Monotone normality, quasi-metrizable spaces and the role of the T_1 axiom

Javier Gutiérrez García

Department of Mathematics, UPV-EHU

July 26, 2011

26th Summer Conference on General Topology and its Applications

The City College of New York, CUNY
New York, New York, USA
Why monotone normality?

Separation axioms for metric spaces

Monotone normality without T_1 and quasidmetrizable spaces

Why monotone normality?

Separation axioms for metric spaces

Monotone normality and quasi-metrizable spaces and the role of the T_1 axiom
Why monotone normality?

Separation axioms for metric spaces

Monotone normality without T_1

Monotone normality and quasi-metrizable spaces

Regularity

U

\bigcup

$\overline{G(x, U)}$

\bigcup

$G(x, U)$

\bigcup

x

(X, d)

U open

$d(x, X \setminus U)$

$G(x, U) = ?$

Introduction
Why monotone normality?

Separation axioms for metric spaces

\[
(X, d)
\]

Regularity

\[
U \cup \emptyset = G(x, U) \cup G(y, X \setminus \{x\}) = \emptyset
\]

\[
G(x, U) = B\left(x, \frac{d(x, X \setminus U)}{2}\right)
\]

Monotone normality, quasi-metrizable spaces and the role of the \(T_1 \) axiom
Why monotone normality?

Separation axioms for metric spaces

\[(X, d) \]

\(U \) open

\[d(x, X \setminus U) \]

\[G(x, U) = B\left(x, \frac{d(x, X \setminus U)}{2}\right) \]

But we have more!
Why monotone normality?

Separation axioms for metric spaces

Monotone Regularity

\[G(x, U) = B\left(x, \frac{d(x, X \setminus U)}{2}\right) \]

But we have more! (1) If \(x \in U \subseteq V \) then \(G(x, U) \subseteq G(x, V) \)
Why monotone normality?

Monotone normality without T_1 and quasidmetrizable spaces

Why monotone normality?

Separation axioms for metric spaces

Monotone normality and quasi-metrizable spaces

Monotone normality

Regularity

If $x \in U \subseteq V$ then $G(x, U) \subseteq G(x, V)$

(2) If $x \neq y$ then $G(x, X \setminus \{y\}) \cap G(y, X \setminus \{x\}) = \emptyset$

But we have more! (1) If $x \in U \subseteq V$ then $G(x, U) \subseteq G(x, V)$
Metric spaces are normal

Separation axioms for metric spaces

Let (X, τ) be a metric space. If U is open and F is closed, then

\[\Delta(x, U) = ? \]

Normality

If $F_h \subseteq F_i$ and $U_h \subseteq U_i$ then

\[\Delta(F_h, U_h) \leq \Delta(F_i, U_i) \]
Metric spaces are normal

Separation axioms for metric spaces

Monotone normality without T_1

Monotone normality and quasidmetrizable spaces

(X, τ)

Normality

U

$\Delta(F, U)$

$\Delta(F, U)$

F

Here again we have more

If $F_h \subseteq F_i$ and $U_h \subseteq U_i$ then $\Delta(F_h, U_h) \leq \Delta(F_i, U_i)$

$\Delta(x, U) = ?$

U open

$G(x, U)$

F closed
Metric spaces are normal

Separation axioms for metric spaces

\[\Delta(x, U) = ? \]

Normality

\[
\begin{align*}
U & \quad \text{open} \\
\Delta(F, U) & \quad \text{closed} \\
F & \quad \text{closed}
\end{align*}
\]

Here again we have

If \(F_h \subseteq F_i \) and \(U_h \subseteq U_i \) then \(\Delta(F_h, U_h) \leq \Delta(F_i, U_i) \)

Monotone normality and quasi-metrizable spaces and the role of the \(T_1 \) axiom
Metric spaces are normal

Separation axioms for metric spaces

Monotone normality without T_1

Monotone normality and quasidmetrizable spaces

Metric spaces are normal

Separation axioms for metric spaces

Monotone normality without T_1

Monotone normality and quasidmetrizable spaces

Metric spaces are normal

Separation axioms for metric spaces

Monotone normality without T_1

Monotone normality and quasidmetrizable spaces

Metric spaces are normal

Separation axioms for metric spaces

Monotone normality without T_1

Monotone normality and quasidmetrizable spaces
Metric spaces are normal

Separation axioms for metric spaces

Monotone normality and quasi-metrizable spaces

Normality

\[
\Delta(F, U) = \bigcup_{x \in F} G(x, U)
\]
Metric spaces are normal

Separation axioms for metric spaces

\[(X, \tau)\]

\[U \text{ open}\]

\[F \text{ closed}\]

\[\Delta(F, U) = \bigcup_{x \in F} G(x, U)\]

Here again we have more!

Normalization

\[U\]

\[\bigcup_{I} \Delta(F, U)\]

\[\bigcup_{I} \Delta(F, U)\]

\[F\]
Metric spaces are normal

Separation axioms for metric spaces

Monotone normality and quasidmetrizable spaces

Metric spaces are normal

Separation axioms for metric spaces

Monotone normality and quasidmetrizable spaces

Monotone normality without T_1

Monotone normality and quasi-metrizable spaces

Here again we have more!

