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Gas of bosons.

A dilute homogeneous isotropic gas of bosons is described by the Uehling-
Uhlenbeck equation (in polar coordinates):

(U-U)


∂f

∂t
(t, k1) =

∫ ∫
D(k1)

W (k1, k2, k3, k4) q(f)dk3dk4

q (f) = f3f4(1 + f1)(1 + f2)− f1f2(1 + f3)(1 + f4)

D (k1) ≡ {(k3, k4) : k3 > 0, k4 > 0, k3 + k4 ≥ k1 > 0}

W (k1, k2, k3, k4) =
min

(√
k1,
√

k2,
√

k3,
√

k4

)
√

k1

, k2 = k3 + k4 − k1.

L. W. Nordheim (1928), E. A. Uehling & G. E. Uhlenbeck (1933),
E. Zaremba, T. Nikuni, A. Griffin (1999) .
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Steady States of the U-U Equation

The U-U equation preservesthe total density:
d

dt

∫ ∞

0

f(t, k)
√

k dk = 0 and

has a family of steady states Bρ characterized by their total density ρ > 0:

• If 0 < ρ < ρ0 :=
∫ ∞

0

√
k dk

ek − 1
≡
√

π

2
ζ(3/2), ζ: the Riemann’s zeta function,

Bρ(k) ≡ Fµ(k) :=
1

ek+µ − 1
where ρ =

∫ ∞

0

√
k dk

eµ+k − 1
, µ ≥ 0.

• If ρ > ρ0: Bρ(k) ≡ 1
ek−1

+ (ρ− ρ0) δ0√
k
,
∫∞
0
Bρ(k)

√
k dk = ρ
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The solutions

Fµ(k) =
1

ek+µ − 1
are the classical Bose-Einstein equilibrium distributions if µ > 0 and the Planck
distribution if µ = 0. The solutions

Bρ(k) =
1

ek − 1
+ (ρ− ρ0)

δ0√
k

are the classical distributions that describe the thermal equilibrium of a family of
bosons with Bose-Einstein condensate of particles having zero momentum.

Our main contribution: To construct solutions of the U-U equation which

behave like k−7/6 as k ∼ 0:
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Singular solutions of the U-U equation.

For all initial data f0 satisfying: f0(k) ≤ C0e
−Bk, k ≥ 1

|f0(k)−A k−7/6| ≤ C

k7/6−δ
, 0 ≤ k ≤ 1,

|f ′0(k) +
7
6

A k−13/6| ≤ C

k13/6−δ
, 0 ≤ k ≤ 1,

there exists a unique solution f ∈ C1,0((0, T )× (0,+∞)) and a(t), satisfying:

0 ≤ f(t, k) ≤ L
e−Dk

k7/6
, if k > 0; |a(t)| ≤ L, for t ∈ (0, T )

|f(t, k)− a(t) k−7/6| ≤ Lk−7/6+δ/2, k ≤ 1, t ∈ (0, T )

for some positive constant L and for some T = T (A,B, δ) > 0.
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Mathematical interest

There is a large literature on bounded solutions for Boltzmann type equations.
On the other hand, and more closely related:
X. Lu, J. Stat. Phys. 116 (2004)

proves global existence of weak solutions for the Uehling Uhlenbeck equation and
describes the weak convergence towards the stationary solutions as t →∞.

Our result : seems to be the first example of singular solutions of a nonlinear
kinetic equation with precise singular behaviour, f ∼ a(t) k−7/6 as k → 0, for a
general initial data, rigorously proveed.

A consequence of our analysis: the presence of some regularizing effect.
More precisely, write: f(t, x) = λ(t)f0(k) + g(k, t).
The function g satisfies an equation like:
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∂g

∂t
(t, k) = N [t, k, g, λ]− λ′(t) f0.

If the initial data g0 satisfies:

||g0||α,β = sup
0≤k≤1

{kα|g0(k)|}+ sup
k≥1

{
kβ|g0(k)|

}
; α = 3/2− δ, β = 11/6− δ,

for δ as small as we want, then , for some T > 0, the solution g satisfies:

||g(t)||7/6,β ≤ C(t, T )||g0||α,β, ∀t ∈ (0, T )

Notice that 3/2 > 7/6.

