M 

P 

M 

Bf 

Gf 
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(2, 3) 
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b) Weak dominance criterion 

This criterion consists of eliminating Nash equilibria based on weakly dominated strategies. 

Although as a solution concept it is not good, the weak dominance criterion allows us to select 

among the Nash equilibria.  

 

EXAMPLE 14 

 

 

 

 

 

 

Nash equilibria: (D, D) and (I, I). Strategy I is a weakly dominated strategy for each player. By 

playing strategy D each player guarantees a payoff at least as high (and sometimes a higher) than 

that obtained by playing I. So we eliminate equilibrium (I, I) because it is based on weakly 

dominated strategies. So we propose the strategy profile (D, D) as the outcome of the game. 

 

c) Backward induction criterion and subgame perfect equilibrium 

EXAMPLE 15 
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There are three Nash equilibria: (Dr, S), (Ds, S) and (Ir, R). We start by looking at the efficient 

profile: (Ir, R). This Nash equilibrium has a problem: at her second decision node, although it is an 

unattainable given the behavior of the other player, player 1 announces that she would play r. By 

threatening her with r player 1 tries to make player 2 play R and so obtain more profits. However, 

that equilibrium is based on a non credible threat: if player 1 were called on to play at his/her 

second node she would not choose r because it is an action (a non credible threat) dominated by s. 

The refinement we are going to use consists of eliminating those equilibria based on non credible 

threats (that is, based on actions dominated in one subgame). From the joint use of the notion of 

Nash equilibrium and the backward induction criterion the following notion arises: 

 
Definition 11: Subgame perfect equilibrium 

“A combination of strategies or strategy profile s* ≡ (s1
*, ...,sn

* ) , which is a Nash equilibrium, 

constitutes a subgame perfect equilibrium if the relevant parts of the equilibrium strategies of each 

player are also an equilibrium at each of the subgames”. 

 

In example 15 (Dr, S) and (Ir, R) are not subgame perfect equilibria. Subgame perfect equilibria 

may be obtained by backward induction. We start at the last subgame. In this subgame r is a 

dominated action (a non credible threat); therefore, it cannot form part of player 1’s strategy in the 

subgame perfect equilibrium, so we eliminate it and compute the reduced game 

 

 

 

 

 

(2, 2) 

(-1, -1) 

(0, 3) 

(1, 1) 

1 s 

r 

D 

S 

R 
I 

1 

2 



SARRIKO-ON 7/09 

28 
 

 

In the second stage of the backward induction we go to the previous subgame which starts at the 

decision node of player 2. In this subgame R is a dominated action for player 2. Given that player 2 

anticipates that player 1 is not going to play r then R is a dominated action or non credible threat. 

We therefore eliminate it and compute the reduced game  

 

 

 

 

 

At her first node player 1 has I as a dominated action (in the reduced game) and, therefore, she will 

play D. Then the subgame perfect equilibrium is (Ds, S). We can interpret the logic of backward 

induction in the following way. When player 2 has to choose she should conjecture that if she 

plays S player 1 is sure to play s. Player 2 is able to predict the rational behavior of player 1 given 

that player 1 observes the action chosen by her. If player 1 is equally rational she should anticipate 

the behavior (and the reasoning) of player 2 and play D. 

 

EXAMPLE 16  
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In this game there is a multiplicity of Nash equilibria and we cannot apply backward induction 

because there is a subgame with imperfect information. We shall use the definition of subgame 

perfect equilibrium and we shall require that the relevant part of the equilibrium strategies to be an 

equilibrium at the subgames.  

 

 

 

At the upper subgame (the perfect information subgame) the only credible threat by player 2 is L.  

 

 

 

 

 

At the lower subgame (the imperfect information subgame) (which starts at the lower decision 

node of player 2), it is straightforward to check that the Nash equilibrium is O, r.  

 

At her first decision node player 1 therefore has to choose between A and B anticipating that if she 

chooses A then player 2 will play L and if she chooses B, then they will both play the Nash 

equilibrium (of the subgame) O, r.  Therefore, player 1 chooses B. 
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Therefore, the subgame perfect equilibrium is (Br, LO): the relevant part of the equilibrium 

strategies are also equilibrium at each of the subgames.  