If $F_1 \subseteq F_2$ and $U_1 \subseteq U_2$ then $\Delta(F_1, U_1) \leq \Delta(F_2, U_2)$
Monotonization of normality

Let X be a topological space with topology $\mathcal{O}X$ (and $\mathcal{C}X$ being the family of all closed sets of X), let

$$P = \{(F, U) \in \mathcal{C}X \times \mathcal{O}X : F \subseteq U\} \quad \text{and} \quad Q = \mathcal{O}X.$$

Both P and Q carry natural orderings. Namely, \leq_Q is the usual inclusion and P is ordered by componentwise inclusion \leq_P, i.e.,

$$(F_1, U_1) \leq_P (F_2, U_2) \iff F_1 \subseteq F_2 \text{ and } U_1 \subseteq U_2.$$
Monotonicization of normality

Let X be a topological space with topology $\mathcal{O}X$ (and $\mathcal{C}X$ being the family of all closed sets of X), let

$$P = \{(F, U) \in \mathcal{C}X \times \mathcal{O}X : F \subseteq U\} \quad \text{and} \quad Q = \mathcal{O}X.$$

Both P and Q carry natural orderings. Namely, \leq_Q is the usual inclusion and P is ordered by componentwise inclusion \leq_P, i.e.,

$$(F_1, U_1) \leq_P (F_2, U_2) \iff F_1 \subseteq F_2 \text{ and } U_1 \subseteq U_2.$$

Definition

A space X is **monotonically normal** if there exists a monotone $\Delta : P \rightarrow Q$ such that

1. $\Delta(F, U) \subseteq \overline{F} \subseteq U$ for all $(F, U) \in P$;
2. if $(F_1, U_1) \leq_P (F_2, U_2)$ then $\Delta(F_1, U_1) \leq_Q \Delta(F_2, U_2)$.

Monotone normality without T_1

Monotone normality and quasidmetrizable spaces
Monotonization of normality

Let X be a topological space with topology $\mathcal{O}X$ (and $\mathcal{C}X$ being the family of all closed sets of X), let

$$P = \{(F, U) \in \mathcal{C}X \times \mathcal{O}X : F \subseteq U\} \quad \text{and} \quad Q = \mathcal{O}X.$$

Both P and Q carry natural orderings. Namely, \leq_Q is the usual inclusion and P is ordered by componentwise inclusion \leq_P, i.e.,

$$(F_1, U_1) \leq_P (F_2, U_2) \iff F_1 \subseteq F_2 \text{ and } U_1 \subseteq U_2.$$

Definition

A space X is **monotonically normal** if there exists a monotone $\Delta : P \rightarrow Q$ such that

1. $F \subseteq \Delta(F, U) \subseteq \overline{F} \subseteq U$ for all $(F, U) \in P$;
2. if $(F_1, U_1) \leq_P (F_2, U_2)$ then $\Delta(F_1, U_1) \leq_Q \Delta(F_2, U_2)$.

Δ is called a **monotone normality operator**.
Equivalent formulation of monotone normality

Theorem (Borges, Heath, Lutzer, Zenor ∼ 1970)

Let X be a topological space. The following are equivalent:

1. X is monotonically normal.
2. There is an assignment of an open set $G(x, U)$ to each pair (x, U) such that U is an open neighborhood of x, in such a way that
 - (i) $x \in G(x, U) \subseteq G(x, U) \subseteq U$;
 - (ii) if $x \in U \subseteq V$, then $G(x, U) \subseteq G(x, V)$.
 - (iii) if $x \neq y$ then $G(x, X \setminus \{y\}) \cap G(y, X \setminus \{x\}) = \emptyset$.
3. There is an assignment of an open set $H(x, U)$ such that
 - (i) $x \in H(x, U) \subseteq U$;
 - (ii) if $H(x, U) \cap H(y, V) = \emptyset$, then either $x \in U$ or $y \in U$.

Monotone normality without T_1 and quasidmetrizable spaces and the role of the T_1 axiom
Equivalent formulation of monotone normality

Theorem (Borges, Heath, Lutzer, Zenor ∼ 1970)

Let X be a topological space. The following are equivalent:

1. X is monotonically normal.
2. There is an assignment of an open set $G(x, U)$ to each pair (x, U) such that U is an open neighborhood of x, in such a way that
 (i) $x \in G(x, U) \subseteq \overline{G(x, U)} \subseteq U$;
 (ii) if $x \in U \subseteq V$, then $G(x, U) \subseteq G(x, V)$.
 (iii) if $x \neq y$ then $G(x, X \setminus \{y\}) \cap G(y, X \setminus \{x\}) = \emptyset$.
3. There is an assignment of an open set $H(x, U)$ such that
 (i) $x \in H(x, U) \subseteq U$;
 (ii) if $H(x, U) \cap H(y, V) = \emptyset$, then either $x \in U$ or $y \in U$.

