On the structure of singularities in nonlocal transport equations

F. de la Hoz *, M. A. Fontelos †

March 26, 2008

Abstract

We describe the structure of solutions developing singularities in the form of cusps in finite time in nonlocal transport equations of the family:

\[\theta_t - \delta (\theta H(\theta))_x - (1 - \delta)H(\theta)\theta_x = 0 \ , \quad 0 \leq \delta \leq 1 , \]

(1)

where \(H \) represents Hilbert transform. Equations of this type appear in various contexts: evolution of vortex sheets, models for quasi-geostrophic equation and evolution equations for order parameters. Equation (1) was studied in [1] and [2] and the existence of singularities developing in finite time was proved. The structure of such singularities was, nevertheless, not described. In this article we will describe the geometry of the solution in the neighborhood of the singularity once it develops and the (selfsimilar) way in which it is approached as \(t \to t_0 \), where \(t_0 \) is the singular time.

1 Introduction

We present some results on partial differential equations of transport type for a scalar \(\theta \) with nonlocal velocities or fluxes. We concentrate in the case of

*Departamento de Matemática Aplicada, Universidad del País Vasco-Euskal Herriko Unibertsitatea, Escuela Universitaria de Ingeniería Técnica Industrial, Plaza de la Casilla 3, 48012 Bilbao, Spain

†Instituto de Matemáticas y Física Fundamental, Consejo Superior de Investigaciones Científicas, C/ Serrano 123, 28006 Madrid, Spain
one space dimension and the nonlocal operator will be given by the Hilbert transform of θ defined as

$$H\theta(x) = \frac{1}{\pi} P.V. \int_{-\infty}^{\infty} \frac{\theta(y)}{x-y} dy,$$

or

$$H\theta(x) = \frac{1}{2\pi} P.V. \int_{-\pi}^{\pi} \frac{\theta(x-y)}{tan \frac{y}{2}} dy,$$

in the periodic case. Nonlocal transport equations appear in various contexts and, in all of them, a central question is the appearance of singularities during the evolution and the mathematical description of such singularities. The simplest transport equation developing singularities (in the form of shocks) in finite time is Burgers equation:

$$\theta_t + \theta\theta_x = 0.$$

The simplest nonlocal analogs result from replacing the transport velocity θ by $-H\theta$ in the flux of θ or in velocity:

$$\theta_t - (H(\theta)\theta)_x = 0,$$

and

$$\theta_t - H(\theta)\theta_x = 0.$$

Equation (4) appears as a formal 1D analog to the 2D quasi-geostrophic equation (QG), which models the dynamics of the mixture of cold and hot air and the fronts between them, and reads

$$\theta_t + (u \cdot \nabla)\theta = 0,$$

$$u = \nabla^\perp \psi, \quad \theta = -(-\Delta)^{\frac{1}{2}} \psi,$$

$$\theta(x,0) = \theta_0(x),$$

where $\nabla^\perp = (-\partial_2, \partial_1)$. Here, $\theta(x,t)$ represents the temperature of the air. Besides its direct physical significance ([6, 10]), the quasi-geostrophic equation has very interesting features of resemblance to the 3D Euler equation, being also the finite time blow-up for (QG) an outstanding open problem. With respect to that question there are pioneering studies due to Constantin, Majda and Tabak [5]. There are many studies on the equations following that work ([9, 11, 13]). The analogy with (4) comes from the fact that

$$u = -\nabla^\perp (-\Delta)^{\frac{1}{2}} \theta = -R^\perp \theta,$$
and hence
\[\theta_t + \text{div}[(R^\perp \theta) \theta] = 0, \quad (8) \]
where we have used the notation, \(R^\perp \theta = (-R_2 \theta; R_1 \theta) \) with \(R_j \), \(j = 1, 2 \), for the two dimensional Riesz transform defined by (See e.g. [12]).

\[R_j(\theta)(x,t) = \frac{1}{2\pi} \text{PV} \int_{\mathbb{R}^2} \frac{(x_j - y_j)\theta(y,t)}{|x - y|^3} \, dy. \quad (9) \]

The equivalent (in terms of homogeneity) singular integral operator to the Riesz transform in 1D is the Hilbert transform. Therefore, (4) is just (8) with \(R^\perp(\cdot) \) replaced by \(-H(\cdot)\) and \(\text{div}(\cdot) \) replaced by \(\partial_x \).