 

1.3. Repeated games 

 

EXAMPLE 2: The Prisoner’s Dilemma 

 

 

 

 

 

 

When the game is played once the strategy profile (C, C) is the Nash equilibrium in dominant 

strategies and cooperation or collusion between players cannot hold as equilibrium. Even though 

both players obtain more profits in the combination of strategies (NC, NC), both players would 

have incentives to deviate by using the dominant strategy.  In this section, we are going to study 

the possibilities of cooperation or collusion when the players play the game repeatedly.  

 

1.3.1. Finite temporal horizon 

 

Assume that the game (the Prisoner’s Dilemma) is repeated a finite number of times T (known by 

both players). We know that if T = 1 the unique Nash equilibrium is (C, C).  
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The first point to note is that when the game is repeated T times, a player’s strategy for the 

repeated game should indicate what the player would do at each stage of the game, contingent 

upon past history.   

 

We shall use a backward induction argument to show that in the unique subgame perfect 

equilibrium of this repeated game each player (independently of past history) will choose 

“confess” at each stage of the game. Consider T, t = 1, 2,….., T, iterations of the Prisoner’s 

Dilemma.  

 

We start by looking at the last period T: in this last stage of the game, what has happened earlier 

(the past history) is irrelevant (because there is now no future) and all that remains is to play the 

Prisoner’s Dilemma once. Therefore, as each player has “confess” as her dominant strategy (when 

the game is played once), in the last period each player will choose “confess”. The only reason for 

playing “not confess” in any stage of the game would be to try to improve in the future, given that 

such behavior might be interpreted as a sign of goodwill by the other player so as to gain her 

cooperation. However, at the last stage of the game there is no future so (C, C) is unavoidable. 

Now consider period T-1. Given that players anticipate that in the last period they are not going to 

cooperate, the best they can do in period T-1 is follow the short term dominant strategy, that is, 

“confess”. The only reason for playing “not confess” in this stage of the game would be to try to 

improve in the future, but in period T the players will choose (C, C). The same reasoning applies 

from periods T-2, T-3,….to period 1. Therefore, the unique subgame perfect equilibrium of the 

finitely repeated Prisoner’s Dilemma simply involves T repetitions of the short term (static) Nash 

equilibrium.  
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Therefore, if the game is repeated a finite (and known) number of times, in the subgame perfect 

equilibrium each player would choose her short term dominant strategy at each stage of the game. 

As a consequence, cooperation between players cannot hold as equilibrium when the temporal 

horizon is finite.  

 

1.3.2. Infinite temporal horizon 

 

There are two ways of interpreting an infinite temporal horizon: 

(i) Literal interpretation: the game is repeated an infinite number of times. In this context, to 

compare two alternative strategies, a player must compare the discounted present value of the 

respective gains. Let δ be the discount factor, 0 < δ < 1, and let r be the discount rate ( 0 r< < ∞ ) 

where 1
1 r

δ =
+

.  

(ii) Informational interpretation: the game is repeated a finite but unknown number of times. At 

each stage there is a probability 0 < δ < 1 of the game continuing. In this setting, each player must 

compare the expected value (which might be also discounted) of the different strategies.  

 

In this repeated game, a player’s strategy specifies her behavior in each period t as a function of the 

game’s past history. Let 1
1 1 2 1{ , }t

tH s sτ τ τ
−

− == , where { , }is C NCτ ∈ , represents the past history (of the 

game).  
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Note first that there is a subgame perfect equilibrium of the infinitely repeated game where each 

player plays C (her short term dominant strategy) in each period. The strategy of each player would 

be “confess in each period independently of past history”.  

 

We now determine under what conditions there is also a subgame perfect equilibrium where the 

two players cooperate. Consider the following combination of long term strategies (called “trigger 

strategies”): 

“Cooperate in each period playing NC  if previously they have cooperated or 1t = . Do not 

cooperate in each period by playing C  if any player previously has deviated from cooperation.” 