Proof.

(3) \implies (2): $G(x, U) = \bigcup \{H(x, V) | x \in V \subseteq U\}$.
Equivalent formulation of monotone normality

Theorem (Borges, Heath, Lutzer, Zenor ∼ 1970)

Let X be a topological space. The following are equivalent:

1. X is monotonically normal.
2. There is an assignment of an open set $G(x, U)$ to each pair (x, U) such that U is an open neighborhood of x, in such a way that:
 - (i) $x \in G(x, U) \subseteq \overline{G(x, U)} \subseteq U$;
 - (ii) if $x \in U \subseteq V$, then $G(x, U) \subseteq G(x, V)$.
 - (iii) if $x \neq y$ then $G(x, X \setminus \{y\}) \cap G(y, X \setminus \{x\}) = \emptyset$.
3. There is an assignment of an open set $H(x, U)$ such that:
 - (i) $x \in H(x, U) \subseteq U$;
 - (ii) if $H(x, U) \cap H(y, V) = \emptyset$, then either $x \in U$ or $y \in U$.

Proof.

(3)\implies(2): $G(x, U) = \bigcup \{H(x, V) \mid x \in V \subseteq U\}$.
(2)\implies(1): $\Delta(F, U) = \bigcup \{G(x, U) \mid x \in F\}$.
Equivalent formulation of monotone normality

Theorem (Borges, Heath, Lutzer, Zenor \(\sim \) 1970)

Let \(X \) be a topological space. The following are equivalent:

1. \(X \) is monotonically normal.
2. There is an assignment of an open set \(G(x, U) \) to each pair \((x, U)\) such that \(U \) is an open neighborhood of \(x \), in such a way that
 - (i) \(x \in G(x, U) \subseteq G(x, U) \subseteq U \);
 - (ii) if \(x \in U \subseteq V \) then \(G(x, U) \subseteq G(x, V) \);
 - (iii) if \(x \neq y \) then \(G(x, X \setminus \{y\}) \cap G(y, X \setminus \{x\}) = \emptyset \).
3. There is an assignment of an open set \(H(x, U) \) such that
 - (i) \(x \in H(x, U) \subseteq U \);
 - (ii) if \(H(x, U) \cap H(y, V) = \emptyset \), then either \(x \in U \) or \(y \in U \).

Proof.

(3)\(\implies \) (2): \(G(x, U) = \bigcup \{H(x, V) \mid x \in V \subseteq U\} \).
(2)\(\implies \) (1): \(\Delta(F, U) = \bigcup \{G(x, U) \mid x \in F\} \).
(1)\(\implies \) (3): \(H(x, U) = \Delta(\{x\}, U) \cap \Delta(X \setminus U, X \setminus \{x\}) \).
Equivalent formulation of monotone normality

Theorem (Borges, Heath, Lutzer, Zenor ~ 1970)

Let X be a T_1 topological space. The following are equivalent:

1. X is monotonically normal.
2. There is an assignment of an open set $G(x, U)$ to each pair (x, U) such that U is an open neighborhood of x, in such a way that
 - (i) $x \in G(x, U) \subseteq G(x, U) \subseteq U$;
 - (ii) if $x \in U \subseteq V$, then $G(x, U) \subseteq G(x, V)$.
 - (iii) if $x \neq y$ then $G(x, X \setminus \{y\}) \cap G(y, X \setminus \{x\}) = \emptyset$.
3. There is an assignment of an open set $H(x, U)$ such that
 - (i) $x \in H(x, U) \subseteq U$;
 - (ii) if $H(x, U) \cap H(y, V) = \emptyset$, then either $x \in U$ or $y \in U$.

Proof.

(3)\implies(2): $G(x, U) = \bigcup \{H(x, V) | x \in V \subseteq U\}$.

(2)\implies(1): $\Delta(F, U) = \bigcup \{G(x, U) | x \in F\}$.

(1)\implies(3): $H(x, U) = \Delta(\{x\}, U) \cap \Delta(X \setminus U, X \setminus \{x\})$. (If X is T_1 !)
Some properties of monotonically normal T_1 spaces

- Metrizable spaces are monotonically normal.
Some properties of monotonically normal T_1 spaces

- Metrizable spaces are monotonically normal.
- Linearly ordered topological spaces are monotonically normal.
Some properties of monotonically normal T_1 spaces

- Metrizable spaces are monotonically normal.
- Linearly ordered topological spaces are monotonically normal.
- Monotone normality is hereditary.

(The proof depends on the last characterization of monotone normality, hence it is only valid for T_1 spaces.)
Some properties of monotonically normal T_1 spaces

- Metrizable spaces are monotonically normal.
- Linearly ordered topological spaces are monotonically normal.
- Monotone normality is hereditary.

 (The proof depends on the last characterization of monotone normality, hence it is only valid for T_1 spaces.)