As mentioned above, equation (5) represents the simplest case of a transport equation with a nonlocal velocity. It is well known that the equivalent equation with a local velocity \(v = \theta \), known as Burger’s equation, may develop shock-type singularities in finite time. Therefore a natural question to pose is whether the solutions to (5) become singular in finite time or not. In fact this question has been previously considered in the literature motivated by the strong analogy with Birkhoff-Rott equation modelling the evolution of a vortex sheet, where a crucial mathematical difficulty lies in the nonlocality of the velocity.

The analogy of (5) with Birkhoff-Rott equations was first established in [4] and [8]. These are integrodifferential equations modelling the evolution of vortex sheets with surface tension. The system can be written in the form

\[\frac{\partial}{\partial t} z^*(\alpha, t) = \frac{1}{2\pi i} \text{PV} \int \frac{\tilde{\gamma}(\alpha')\, d\alpha'}{z(\alpha, t) - z(\alpha', t)}, \quad (10) \]

\[\frac{\partial \tilde{\gamma}}{\partial t} = \sigma \kappa_{\alpha}, \quad (11) \]

where \(z(\alpha, t) = x(\alpha, t) + iy(\alpha, t) \) represents the two dimensional vortex sheet parametrized with \(\alpha \), and where \(\kappa \) denotes mean curvature. Following [4] we substitute, in order to build up the model, the equation (10) by its 1D analog

\[\frac{dx(\alpha, t)}{dt} = -H(\theta), \quad (12) \]

where we have identified \(\gamma(\alpha, t) \) with \(\theta \). In the limit of \(\sigma = 0 \) in (11) we conclude that \(\gamma \) is constant along trajectories and this fact leads, in the 1D model, to the equation
Another interesting context in which transport equations with nonlocal velocities arise is in evolutionary PDEs for geometric order parameters (see [7]). These equations can be of the form

\[\frac{\partial \rho}{\partial t} = -\text{div} J, \]

where \(J \) is proportional to \(\rho \) and to quantities involving (in general) convolutions of \(\rho \) with certain kernels. That is, velocities given in the form of integral operators of \(\rho \). An interesting question concerning this class of PDEs is the existence of solutions involving localized singularities, sometimes called peakons or cuspons, that develop and propagate.

Problems of the type (4), (5) were already studied in [4] and [8]. In [8] it was considered the following equation that generalizes (4) and (5), including them as particular cases (when \(\delta = 1 \) and \(\delta = 0 \) respectively):

\[\theta_t - \delta(H(\theta))_x - (1 - \delta)H(\theta)\theta_x = 0 \quad \text{with} \quad 0 \leq \delta \leq 1, \quad (13) \]

In [2] we proved existence of singularities for the full range of \(0 < \delta \leq 1 \). The proof of existence of singularities in the case \(\delta = 0 \) is solved in [1] using a different technique. The singularities have the form of cusps that develop at the local maxima of \(\theta \) (see figure 1). Our purpose in the present paper is to describe the structure of the solutions close to the singularities and the shape of the cusps depending on the value of the parameter \(\delta \).

In section 2 we study the case \(\delta = 1 \) in detail and describe the selfsimilar structure of the singularities developing in finite time. In section 3 we describe the singularities that develop in the range \(0 < \delta < 1 \). The limit case \(\delta = 0 \) represents a singular limit of the case \(\delta > 0 \) and we will briefly discuss the singularities in this case in section 4. Finally, section 5 will be devoted to the description of the numerical method used for the numerical results in previous sections.

2 The case \(\delta = 1 \)

In the case \(\delta = 1 \) one gets the equation

\[\theta_t - (\theta H(\theta))_x = 0, \quad (14) \]
Figure 1: Profiles of θ for $\delta = 0$ at times $t = 0$ and $t = t_0$ where t_0 is the time of formation of the singularity. The initial datum is $\theta(x, 0) = 2sech(15(x - \pi))$.

and applying Hilbert transform to (14) and using the following properties of Hilbert transform:

\[
\begin{align*}
H(fg) &= H(f)H(g) - fg, \\
(Hf)_x &= H(f_x),
\end{align*}
\]

we deduce the equation

\[
(H\theta)_t - \frac{1}{2}((H\theta)^2 - \theta^2)_x = 0 ,
\]

that can be combined with (14) into a single equation for $z = H\theta + i\theta \equiv u + i\theta$:

\[
z_t - zz_x = 0 ,
\]
for which one can find the following solution $\theta(x, t)$ (see [2] for the details on its deduction) given implicitly by

$$
\begin{align*}
t \theta &= \ln \sqrt{\theta^2 + u^2} , \\
(x - tu) &= \arctan \frac{\theta}{u} .
\end{align*}
$$