Surprising: the structure of this equation suggests a “hyperbolic” non

regularizing behaviour for its solutions. These regularizing effects are, however,
restricted to the values of f at the particular point k = 0.
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Sketch of the proof: linearisation + fixed point

The main contribution in the U-U equation comes from the modified equation:

(MU-U)
∂f

∂t
(t, k) = Q̃(f) ≡

∫
D(k1)

W (k1, k2, k3, k4) q̃(f)dk3dk4

q̃ (f) = f3f4(f1 + f2)− f1f2(f3 + f4)
D (k1) ≡ {(k3, k4)) : k3 + k4 ≥ k1}

W (k1, k2, k3, k4) =
min

(√
k1,
√

k2,
√

k3,
√

k4

)
√

k1

k2 = k3 + k4 − k1

Particular stationary solutions: q̃(1) = q̃(k−1) = 0.
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General theory by V. E. Zakharov and co authors for general weakly nonlinear
waves (for example: Translations of the AMS vol. 182).

Another particular solution: Q̃(k−7/6) = 0 but q̃(k−7/6) 6= 0.

Consider the non radial equation for the function n(p, t) = f(|p|2, t):

∂n

∂t
(t, p) = Q(n) ≡

∫
D(p1)

W (p1, p2, p3, p4) q̃(n)dp3dp4

The function n(p) = |p|−7/3 satisfies the equation for all p 6= 0. Moreover: the
flux of this solution out of the sphere |p| < R is∫

|p|<R

Q(|p|−7/3)d p = C

where C is a positive constant independent of R. So we have actually:

Q(n) = Cδp=0.
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This solution has been extensively considered in the literature on the Bose Einstein

condensation. In particular by:

B.V. Svistunov: J. Moscow Phys. Soc. 1 (1991).

D.V. Semikov & I.I. Tkachev, Phys. Rev. Lett. 74 (1995)

R. Lacaze, P. Lallemand, Y. Pomeau & S. Rica: Physica D 152-153 (2001)

Proof in two steps:

Step 1. Fundamental solutions for the linearised MU-U equation.
Step 2. Fixed point argument on the nonlinear U-U equation.

The fixed point argument: similar to the standard semigroup techniques for
parabolic equations.

Short description of the linearised problem:
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Linearisation of MU-U

We linearise around f(k) = k−7/6:

f(k, t) = k−7/6 + F (k, t)

and obtain the following equation for F :

∂F

∂t
= L(F ) ≡ − a

k1/3
F (k) +

1
k4/3

∫ ∞

0

K
(r

k

)
F (r) dr

where a is an explicit positive constant and the kernel K(r) is explicit.
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The Fundamental solution

Ft(t, k, k0) = − a

k1/3
F (t, k, k0) +

1
k4/3

∫ ∞

0

K(
r

k
) F (t, r, k0) dr, t > 0, k > 0,

F (0, k, k0) = δ(k − k0).

Theorem. For all k0 > 0, there exists a unique solution F (t, ·, k0)such that:

F (t, k, k0) =
1
k0

F (
t

k
1/3
0

,
k

k0
, 1). For k ∈ (0, 2) the function F (t, k, 1) can be

written as: F (t, k, 1) = e−a tδ(k − 1) + σ(t) k−7/6 +R(t, k) where

σ(t) = A t4 +O(t4+k) as t → 0, σ(t) = O(t−3) as t →∞.

And for k > 2: F (t, k, 1) ≤ β(t)(t3/k)
11
6 .
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Some Remarks.

• The initial Dirac measure at k = k0 persists for all time t > 0 and is not
regularised. That is a kind of hyperbolic behaviour.

• The total mass of the Dirac measure decays exponentially fast: it is
“asymptotically” regularised.

• The behaviour k−7/6 as k → 0 persists for all time.

Sketch of the proof.

Change of variables: k = ex,

F (t, k, 1) = G(t, x), K(r/k) = K(e−(x−y)) = ex−yK(x− y)

with K(x) = e−xK(e−x) and Laplace transform in t and Fourier transform in x:
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The Carleman equation.

zG(z, ξ) = G(z, ξ − i

3
)Φ(ξ − i

3
) +

1√
2π

, (1)

where Φ(ξ) = −a + K̂(ξ) and K̂ is the Fourier transform of K. The problem is
then transformed in the following:

For any z ∈ C, Rez > 0, find a function G(z, ·) analytic in the strip

S = {ξ; ξ = u + iv, 4/3 < v < 11/6, u ∈ R} satisfying (??) on S.

This is solved by a kind of Wiener Hopf argument.
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Physical meaning of such asymptotics.