- Monotone version of Tietze’s theorem:

 Suppose A is a closed subspace of a monotonically normal space X. Then there is a function $\Phi_A : C(A, [0, 1]) \rightarrow C(X, [0, 1])$ such that:

 1. for each $f \in C(A, [0, 1])$, $\Phi_A(f)$ extends f;
 2. if $f, g \in C(A, [0, 1])$ and $f \leq g$ in A, then $\Phi_A(f) \leq \Phi_A(g)$ in X.

 (The proof depends on the last characterization of monotone normality, hence it is only valid for T_1 spaces.)
Some properties of monotonically normal T_1 spaces

- Metrizable spaces are monotonically normal.

- Linearly ordered topological spaces are monotonically normal.

- Monotone normality is hereditary.

 (The proof depends on the last characterization of monotone normality, hence it is only valid for T_1 spaces.)

- Monotone version of Tietze’s theorem:

 Suppose A is a closed subspace of a monotonically normal space X. Then there is a function $\Phi_A : C(A, [0, 1]) \to C(X, [0, 1])$ such that:

 1. for each $f \in C(A, [0, 1])$, $\Phi_A(f)$ extends f;
 2. if $f, g \in C(A, [0, 1])$ and $f \leq g$ in A, then $\Phi_A(f) \leq \Phi_A(g)$ in X.

 (The proof depends on the last characterization of monotone normality, hence it is only valid for T_1 spaces.)
Some properties of monotonically normal T_1 spaces

- Metrizable spaces are monotonically normal.
- Linearly ordered topological spaces are monotonically normal.
- Monotone normality is hereditary.

 (The proof depends on the last characterization of monotone normality, hence it is only valid for T_1 spaces.)

- Monotone version of Tietze’s theorem:

 Suppose A is a closed subspace of a monotonically normal space X. Then there is a function $\Phi_A : C(A, [0, 1]) \to C(X, [0, 1])$ such that:

 (1) for each $f \in C(A, [0, 1])$, $\Phi_A(f)$ extends f;
 (2) if $f, g \in C(A, [0, 1])$ and $f \leq g$ in A, then $\Phi_A(f) \leq \Phi_A(g)$ in X.

 (The proof depends on the last characterization of monotone normality, hence it is only valid for T_1 spaces.)
Some properties of monotonically normal T_1 spaces

- Metrizable spaces are monotonically normal.
- Linearly ordered topological spaces are monotonically normal.
- Monotone normality is hereditary.

 (The proof depends on the last characterization of monotone normality, hence it is only valid for T_1 spaces.)

- Monotone version of Tietze’s theorem:

Suppose A is a closed subspace of a monotonically normal space X. Then there is a function $\Phi_A : C(A, [0, 1]) \rightarrow C(X, [0, 1])$ such that:

1. for each $f \in C(A, [0, 1])$, $\Phi_A(f)$ extends f;
2. if $f, g \in C(A, [0, 1])$ and $f \leq g$ in A, then $\Phi_A(f) \leq \Phi_A(g)$ in X.

(The proof depends on the last characterization of monotone normality, hence it is only valid for T_1 spaces.)
Why monotone normality without T_1 axiom?

(1) Monotone normality (with T_1 axiom) is hereditary, while normality is only hereditary for closed subspaces. What about monotone normality without T_1 axiom?
Why monotone normality without T_1 axiom?

1. Monotone normality (with T_1 axiom) is hereditary, while normality is only hereditary for closed subspaces. What about monotone normality without T_1 axiom?

 It is not hereditary!!
Why monotone normality without T_1 axiom?

(1) Monotone normality (with T_1 axiom) is hereditary, while normality is only hereditary for closed subspaces. What about monotone normality without T_1 axiom?

It is not hereditary!!

Example
Let (X, τ) an arbitrary space and $Y = X \cup \{\infty\}$ with $\infty \notin X$.

Define on Y the topology $\tau^* = \tau \cup \{Y\}$.

X is an open, dense subspace of the monotonically normal non T_1 compact space Y.

If (X, τ) fails to be monotonically normal, we have the desired counterexample.
Why monotone normality without T_1 axiom?

(1) Heritability
Why monotone normality without T_1 axiom?

(1) Heritability

(2) The Tietze-Urysohn theorem for normal spaces provides a characterization of normal spaces for arbitrary (not necessarily T_1) spaces.
Why monotone normality without T_1 axiom?

1) Heritability

2) The Tietze-Urysohn theorem for normal spaces provides a characterization of normal spaces for arbitrary (not necessarily T_1) spaces.

What about the monotonically normal analogue of the Tietze-Urysohn theorem?
Why monotone normality **without** T_1 axiom?

1. Heritability

2. Tietze-Urysohn theorem
Why monotone normality without T_1 axiom?

(1) Heritability

(2) Tietze-Urysohn theorem

(3) Since metrizable spaces are monotonically normal (and T_1) spaces, it is natural to think that quasi-metrizable spaces could also be monotonically normal (but not necessarily T_1).
Why monotone normality without T_1 axiom?