This solution corresponds to an initial datum $\theta(x, 0) = \sin(x)$ and develops singularities at $x = \frac{\pi}{2}$, $t = e^{-1}$ and $\theta = e$, $u = 0$. We shall describe next the local structure of the solution near the singularity. In order to do that we write

$$
\begin{align*}
t &= e^{-1} + t' , \quad \theta = e + \theta' , \\
u &= u' , \quad x = \frac{\pi}{2} + x' ,
\end{align*}
$$

which introduced into (16), (17) together with

$$
u' = (-t')^{\frac{1}{2}} U , \quad \theta' = (-t')^{\frac{1}{2}} \Theta , \quad x' = (-t')X ,$$

lead at leading order and for $t' \to 0$ to

$$
\begin{align*}
-t &= \frac{1}{2} e^{-2} U^2 + \frac{1}{2} e^{-2} \Theta^2 - \Theta^2 e^{-2} , \\
0 &= eX - U \Theta e^{-1} ,
\end{align*}
$$

and we conclude

$$
\begin{align*}
\Theta &= e^{\frac{3}{2}} \left[1 + \sqrt{1 + \left(\frac{X}{e} \right)^2} \right] \equiv e^{\frac{3}{2}} \Theta_{ss} \left(\frac{X}{e} \right) , \\
U &= e^{\frac{3}{2}} \frac{X/e}{\sqrt{1 + \sqrt{1 + (X/e)^2}}} \equiv e^{\frac{3}{2}} (H \Theta_{ss}) \left(\frac{X}{e} \right) .
\end{align*}
$$

Thus, the solutions near the singularity are selfsimilar with profiles given by (18), (19).

More generally, we can provide with a local analysis near a singularity developing at (x_0, t_0). Assume θ_0 is the value of θ at (x_0, t_0). We write

$$
\theta = \theta_0 - B(t_0 - t)^{\frac{1}{2}} \Theta_{ss} \left(\frac{X}{\theta_0} \right) + \tilde{\theta} ,
$$

(20)
with Θ_{ss} the selfsimilar profile defined by (18) and hence satisfying (using also (19))
\[-\frac{1}{2}\Theta_{ss} + X\Theta_{ss,X} - \theta_0(H\Theta_{ss,X}) = 0 ,\]
and $\tilde{\theta}$ assumed to be $o((t_0 - t)^{\frac{1}{2}})$. Then one can compute at leading order in $(t_0 - t)$ the following equation for $\tilde{\theta}$:
\[\tilde{\theta}_t - \theta_0(H\tilde{\theta})_x - B^2(\Theta_{ss}H\Theta_{ss})_x = 0 .\] (21)
Since $\Theta_{ss}H\Theta_{ss} = -X/\theta_0$ we immediately deduce the following solution of (21):
\[\tilde{\theta} = -B^2\theta_0^{-1}(t_0 - t) .\]
Therefore, near a singularity the solution behaves in the form (see figures 2, 3):
\[\theta(x,t) = \theta_0 - B(t_0 - t)^{\frac{1}{2}}\Theta_{ss}\left(\frac{X}{\theta_0}\right) - B^2\theta_0^{-1}(t_0 - t) + o(t_0 - t) .\]
When $t \to t_0$ the cusp behaves locally near x_0 in the form
\[\theta(x,t_0) \sim \theta_0 - B\theta_0^{-\frac{1}{2}}|x - x_0|^\frac{1}{2} .\]
In the next sections we shall provide numerical experiments showing this behavior for arbitrary initial data.

3 The case $0 < \delta < 1$

In this case we can write the equation in the form
\[\theta_t - \delta \theta H(\theta_x) - H(\theta)\theta_x = 0 ,\] (22)
so that one has under symmetry and at the maximum of θ the equation
\[\theta_{\max,t} = \delta H(\theta_x)|_{x_{\max}}\theta_{\max} ,\]
implies, in general, variation of the value of the maximum of θ. Let us call θ_0 the value of θ at the singular point, say $x_0 = 0$, when the singularity
Figure 2: Profiles $\theta(x, t)$ taken in the neighborhood of $x = \frac{x}{2}$ and at times $t = 10^{-4}$, 2×10^{-4}, 3×10^{-4}, 4×10^{-4}, from the time of formation of the singularity. The equation has been solved numerically for an initial data $\theta(x, 0) = \sin(x)$.

