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Gas of bosons.

A dilute homogeneous isotropic gas of bosons is described by the Uehling-
Uhlenbeck equation (in polar coordinates):

(U-U) 6’t t k1) / k) W (K1, k2, ks, ka) q(f)dksdky
q(f) = fsfs(L+ 1)L+ f2) — fifo(1+ f3)(1 + fa)

D(kjl) = {(kjg,k4) t ks > 0,ky >0,ks+ kg > k1 > O}
min (\/kla \/k27 \/k37 \/k4)

Vki
L. W. Nordheim (1928), E. A. Uehling & G. E. Uhlenbeck (1933),
E. Zaremba, T. Nikuni, A. Griffin (1999) .
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The U-U equation preservesthe total density: £/ f(t, k) Vkdk =0 and
0
has a family of steady states B, characterized by their total density p > 0:

*Vkdk
o If0< p<pp:= \kf = \/2%((3/2), (: the Riemann’s zeta function,
o € —
1 > Vkdk
B,(k)=F,(k):= T where p = S M > 0.

0

e Ifp>po  Bok)= g5+ (p—p0) 2% fo Bp(k)Wkdk=p




The solutions ]

T ekt 1
are the classical Bose-Einstein equilibrium distributions if 1 > 0 and the Planck
distribution if = 0. The solutions

Fu(k)

1 )

Bp(k)zek_l"i_(p_PO)ﬁ

are the classical distributions that describe the thermal equilibrium of a family of
bosons with Bose-Einstein condensate of particles having zero momentum.

Ol EI e iddlllidlelsBM To construct solutions of the U-U equation which
behave like k~7/% as k ~ 0:



For all initial data fj satisfying:  fo(k) < Coe 8%, k>1

C

olk) = AR/ < om0 < k<,
7 c
Folk) + 5 AR08 < e 0<R <L,

there exists a unique solution f € C"°((0,T) x (0, +00)) and a(t), satisfying:

e—Dk

k7/6"
f(t, k) —a(t) kTS| < LETT/6F/2 k<1, te(0,T)

0< f(t,k) <L if k>0; J|a(t)| <L, for t € (0,T)

for some positive constant L and for some T'=T(A, B,§) > 0.



Mathematical interest

There is a large literature on bounded solutions for Boltzmann type equations.
On the other hand, and more closely related:

X. Lu, J. Stat. Phys. 116 (2004)
proves global existence of weak solutions for the Uehling Uhlenbeck equation and
describes the weak convergence towards the stationary solutions as ¢ — oo.

Our result : seems to be the first example of singular solutions of a nonlinear
kinetic equation with precise singular behaviour, f ~ a(t)k~7/% as k — 0, for a
general initial data, rigorously proveed.

A consequence of our analysis: the presence of some regularizing effect.
More precisely, write:  f(t,x) = A(t) fo(k) + g(k,1).
The function g satisfies an equation like:



%(t, k) = Nt k, g, \] = N'(¢) fo.

the initial data gg satisfies:

golla,s = sup {k%go(k)|} + sup {k”|go(k)|}; a=3/2—14, B=11/6—4,
0<k<1 k>1

for 0 as small as we want, [Elilsil, for some 1" > 0, the solution ¢ satisfies:

lg(llz/6,8 < C(t, T)llgolla,s, Yt € (0,T)

Notice that 3/2 > 7/6.

Surprising:  the structure of this equation suggests a “hyperbolic” non

regularizing behaviour for its solutions. These regularizing effects are, however,
restricted to the values of f at the particular point k& = 0.



The main contribution in the U-U equation comes from the modified equation:

(MU—U) %(t, k) — @(f) = W(kl,kg,kg,k4) qv(f)dkgdk4
D(k1)

q(f) = fafa(fr + f2) = fifa(fz + fa)
D (kl) = {(k37k4)) c ks + kg > kl}

; k’ ka k, k
W (ks ko o ) = i (VR ély 3 VEa)
1

ko = ks + kg — k1

Particular stationary solutions: _




General theory by V. E. Zakharov and co authors for general weakly nonlinear
waves (for example: Translations of the AMS vol. 182).

Another particular solution: - but -

Consider the - equation for the function n(p,t) = f(|p|?,t):

on ~
—(t,p) = Q(n) = W (p1,p2, p3,pa) ¢(n)dpsdpa
ot D(p1)

The function n(p) = |p|~7/2 satisfies the equation for all p # 0. Moreover: the
flux of this solution out of the sphere |p| < R is

/ Q(lp|""*)dp = C
Ip|<R

where C is a positive constant independent of R. So we have actually:
Q(n) — C(Sp:().



This solution has been extensively considered in the literature on the Bose Einstein

condensation. In particular by:

B.V. Svistunov: J. Moscow Phys. Soc. 1 (1991).
D.V. Semikov & I.I. Tkachev, Phys. Rev. Lett. 74 (1995)
R. Lacaze, P. Lallemand, Y. Pomeau & S. Rica: Physica D 152-153 (2001)

Proof in two steps:

Step 1. Fundamental solutions for the linearised MU-U equation.
Step 2. Fixed point argument on the nonlinear U-U equation.