(1) Heritability

(2) Tietze-Urysohn theorem

(3) Since metrizable spaces are monotonically normal (and T_1) spaces, it is natural to think that quasi-metrizable spaces could also be monotonically normal (but not necessarily T_1).

A first example of a quasi-metrizable (but not metrizable) space is the Sorgenfrey line, and it is indeed monotonically normal.
Why monotone normality without T_1 axiom?

(1) Heritability

(2) Tietze-Urysohn theorem

(3) Since metrizable spaces are monotonically normal (and T_1) spaces, it is natural to think that quasi-metrizable spaces could also be monotonically normal (but not necessarily T_1).

A first example of a quasi-metrizable (but not metrizable) space is the Sorgenfrey line, and it is indeed monotonically normal.

However, the Sorgenfrey plane is also quasi-metrizable but not even normal.
Why monotone normality without T_1 axiom?

(1) Heritability

(2) Tietze-Urysohn theorem

(3) Since metrizable spaces are monotonically normal (and T_1) spaces, it is natural to think that quasi-metrizable spaces could also be monotonically normal (but not necessarily T_1).

A first example of a quasi-metrizable (but not metrizable) space is the Sorgenfrey line, and it is indeed monotonically normal.

However, the Sorgenfrey plane is also quasi-metrizable but not even normal.

Hence it is natural to try to find which quasi-metrizable spaces are monotonically normal.
Monotone normality without T_1

Every topological X induces, in a natural way, a partial order \leq on X (called the specialization order) defined by $y \leq x \iff y \in \{x\}$.

For each $x \in X$ we shall also denote $\downarrow x = \{y \in X : y \leq x\} = \overline{\{x\}}$.
Monotone normality without T_1

Every topological X induces, in a natural way, a partial order \leq on X (called the specialization order) defined by $y \leq x \iff y \in \{x\}$.

For each $x \in X$ we shall also denote $\downarrow x = \{y \in X : y \leq x\} = \overline{\{x\}}$.

Theorem

Let X be a topological space. The following are equivalent:

1. X is monotonically normal;
2. There is an assignment of an open set $H(x, U)$ to each pair (x, U) such that U is an open neighborhood of $\downarrow x$, in such a way that
 - (i) $\downarrow x \in H(x, U) \subseteq \overline{H(x, U)} \subseteq U$;
 - (ii) if $x \leq y$ and $U \subseteq V$, then $H(x, U) \subseteq H(y, V)$.
 - (iii) if $\downarrow x \cap \downarrow y = \emptyset$, then $H(x, X \setminus \downarrow y) \cap H(y, X \downarrow x) = \emptyset$.
Monotone normality without T_1

Every topological X induces, in a natural way, a partial order \leq on X (called the specialization order) defined by $y \leq x \iff y \in \overline{\{x\}}$.

For each $x \in X$ we shall also denote $\downarrow x = \{y \in X : y \leq x\} = \overline{\{x\}}$.

Theorem

Let X be a topological space. The following are equivalent:

(1) X is monotonically normal;

(2) There is an assignment of an open set $H(x, U)$ to each pair (x, U) such that U is an open neighborhood of $\downarrow x$, in such a way that

(i) $\downarrow x \in H(x, U) \subseteq \overline{H(x, U)} \subseteq U$;

(ii) if $x \leq y$ and $U \subseteq V$, then $H(x, U) \subseteq H(y, V)$.

(iii) if $\downarrow x \cap \downarrow y = \emptyset$, then $H(x, X \setminus \downarrow y) \cap H(y, X \downarrow x) = \emptyset$.

Monotone normality without T_1

As a corollary of the previous characterization, and in connection with hereditary monotone normality we have the following:
Monotone normality without T_1

Consequences: Heritability

As a corollary of the previous characterization, and in connection with hereditary monotone normality we have the following:

Facts

(1) Monotone normality is a *weakly hereditary* property (any closed subspace of a monotonically normal space is monotonically normal), but not hereditary.
Monotone normality without T_1

Consequences: Heritability

As a corollary of the previous characterization, and in connection with hereditary monotone normality we have the following:

Facts

(1) Monotone normality is a weakly hereditary property (any closed subspace of a monotonically normal space is monotonically normal), but not hereditary.

(2) Monotone normality is hereditary under the assumption of the T_1 axiom.
Introduction Monotone normality without T_1

Monotone normality without T_1 Consequences: Heritability

As a corollary of the previous characterization, and in connection with hereditary monotone normality we have the following:

Facts

(1) Monotone normality is a weakly hereditary property (any closed subspace of a monotonically normal space is monotonically normal), but not hereditary.

(2) Monotone normality is hereditary under the assumption of the T_1 axiom.

(3) A space X is hereditarily monotonically normal if and only if every open subspace of X is monotonically normal.
Monotone normality without T_1

As a second corollary of the characterization, we can conclude that the monotone version of the Tietze’s result is still valid for monotone normality in the T_1-free context.