develops, say at t_0. Close to that point we introduce $\theta = \theta_0 + \varepsilon \tilde{\theta}$ and get, after linearization, the equation

$$\tilde{\theta}_t - \delta \theta_0 H(\tilde{\theta}_x) = 0.$$

Introducing the new variable $y = x/\delta \theta_0$ and the property $H(H \tilde{\theta}) = -\tilde{\theta}$ we deduce

$$\tilde{\theta}_t - H(\tilde{\theta}_y) = 0 \quad \text{and} \quad (H \tilde{\theta})_t + \tilde{\theta}_y = 0.$$

(23) is equivalent to

$$\tilde{\theta}_{tt} + \tilde{\theta}_{yy} = 0,$$

from which it is simple to deduce selfsimilar solutions in the form of separable solutions in polar coordinates. Namely, by introducing $r = \sqrt{(t_0 - t)^2 + y^2}$ and $\tan \theta = \frac{y}{t_0 - t} \equiv Y$ we can construct solutions in the form

$$\tilde{\theta} = Re(z^\alpha) = r^\alpha \cos(\alpha \theta) = (t_0 - t)^\alpha \left(1 + Y^2\right)^\frac{\alpha}{2} \cos(\alpha \arctan Y) \equiv (t_0 - t)^\alpha \Theta_{ss}(Y),$$

(24)
Figure 3: The same profiles $\theta(x,t)$ as in 2 but rescaled according to the formulas (18) and (20). The thick line corresponds to the theoretical profile (18).

and since (23) constitutes a Cauchy-Riemann system for $\tilde{\theta}$ and $H\tilde{\theta}$ we have

$$H\tilde{\theta} = \text{Im} \left(z^\alpha \right) = r^\alpha \sin (\alpha \theta)$$

$$= (t_0 - t)^\alpha \left(1 + Y^2 \right)^{\frac{\alpha}{2}} \sin (\alpha \arctan Y) \equiv (t_0 - t)^\alpha (H\Theta_{ss})(Y) . \tag{25}$$

Notice that in the particular case $\alpha = \frac{1}{2}$ we have

$$\left(1 + Y^2 \right)^{\frac{1}{4}} \cos \left(\frac{1}{2} \arctan Y \right) = \frac{1}{\sqrt{2}} \left(1 + (1 + Y^2)^{\frac{1}{2}} \right)^{\frac{1}{2}} ,$$

an expression identical, up to multiplicative constants, to (18).

Guided by the result in the previous section for $\delta = 1$ we shall seek solutions of the form

$$\theta(x,t) = \theta_0 + (t_0 - t)^\alpha \Theta \left(X \equiv \frac{x}{(t_0 - t)} \right) + (t_0 - t)^{2\alpha} G \left(X \equiv \frac{x}{(t_0 - t)} \right) . \tag{26}$$
This ansatz for θ implies

$$
\begin{align*}
\theta_t &= (t_0 - t)^{\alpha-1} (-\alpha \Theta + X \Theta') + (t_0 - t)^{2\alpha-1} (-2\alpha G + XG') , \\
(\theta H(\theta))_x &= (t_0 - t)^{\alpha-1} \theta_0 (H\Theta)' + (t_0 - t)^{2\alpha-1} (\Theta H\Theta)' + (t_0 - t)^{2\alpha-1} \theta_0 H G' , \\
H(\theta)\theta_x &= (t_0 - t)^{2\alpha-1} H\Theta(\Theta)' + (t_0 - t)^{3\alpha-1} (\Theta H G' + GH\Theta') ,
\end{align*}
$$

which introduced into (22) lead, at order $O((t_0 - t)^{\alpha-1})$, to the equation

$$
(-\alpha \Theta + X \Theta') - \delta \theta_0 (H\Theta)' = 0 ,
$$

satisfied by the selfsimilar solution Θ_{ss} (defined in (24)), and at order $O((t_0 - t)^{2\alpha-1})$ to the equation

$$
(-2\alpha G + XG') - \theta_0 \delta H G' - \delta (\Theta H \Theta)' - (1 - \delta) (H \Theta) \Theta' = 0 .
$$

We cannot integrate equation (27) but provide numerical evidence below showing how the similarity exponents α (which appear to be independent of initial data) depend on δ. The details on the numerical method are given in the last Section of the paper. As the main result, we found that the exponent α increases slowly from values close to zero (for δ close to zero) up to $\frac{1}{2}$ (which is the analytical result for $\delta = 1$ obtained in the previous section).