These particle distributions have a nonzero flux of particles towards the origin.

More precisely, the asymptotics f(t, k) ∼ a(t) k−7/6 as k → 0 means that

the rate gain of particles towards the zero momentum is:

lim
K→0

d

dt

(∫
|k1|≤K

√
k1 f(k1, t) dk1

)
= −(a(t))3

3
U ′(7/6)

where U(ν) :=
∫

D(1)

h(ξ2, ξ3, ξ4, ν) dξ3 dξ4

and h(ξ2, ξ3, ξ4, ν) := [W (ξ1, ξ2, ξ3, ξ4) q(ξ−ν)]∣∣ξ1=1
.
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This nonzero flux of particles towards the particles of zero momentum: makes

tempting to think that the solutions constructed could provide some information

about the dynamic growth of Bose-Einstein condensates .

However, this does not seem to be the case.

Why ? : because the zero momentum particles would not interact with the

particles outside the condensate as they should.

Model where the condensate interacts with non condensed particles:

E. Zaremba, T. Nikuni, A. Griffin: J. Low Temp. Phys. 116 (1999) 277–345

H. T. C. Stoof in J. Low. Temp. Phys. 114, (1999)

R. Lacaze, P. Lallemand, Y. Pomeau, S. Rica in Physica D 152-153 (2001).

R. Baier, T. Stockkamp: hep-ph/0412310.

15



Scenario for B-E condensation: start with the U-U equation + Initial data:

f(0, k) = f0(k) k > 0,

∫ ∞

0

f0(k)
√

kdk > ρ0

(dilute, homogeneous, isotropic gas of bosons at fixed temperature and pressure).

Numerical calculations show that at a positive and finite time t∗ the solution f
develops a singularity at k = 0 (Semikoz et al. , Lacaze et al. )

After t∗ a macroscopic fraction of the set of particles occupies the lowest
quantum state. This is the Bose-Einstein condensate. After the condensation the
gas+condensate is described by a system of two coupled equations:
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The coupled system

The density distribution is now f(t, x) + n0(t)δ0 (noncondensed+condensed):

∂tf(t) = Q1[f ] + n0(t) Q2[f ], ∂tn0(t) = n0(t) Q3[f ] (2)

Q2[f ] =
1√
k

∫ k

0

{f(k − k′)f(k′)− f(k) (1 + f(k − k′) + f(k′))} dk′

+
2√
k

∫ ∞

k

{f(k′) (1 + f(k) + f(k′ − k))− f(k)f(k′ − k)} dk′,

Q3[f ] =
∫ ∞

0

(f(k) f(k′)− f(k + k′)(1 + f(k) + f(k′))) dk dk′.

The system (??) has only one relevant stationary solution: (ek − 1)−1.

17



Final Remark : Similar result with the same method may be obtained for the
system. The main contribution comes now from:

∂f

∂τ
=

1√
k

∫ k

0

{f(k − k′)f(k′)− f(k) (f(k − k′) + f(k′))} dk′

+
2√
k

∫ ∞

k

{f(k′) (f(k) + f(k′ − k))− f(k)f(k′ − k)} dk′,

where τ =
∫ t

0

n0(s) ds. Stationary solution :
1
k
.

Linearisation : f(k, τ) = k−1 + F (k, τ)

∂F

∂τ
=

2
k3/2

∫ k

0

(F (k′)− F (k)) k′

k − k′
dk′ − 2√

k
F (k) + 2

√
k

∫ ∞

k

F (k′)− F (k)
k′(k′ − k)

dk′

+
2√
k

∫ ∞

k

{
F (k′ − k)

k − k′

k′ k
+ F (k′)

k′ + k

k′ k

}
dk′
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In particular one has the corresponding fundamental solution:

Theorem. For all k0 > 0, there exists a unique solution

F (τ, k, k0) =
1
k0

F (
τ√
k0

,
k

k0
, 1), F (0, k, k0) = δ(k − k0).

For k ∈ (0, 1) the function F (τ, k, 1) can be written as:

F (τ, k, 1) =
σ(τ)

k
+lower order terms for 0 < k < 1

where σ ∈ C[0,+∞) satisfies, for some explicit numerical constant A and any
δ > 0 arbitrarily small :

σ(τ) =
{

A
√

τ +O(τ1/2+δ) as τ → 0+,
O(τ−3) as τ → +∞,
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