Theorem

Let X be a monotonically normal space. Then for each closed $A \subseteq X$ there exists a function $\Phi_A: C(A, [0, 1]) \to C(X, [0, 1])$ such that:

1. for each $f \in C(A, [0, 1])$, $\Phi_A(f)$ extends f;
2. if $f, g \in C(A, [0, 1])$ and $f \leq g$ in A, then $\Phi_A(f) \leq \Phi_A(g)$ in X.
Monotone normality without T_1 Consequences: Tietze-type theorem

Even more, the following characterization proved in: I.S. Stares, Monotone normality and extension of functions, (1995) remain valid in the T_1-free context.

Theorem
A space X is monotonically normal iff for each closed $A \subseteq X$ there exists a function $\Phi_A : C(A, [0, 1]) \to C(X, [0, 1])$ such that:

1. for each $f \in C(A, [0, 1])$, $\Phi_A(f)$ extends f;
2. if $f, g \in C(A, [0, 1])$ and $f \leq g$ in A, then $\Phi_A(f) \leq \Phi_A(g)$ in X.
3. If $A_1 \subseteq A_2$ are closed and $f_i \in C(A_i, [0, 1])$ are such that $f_2|_{A_1} \geq f_1$ and $f_2(x) = 1$ for any $x \in A_2 \setminus A_1$, then $\Phi_{A_2}(f_2) \geq \Phi_{A_1}(f_1)$.
4. If $A_1 \subseteq A_2$ are closed and $f_i \in C(A_i, [0, 1])$ are such that $f_2|_{A_1} \leq f_1$ and $f_2(x) = 0$ for any $x \in A_2 \setminus A_1$, then $\Phi_{A_2}(f_2) \leq \Phi_{A_1}(f_1)$.
Let X be a non-empty set. A map $d : X \times X \to [0, +\infty)$ is a quasi-metric if the following two conditions hold for all $x, y, z \in X$:

(QM1) $d(x, y) = d(y, x) = 0$ if and only if $x = y$;

(QM2) $d(x, y) \leq d(x, z) + d(z, y)$.

Quasi-metrizable spaces

Monotone normality without T_1

Monotone normality and quasidmetrizable spaces

Monotone normality, quasi-metrizable spaces and the role of the T_1 axiom
Quasi-metrizable spaces

Let X be a non-empty set. A map $d : X \times X \to [0, +\infty)$ is a \textit{quasi-metric} if the following two conditions hold for all $x, y, z \in X$:

(QM1) $d(x, y) = d(y, x) = 0$ if and only if $x = y$;

(QM2) $d(x, y) \leq d(x, z) + d(z, y)$.

Every quasi-metric d on X generates a T_0 topology τ_d which has as a base the family of d-balls.

A topological space (X, τ) is said to be \textit{quasi-metrizable} if there exists a quasi-metric d on X such that $\tau = \tau_d$.
Quasi-metrizable spaces

Let X be a non-empty set. A map $d: X \times X \to [0, +\infty)$ is a quasi-metric if the following two conditions hold for all $x, y, z \in X$:

(QM1) $d(x, y) = d(y, x) = 0$ if and only if $x = y$;
(QM2) $d(x, y) \leq d(x, z) + d(z, y)$.

Every quasi-metric d on X generates a T_0 topology τ_d which has as a base the family of d-balls. A topological space (X, τ) is said to be quasi-metrizable if there exists a quasi-metric d on X such that $\tau = \tau_d$.

A quasi-metric space (X, d) is T_1 iff the following is satisfied:

$$d(x, y) = 0 \quad \Rightarrow \quad x = y \quad (T_1)$$
Quasi-metrizable spaces

Let X be a non-empty set. A map $d : X \times X \to [0, +\infty)$ is a quasi-metric if the following two conditions hold for all $x, y, z \in X$:

1. **(QM1)** $d(x, y) = d(y, x) = 0$ if and only if $x = y$;
2. **(QM2)** $d(x, y) \leq d(x, z) + d(z, y)$.

Every quasi-metric d on X generates a T_0 topology τ_d which has as a base the family of d-balls. A topological space (X, τ) is said to be quasi-metrizable if there exists a quasi-metric d on X such that $\tau = \tau_d$.

A quasi-metric space (X, d) is T_1 iff the following is satisfied:

$$d(x, y) = 0 \implies x = y \quad (T_1)$$

The specialization order \leq_d on X is given by

$$y \leq_d x \iff d(y, x) = 0 \iff y \in \overline{\{x\}}.$$
As we have already mentioned, metrizable spaces are monotonically normal and, of course, satisfy the T_1-axiom.
As we have already mentioned, metrizable spaces are monotonically normal and, of course, satisfy the \(T_1 \)-axiom.

However, it is not so easy to establish whether a quasi-metrizable space is normal or not.

It is well known that not all quasi-metrizable spaces are normal, a typical example being the Sorgenfrey plane.
Introduction

Monotone normality without T_1 normality and quasidmetrizable spaces

Quasi-metrizable spaces

As we have already mentioned, metrizable spaces are monotonically normal and, of course, satisfy the T_1-axiom.

However, it is not so easy to establish whether a quasi-metrizable space is normal or not.