 

( si
c ≡ {sit (Ht−1 )}t=1

∞ , i =1,2. 

where 

1
1

                  if all elements of   equal ( , ) or 1
( )

                                                 otherwise                              
t

it t

NC H NC NC t
s H

C
−

−

=
= 


) 

 

Note that these long term strategies incorporate “implicit punishment threats” in the case of breach 

of the (implicit) cooperation agreement. The threat is credible because “confess” in each period 

(independently of the past history) is a Nash equilibrium of the repeated game.  

 

To check whether it is possible to maintain cooperation as equilibrium in this context, we have to 

check that players have no incentives to deviate; that is, we have to check that the combination of 

strategies (s1
c ,s2

c )  constitutes a Nash equilibrium of the repeated game. The discounted present 

value of gains of player i in the strategy profile (s1
c ,s2

c )  is given by: 
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2 2 2( , ) 2 2 2 .... 2(1 ...)
1

c c
i i js sπ δ δ δ δ

δ
= + + + = + + + =

−
 

  

Assume that player i deviates, and does so from the first period. Given that the other player 

punishes her (if the other player follows her strategy) for the rest of the game, the best that player i 

can do is also “confess” for the rest of the game. The discounted present value of deviating is: 

 2 2 1( , ) 3 1 1 .... 3 (1 ...) 3
1

c
i i js sπ δ δ δ δ δ δ

δ
= + + + = + + + + = +

−
 

Cooperation will be supported as a Nash equilibrium if no player has incentives to deviate; that is, 

when ( , ) ( , )c c c
i i j i i js s s sπ π≥ . It is straightforward to check that if 1

2
δ ≥  no player has any incentive 

to break the (implicit) collusion agreement.  

 

We next see how that Nash equilibrium is also subgame perfect: that is, threats are credible. 

Consider a subgame arising after a deviation has occurred. The strategy of each player requires 

“confess” for the rest of the game independently of the rival’s behavior. This pair of strategies is a 

Nash equilibrium of an infinitely repeated Prisoner’s Dilemma because each player would obtain 

1
1 2(1 ...)

1

T
T δδ δ δ

δ

−
− + + + =

−
 

 if she does not deviate, while she would obtain 0 in each period in which she deviates from the 

cooperative strategy.  

 

The above analysis serves as an example of a general principle arising in repeated games with an 

infinite temporal horizon. In these games it is possible to support as equilibrium behaviors that are 

not equilibrium in the short term. This occurs because of the “implicit punishment threat” that in 
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the case of breach of the agreement one will be punished for the rest of the game. So the increase 

in profits (from a breach of the agreement) does not offset the loss of profits for the rest of the 

game.  

 

1.4. Conclusions 

We have analyzed different ways of solving games, although none of them is exempt from 

problems. The dominance criterion (elimination of dominated strategies) is useful in solving some 

games but does not serve in others because it provides no solution proposal. The weak version of 

this criterion (elimination of weakly dominated strategies) is highly useful in selecting among Nash 

equilibria, especially in games in normal or strategic form.  The backward induction criterion 

allows solution proposals to be drawn up for games in extensive form. This criterion has the 

important property that in perfect information games without ties it leads to a unique outcome. But 

it also presents problems: the possibility of ties, imperfect information and unbounded rationality.  

This criterion is highly useful in selecting among Nash equilibria in games in extensive form. The 

joint use of the notion of Nash equilibrium and backward induction gives rise to the concept of 

subgame perfect equilibrium, which is a very useful criterion for proposing solutions in many 

games. Although it also presents problems (inefficiency, nonexistence and multiplicity) the notion 

of the Nash equilibrium is the most general and most widely used solution criterion for solving 

games. Being Nash equilibrium is considered a necessary (but not sufficient) condition for a 

solution proposal to be a reasonable prediction of rational behavior by players. If, for instance, we 

propose as the solution for a game a combination of strategies which is not a Nash equilibrium, 

that prediction would be contradicted by the development of the game itself.  At least one player 



SARRIKO-ON 7/09 

36 
 

would have incentives to change her predicted strategy. In conclusion, although it presents 

problems, there is quasi-unanimity that all solution proposals must at least be Nash equilibrium. 
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