This implies the formation of cusps such that $\theta \sim \theta_0 - C |x - x_0|^{\alpha(\delta)}$ with $0 < \alpha(\delta) \leq \frac{1}{2}$. The case $\delta = 0$ represents a singular limit that will be treated in the next section.

In figure 4 we represent, for $\delta = \frac{1}{2}$, the maximum of $\kappa = |\theta_{xx}|$ raised to some power γ (that is, κ^γ) as a function of time. We have chosen γ in such a way that the resulting curve fits as well as possible to a straight line. A linear behavior for κ^γ would imply that $\kappa \simeq A(t_0 - t)^{\frac{1}{7}}$. Given the similarity law represented by (26) that would yield $\theta_{xx} \simeq (t_0 - t)^{\alpha-2} \Theta''$ we can deduce

$$
\alpha = 2 + \frac{1}{\gamma}.
$$

This implies, from our numerical results that, in the case $\delta = \frac{1}{2}$, $\alpha \simeq 2 - \frac{1}{0.627} = 0.4051$. In figure 5 we represent the values of γ such that κ^γ fits best a straight line as a function of δ. Notice that γ decreases monotonically up to the value $\gamma = \frac{-2}{3}$ for $\delta = 1$ which would follow from our explicit selfsimilar solution constructed above.

4 The case $\delta = 0$

This is a singular limit since the maximum of θ does not move and remains with the same value (say $\theta_{\text{max}} = \theta_0$) all the time. The singular solutions
might have selfsimilar form of the type

\[\theta(x, t) = \theta_0 - (t_0 - t)^\beta \Theta \left(\xi = \frac{x - x_0}{(t_0 - t)^\sigma} \right), \]

(28)

where \(\beta > 1 \) is a free parameter to be fixed with the condition

\[\Theta(\xi) \sim A |\xi|^{-1} \quad \text{as} \quad \xi \rightarrow \pm \infty. \]

(29)

The asymptotics (29) implies

\[\theta(x, t_0) \simeq \theta_0 - A |x - x_0|^{\frac{\beta - 1}{\beta}} \quad \text{as} \quad x \rightarrow x_0. \]

Our results represented in figure 6 indicate that the value of \(\gamma \) such that \(\kappa^\gamma \) fits best a straight line is \(-0.3280\). From (28) it follows that \(\theta_{xx} \simeq -(t_0 - t)^{-2\beta - 1} \Theta'' \) so that \(\beta = -\frac{1}{2} + \frac{1}{2\gamma} \simeq 2.0488. \) This value of \(\beta \) is so close to 2 that we conjecture it is exactly equal to 2.

In order to support our conjecture, we have verified numerically some of its consequences starting with the initial data \(\theta(x, 0) = 2 \text{sech}(15(x - \pi)) \). We
Figure 5: Exponent γ as a function of δ.

have computed the profiles of $\theta(x, t)$ for several times close to the formation of the singularity (see figure 7) and represented the profiles of $\Theta \equiv (\theta_0 - \theta(x, t))/(t_0 - t)$ as a function of $\xi \equiv (x - \pi)/(t_0 - t)^2$ in figure 8. As we can see, the collapse to a curve with a sublinear growth at infinity. In fact, from (28) and for $\beta = 2$, it will follow a growth $\Theta(\xi) \sim A|\xi|^{\frac{1}{2}}$.

Another observation concerns the Hilbert transform of $\theta(x, t)$; notice that for the selfsimilar solutions

$$H\theta = -(t_0 - t)(H\Theta)(\xi) = -(t_0 - t)\frac{1}{\pi} P.V. \int_{-\infty}^{\infty} \frac{\Theta(\xi\xi'')}{1 - \xi''} d\xi''$$

$$\approx -(t_0 - t)\frac{\text{sign}(\xi)}{\pi} P.V. \int_{-\infty}^{\infty} \frac{A|\xi|^\frac{3}{2}|\xi''|^\frac{1}{2}}{1 - \xi''} d\xi'' = -(t_0 - t)A|\xi|^{\frac{1}{2}}, \text{ for } |\xi| \gg 1.$$

Hence $[(H\theta)^2]_x = [(H\Theta)^2]_\xi \approx \text{sign}(\xi)A^2$, for $|\xi| \gg 1$ and therefore the profiles $[(H\theta)^2]_x$ as a function of $\xi \equiv (x - \pi)/(t_0 - t)^2$ should converge, as $t \to t_0$, to a profile $[(H\Theta)^2]_\xi$ that tends to constant values as $|\xi| \to \pm \infty$. In figure 9 we can see that this is indeed the case.