It is well known that not all quasi-metrizable spaces are normal, a typical example being the Sorgenfrey plane.

It is natural to think then about the question of which quasi-metrizable spaces are normal, or perhaps monotonically normal.
Quasi-metrizable spaces

As we have already mentioned, metrizable spaces are monotonically normal and, of course, satisfy the T_1-axiom.

However, it is not so easy to establish whether a quasi-metrizable space is normal or not.

It is well known that not all quasi-metrizable spaces are normal, a typical example being the Sorgenfrey plane.

It is natural to think then about the question of which quasi-metrizable spaces are normal, or perhaps monotonically normal. In this sense it could be mentioned, citing from: P.M. Gartside, **Cardinal invariants of monotonically normal spaces**, (1997)

> “Whenever a space can be explicitly and constructively shown to be normal, then it is probably monotonically normal.”
If the quasi-metric space is T_1 we have the following characterization:
If the quasi-metric space is T_1 we have the following characterization:

Theorem

Let (X, d) be a T_1 quasi-metric space. The following are equivalent:

1. (X, τ_d) is monotonically normal;
2. There exists a map $h: X \times (0, +\infty) \to (0, +\infty)$ such that:

 (h1) $0 < h(x, \varepsilon) \leq \varepsilon$;

 (h2) if $\varepsilon_1 < \varepsilon_2$, then $h(x, \varepsilon_1) \leq h(x, \varepsilon_2)$;

 (h3) if $x \neq y$, then $B_d(x, h(x, d(x, y))) \cap B_d(y, h(y, d(y, x))) = \emptyset$.
Quasi-metrizable spaces

Characterization for T_1 spaces

If the quasi-metric space is T_1 we have the following characterization:

Theorem

Let (X, d) be a T_1 quasi-metric space. The following are equivalent:

1. (X, τ_d) is monotonically normal;
2. There exists a map $h : X \times (0, +\infty) \to (0, +\infty)$ such that:
 - (h1) $0 < h(x, \varepsilon) \leq \varepsilon$;
 - (h2) if $\varepsilon_1 < \varepsilon_2$, then $h(x, \varepsilon_1) \leq h(x, \varepsilon_2)$;
 - (h3) if $x \neq y$, then $B_d(x, h(x, d(x, y))) \cap B_d(y, h(y, d(y, x))) = \emptyset$.

Corollary

Let (X, d) be a T_1 quasi-metric space satisfying:

$$x \neq y \implies B_d(x, k \cdot d(x, y)) \cap B_d(y, k \cdot d(y, x)) = \emptyset \quad (\ast)$$

for some $k \in (0, 1]$. Then (X, τ_d) is monotonically normal.
Quasi-metrizable spaces

Corollary

Let \((X, d)\) be a \(T_1\) quasi-metric space satisfying:

\[
x \neq y \implies B_d(x, k \cdot d(x, y)) \cap B_d(y, k \cdot d(y, x)) = \emptyset \quad (\ast)
\]

for some \(k \in (0, 1]\). Then \((X, \tau_d)\) is monotonically normal.

Examples

- If \(d\) is a metric, then condition \((\ast)\) is satisfied with \(k = \frac{1}{2}\).
Quasi-metrizable spaces

Corollary

Let (X, d) be a T_1 quasi-metric space satisfying:

$$x \neq y \implies B_d(x, k \cdot d(x, y)) \cap B_d(y, k \cdot d(y, x)) = \emptyset \quad (\star)$$

for some $k \in (0, 1]$. Then (X, τ_d) is monotonically normal.

Examples

- If d is a metric, then condition (\star) is satisfied with $k = \frac{1}{2}$.

- If d is a the Sorgenfrey quasi-metric on \mathbb{R}

 $$d(x, y) = \min\{y - x, 1\} \text{ if } x \leq y \text{ and } d^*(x, y) = 1 \text{ otherwise},$$

 then condition (\star) is satisfied with $k = 1$.

Monotone normality, quasi-metrizable spaces and the role of the T_1 axiom
Quasi-metrizable spaces

Corollary

Let (X, d) be a T_1 quasi-metric space satisfying:

$$x \neq y \implies B_d(x, k \cdot d(x, y)) \cap B_d(y, k \cdot d(y, x)) = \emptyset \quad (*)$$

for some $k \in (0, 1]$. Then (X, τ_d) is monotonically normal.

Examples

- If d is a metric, then condition $(*)$ is satisfied with $k = \frac{1}{2}$.

- If d is a the Sorgenfrey quasi-metric on \mathbb{R}

 $$(d(x, y) = \min\{y - x, 1\} \text{ if } x \leq y \text{ and } d^*(x, y) = 1 \text{ otherwise}),$$

 then condition $(*)$ is satisfied with $k = 1$.

- The Michael line.
Quasi-metrizable spaces

Examples (T₁)

Corollary

Let \((X, d)\) be a \(T₁\) quasi-metric space satisfying:

\[
x \neq y \implies B_d(x, k \cdot d(x, y)) \cap B_d(y, k \cdot d(y, x)) = \emptyset \quad (\star)
\]

for some \(k \in (0, 1]\). Then \((X, τ_d)\) is monotonically normal.