The fixed point argument: similar to the standard semigroup techniques for
parabolic equations.

Short description of the linearised problem:



We linearise around f(k) = k~7/6:
flk,t) =k~ + F(k,t)

and obtain the following equation for F"

OF a 1 > r
EZE(F)E_W (k)—l_m/() K<E> F(r)dr

where a is an explicit positive constant and the kernel K (r) is explicit.
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The Fundamental solution

Theorem. For all ky > 0, there exists a unique solution F'(t,-, kg)such that:

1 k
F(t,k, ko) = —F( 1t3, ,1). For k € (0,2) the function F(t,k,1) can be
ko kO/ ICO

written as: where

o(t)=At*+ Ot* ™ ) ast — 0, o(t) = O(t™3) as t — 0.
And for k> 2: F(t,k,1) < B(t)(t3/k)® .

o= |l
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e The initial Dirac measure at k£ = kg persists for all time ¢ > 0 and is not
regularised. That is a kind of hyperbolic behaviour.

e The total mass of the Dirac measure decays exponentially fast: it is
“asymptotically” regularised.

e The behaviour k~7/% as k — 0 persists for all time.

Change of variables: k£ = €”,
F(t.k,1) =G(t,z), K(r/k)=K( ") =e""K(z ~y)
with (z) = e " K(e™") and Laplace transform in ¢t and Fourier transform in x:
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1 1 1
2G(2,8) = G(2,§ — )26 — o) + TS (1)

where ®(&) = —a + K(€) and K is the Fourier transform of K. The problem is
then transformed in the following:

For any z € C, Rez > 0, find a function G(z,-) analytic in the strip
S={§ E=u+iv, 4/3 <wv<11/6, u € R} satisfying (??) on S.

This is solved by a kind of Wiener Hopf argument.
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These particle distributions have a JleliPA{eRIIFEIWEIgdl6M towards the origin.

More precisely, the asymptotics f(t, k) ~ a(t) k~7/% as k — 0 means that

jim 2 ( Vky f (ki t) d/ﬂ) = —(a(g?)gU '(7/6)
k1<K

K—0dt

where U(V) = / h(fg, €3, 64, V) d€3 d€4
D(1)
and h(€27 537 647 V) = [W(gla 627 537 54) q(g—y)] ’51:1’
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Thls of particles towards the particles of zero momentum: makes

_ that the solutions constructed could provide some information

However, this _ to be the case.

-: because the zero momentum particles would not interact with the
particles outside the condensate as they should.
Model where the condensate interacts with non condensed particles:

E. Zaremba, T. Nikuni, A. Griffin: J. Low Temp. Phys. 116 (1999) 277-345
H. T. C. Stoof in J. Low. Temp. Phys. 114, (1999)

R. Lacaze, P. Lallemand, Y. Pomeau, S. Rica in Physica D 1562-153 (2001).
R. Baier, T. Stockkamp: hep-ph/0412310.
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Scenario for B-E condensation: start with the U-U equation + Initial data:

FO0F) = folk) k>0, /Ooofo<k)¢%dk>po

(dilute, homogeneous, isotropic gas of bosons at fixed temperature and pressure).

Numerical calculations show that at a positive and finite time t* the solution f
develops a singularity at £ = 0 (Semikoz et al. , Lacaze et al. )

After t* a macroscopic fraction of the set of particles occupies the lowest
quantum state. This is the Bose-Einstein condensate. After the condensation the
gas+condensate is described by a system of two coupled equations:
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The density distribution is now f(¢,x) + ng(t)dy (noncondensed+condensed):

Of(t) = Qulfl +mo®)Qalfl,  Bmolt) = no(t) Qslf] (2)
1 g / / / / /
@Il = = [T R)IH) = SR 0+ Fk = K) + S(K))) db
2 > / / / /
e | L) (U FOR) - S = k) = FOR) (K — )

Qslf] = /O TR P — Flk+ KL+ f(R) + F(K))) di I,

The system (??) has only one relevant stationary solution: (e — 1)~
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. Similar result with the same method may be obtained for the
system. The main contribution comes now from:

k
g_i - L/ {f(k = K)F(K') = f(k) (f(k —K') + f(K))} dF’

b [ W)+ K =) = SRS~ B} i
where 7 = / (s)ds. Stationary solution : %
B -
oF 2 (F(K') — F(k)E — F(k) .,
o - k3—//0 ) vk [ S S a
> (kK K4k
+ ﬁ/k {F(k—k:) L A }dk
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In particular one has the corresponding fundamental solution:

Theorem. For all kg > 0, there exists a unique solution

Fr k, ko) = ip(f kﬁ 1), F(0,k ko) = 6(k — ko).

For k € (0,1) the function F(7,k,1) can be written as:

where o € C|0,+00) satisfies, for some explicit numerical constant A and any
0 > 0 arbitrarily small :

o(r) = { AVTHOEZT) as 7 — 0,
|l O(r7?%) as T — oo,
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