Finally, we remark that the development of a singularity in the form $\theta(x, t_0) = \theta_0 - A|x - x_0|^{\frac{1}{2}}$ allows a simple continuation of the solution after
the singular time, i.e. for $t > t_0$. This continuation is given by the explicit solution of (5)

$$
\theta(x, t) = \theta_0 - \frac{1}{2}A^2(t - t_0) - A|x - x_0|^\frac{1}{2},
$$

as one can simply check from the fact that

$$
H\theta = H(-A|x - x_0|^\frac{1}{2}) = A\text{sign}(x)|x - x_0|^\frac{1}{2},
$$
$$
\theta_x = -\frac{A}{2}\text{sign}(x)|x - x_0|^{-\frac{1}{2}}, \quad \theta_t = -\frac{1}{2}A^2.
$$

For general initial data, one can continue the solutions after the singularity with a singular solution that behaves locally near the singularity in the form

$$
\theta(x, t) = \theta_0 - \frac{1}{2}\int_{t_0}^{t} A^2(\tau)d\tau - A(t)|x - x_0|^\frac{1}{2},
$$

with $A(t)$ chosen appropriately so as to match the solution outside the region of formation of the singularity.
Figure 7: Profiles of θ near its maximum (at $x = \pi$, $\theta = 2$) for times $t_i = 0.0035, 0.003, 0.0025, 0.0020, 0.0015$ away from the singularity.

5 Numerical method

Our numerical experiments involve integration of the equation

$$\theta_t = \delta(\theta H(\theta))_x + (1 - \delta)H(\theta)\theta_x$$

$$= \delta\theta H(\theta_x) + H(\theta)\theta_x,$$

with $\delta \in [0, 1]$, $x \in [0, 2\pi]$, $t > 0$. We use the classical fourth-order Runge-Kutta method in time. Since the support of $\theta(x, t)$ is very concentrated for the kind of initial data we use, we consider $\theta(x, t)$ to be periodic in our numerical simulations. Then, we represent it by means of its frequencies

$$\theta(x, t) = \sum_{\xi=-N/2}^{N/2-1} \hat{\theta}(\xi, t) e^{i\xi x}.$$

The conversion between $\theta(x_j, t)$, with $x_j = \frac{2\pi}{N}j$, and $\hat{\theta}(k, t)$, with $k = -\frac{N}{2}, \cdots, \frac{N}{2} - 1$ has been made by means of the FFT, where N is chosen to be a power of 2. That enables us to calculate spectrally θ_x, $H\theta$ and
$H\theta_x$. In particular, $H(\theta(x,t)) = \sum_{\xi=\pm N/2}^{\pm N/2} -i\text{sign}(\xi)\hat{\theta}(\xi,t)e^{i\xi x}$. In the numerical experiments presented in sections 3 and 4 we have considered the initial datum $\theta(x,0) = 2\text{sech}(15(x - \pi))$ for $x \in [0,2\pi]$. We have implemented all our experiments with $N = 262144$. The Δt used has been $\Delta t = 10^{-5}$. We have considered 201 uniformly distributed values for δ; i.e., $\delta = 0, 0.005, 0.01, 0.015, \ldots, 1$.

The singularity time gets smaller as δ increases, ranging from $t_{\text{max}} \approx 0.12$, when $\delta = 0$, to $t_{\text{max}} \approx 0.02$, when $\delta = 1$. Our assumption is that $\max_{t \in [0, T]} |\theta_{xx}(t)| = t^{1/7}$, when t approaches the singularity time. Given a γ in that interval, we try to adjust $(\max_{t \in [0, T]} |\theta_{xx}(t)|)^{\gamma}$ to a straight line, calculating that line by the least-square method. We remark that for the theoretically known case, $\delta = 1$, we have obtained $\gamma = -0.6661$, i.e., a value extremely close to the exact $\gamma = -2/3$. From our numerical experiments γ appears to be independent on the initial data.

References

Figure 9: Rescaled profiles of $[(H\theta)^2]_x$ at times $t_i = 0.0035, 0.003, 0.0025, 0.0020, 0.0015$ previous to the formation of the singularity.