Examples

- If \(d\) is a metric, then condition \((\star)\) is satisfied with \(k = \frac{1}{2}\).

- If \(d\) is a the Sorgenfrey quasi-metric on \(\mathbb{R}\)
 \((d(x, y) = \min\{y - x, 1\}\) if \(x \leq y\) and \(d^*(x, y) = 1\) otherwise), then condition \((\star)\) is satisfied with \(k = 1\).

- The Michael line.

- ...
Finally, we can also provide a sufficient condition for a quasi-metric space to be monotonically normal:

\[
\text{Let } (X, d) \text{ be a quasi-metric space satisfying: }
\]
\[
B_d(x', d(x', y')) \cap B_d(y', d(y', x')) = \emptyset \quad \forall x' \leq x, y' \leq y.
\]

Then \((X, \tau_d)\) is monotonically normal.

Note that if \(d\) is indeed a metric, the condition above is obviously satisfied. In fact, this is precisely the Hausdorff condition. In this case, the previous proposition is once again nothing but the well-known fact that metrizable spaces are monotonically normal.
Finally, we can also provide a sufficient condition for a quasi-metric space to be monotonically normal:

Theorem

Let \((X, d)\) be a quasi-metric space satisfying:

\[
B_d\left(x', \frac{d(x', y)}{2}\right) \cap B_d\left(y', \frac{d(y', x)}{2}\right) = \emptyset \quad \forall x' \leq x, y' \leq y. \quad (\star)
\]

Then \((X, \tau_d)\) is monotonically normal.
Finally, we can also provide a sufficient condition for a quasi-metric space to be monotonically normal:

Theorem

Let (X, d) be a quasi-metric space satisfying:

\[B_d(x', \frac{d(x', y)}{2}) \cap B_d(y', \frac{d(y', x)}{2}) = \emptyset \quad \forall x' \leq x, y' \leq y. \]

Then (X, τ_d) is monotonically normal.

Note that if d is indeed a metric, the condition (*) above is obviously satisfied. In fact, this is precisely the Hausdorff condition. In this case the previous proposition is, once again, nothing but the well known fact that metrizable spaces are monotonically normal.
Quasi-metrizable spaces

Examples (non T_1)

Theorem

Let (X, d) be a quasi-metric space satisfying:

$$B_d(x', \frac{d(x', y)}{2}) \cap B_d(y', \frac{d(y', x)}{2}) = \emptyset \quad \forall x' \leq x, y' \leq y. \quad (*)$$

Then (X, τ_d) is monotonically normal.

Examples

- The reals with the right-order topology (Kolmogorov line).
Quasi-metrizable spaces

Theorem

Let \((X, d)\) be a quasi-metric space satisfying:

\[
B_d\left(x', \frac{d(x', y)}{2}\right) \cap B_d\left(y', \frac{d(y', x)}{2}\right) = \emptyset \quad \forall x' \leq x, y' \leq y. \quad (\ast)
\]

Then \((X, \tau_d)\) is monotonically normal.

Examples

- The reals with the right-order topology (Kolmogorov line).
- The set of (closed) formal balls \(BX\) of a metric space endowed with the Scott topology.
Quasi-metrizable spaces

Theorem

Let (X, d) be a quasi-metric space satisfying:

\[B_d(x', \frac{d(x', y)}{2}) \cap B_d(y', \frac{d(y', x)}{2}) = \emptyset \quad \forall x' \leq x, y' \leq y. \]

\[(\ast) \]

Then (X, τ_d) is monotonically normal.

Examples

- The reals with the right-order topology (Kolmogorov line).
- The set of (closed) formal balls B_X of a metric space endowed with the Scott topology.
- The domain of words Σ^∞.

Examples (non T_1)
Quasi-metrizable spaces

Theorem

Let (X, d) be a quasi-metric space satisfying:

$$B_d(x', \frac{d(x', y)}{2}) \cap B_d(y', \frac{d(y', x)}{2}) = \emptyset \quad \forall x' \leq x, y' \leq y. \quad (\ast)$$

Then (X, τ_d) is monotonically normal.

Examples

- The reals with the right-order topology (Kolmogorov line).
- The set of (closed) formal balls B_X of a metric space endowed with the Scott topology.
- The domain of words Σ^∞.
- The interval domain $I([0, 1])$.
Theorem

Let (X, d) be a quasi-metric space satisfying:

$$B_d(x', \frac{d(x',y)}{2}) \cap B_d(y', \frac{d(y',x)}{2}) = \emptyset \quad \forall x' \leq x, y' \leq y. \quad (*)$$

Then (X, τ_d) is monotonically normal.

Examples

- The reals with the right-order topology (Kolmogorov line).
- The set of (closed) formal balls B_X of a metric space endowed with the Scott topology.
- The domain of words Σ^∞.
- The interval domain $I([0,1])$.
- The complexity (quasi-metric) space (C, d_C).
- ...